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Abstract—Energy is a scarce resource on battery-powered
wireless sensor nodes, and wireless communication represents
the major consumer of electric energy on most current plat-
forms. Reducing the number and size of radio transmissions
thus represents a viable approach to save energy and extend a
node’s operational time. In the domain of pervasive computing,
where a periodic reporting of data (e.g., a user’s vital param-
eters) is often being used, packets cannot always be simply
omitted from transmission. Even if the contained data have
not changed, these periodically transmitted message double
as beacons to indicate that the sensor node has not run out
of energy. Hence, reducing the sizes of transmitted messages
remains the only available solution to achieve energy savings
in such sensor networks. In this paper, we show how pre-
computed codebooks can be used to encode messages in an
energy-efficient way and thus reduce the size of the transmitted
packets. We present how we extract these code mappings from
real-world data, and describe how packets are encoded prior
to their transmission in order to reduce the incurred energy
demand. We practically assess the energy demand on TelosB
nodes and prove that up to 17.2% of energy can be saved when
our approach is applied.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) used in pervasive
computing applications are often configured to periodically
report their sensor readings to a sink, where the processing
of the data takes place. Therefore, the deployed devices
(motes) regularly wake up from a low-power sleep mode,
collect readings from the attached sensors, transmit these
data towards a sink, and return to their sleep state. This
duty-cycling ensures a low energy demand of the systems
during their state of inactivity, yet the need for wireless com-
munication still results in a measurable overhead during the
active phases. Especially in applications where the periodic
status messages serve as indicators that a node has not run
out of energy, and thus cannot be omitted, the only remaining
option to reduce a node’s energy demand is to cut down on
the size of transmitted packets. Packet size reductions can
be achieved by means of encoding the packet contents, with
the use of data compression being a prominent example for
packet encoding algorithms.

Although it has been shown that data compression can be
performed on motes [1], [2], [3], a number of drawbacks
limit their applicability in practical deployments. Firstly,
many compression algorithms rely on a mutually established
state, e.g., a dictionary of frequently used symbols. The
lossy nature of wireless communication channels in WSNs,
however, necessitates additional means to ensure that all
updates of this state information are successfully received,
which in turn introduces an additional energy overhead. Sec-
ondly, compression algorithms from the domain of desktop
computing often require a large amount of memory, because
their primary objective is to achieve high compression gains.
The limited resources of motes often render these algorithms
inapplicable, or necessitate major modifications to the code.
Finally, in order to achieve high compression gains, the
used algorithms need to be adapted to the characteristics
of the transferred data. This puts an additional burden
on application developers, who are inherently expected to
be familiar with the actual value ranges of the collected
readings in order to write efficient compression code.

In this paper, we hence propose to use pre-allocated code
mappings (PACmaps) to locally encode data on deployed
motes. PACmaps are lookup tables, which have been ex-
tracted based on the characteristics of sensor readings from
different physical sensors, and are stored on all sensor nodes
prior to their deployment. By analyzing the compressibility
of outbound packets using each of the available PACmaps,
the best suited code mapping can be selected and used to
encode all further packets. As all required state information
is pre-deployed, our approach is well applicable over lossy
channels. We analyze data from existing sensor network de-
ployments as well as own collected data with regard to their
symbol distributions and derive corresponding PACmaps
(cf. Sec. II). We then introduce our system architecture in
Sec. III. The real-world applicability of our implementation
is proven in Sec. IV, along with analyses of its achievable
compression gains and the energy demand of each operation
measured in an experimental setting. We summarize related
work in Sec. V and conclude this paper in Sec. VI.
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Figure 1. Symbol distribution of the Porcupine data set
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Figure 2. Symbol distribution of the Glacsweb data set

II. GENERATION OF PACMAPS

Because PACmaps are pre-installed on all motes before
the deployment, their definition needs to be done prior to
their actual usage. To this end, we have collected several data
traces from existing and self-deployed WSNs, and analyze
their symbol distributions in this section. In a subsequent
step, we describe how the PACmaps are extracted from the
input sequences.

A. Data Set Characteristics
For the definition of PACmaps, we have analyzed the

symbol distributions of three existing real-world data sets,
namely the PermaSense [4], Glacsweb [5], and Porcupine [6]
deployments. While the former two deployments are focused
on monitoring environmental parameters in permafrost and
glacier areas, the latter project is based on wrist-worn
acceleration sensors to detect human activities. Besides using
the data sets from these three existing deployments, we
have deployed a WSN in our pervasive computing lab
that was configured to collect motion, sound, temperature,
and humidity readings in an office space, as well as a
sensor for the power consumption of a desktop PC and
two LCD monitors. In order to get an impression of the
data characteristics, we show the symbol distributions of
the Porcupine data set in Fig. 1 and Glacsweb in Fig. 2. All
possible 8-bit input values are interpreted as unsigned values
and shown on the x-axis, and the black stem plot indicates
the absolute occurrence count of each symbol with regard
to the left y-axis. In addition to the occurrence frequency
of each symbol in the input trace, we show the inverse
Lorenz curve, which can be interpreted as the cumulative
distribution function of the sorted occurrence frequency list,
on the right y-axis. The deviation of the inverse Lorenz curve
from the line through the origin can be seen as a visual
indicator of the deviation from a uniform distribution and
thus as a direct indicator for the compressibility of the data.

In Table I, we show the actual number of used symbols in
each of the data sets, along with its Shannon entropy, which
is calculated as

H = �
X255

i=0
P (xi)log2P (xi) (in bits)

It becomes clear from the table that all considered traces
deviate from a uniform distribution of symbols, in which
the entropy value would be 8 bits per symbol. Some of the
analyzed traces have shown entropy values as low as 0.65
bits per symbol, despite the fact the 8 bits are required to
represent them in the radio packet, whereas the PermaSense
data is significantly less predictable, but still features an
entropy of only 6.73 bits per symbol.

B. Code Mapping Extraction
Having observed that many data sets have an entropy

value of less than eight bits per symbol, a compression of the
data by means of entropy coding, e.g., arithmetic coding [7]
or Huffman codes [8], can be expected to lead to significant
size reductions. Entropy coders analyze the distribution of
symbols in the input sequence and allocate shorter codes to
more frequently occurring symbols and vice versa.

We have used a Huffman coder to generate code map-
pings, i.e., PACmaps, from the data traces in a process
identical to the establishment of a Huffman tree. Each
PACmap is comprised of two elements, the first one being

Table I
STATISTICS OF THE USED INPUT TRACES

Data set # of used symbols Entropy (bits)
Glacsweb 185 0.65

PermaSense 256 6.73
Porcupine 220 5.19
Humidity 9 2.13

Temperature 4 1.58
Noise level 76 2.68

Power consumption 146 5.36
Motion 254 4.88



Table II
SIZE AND DISTRIBUTIONS OF THE CODE MAPPINGS

Input data PACmap size Code length (bits)
Min Avg. Max.

Glacsweb 836 bytes 1 10.11 12
PermaSense 799 bytes 4 8.96 10
Porcupine 909 bytes 3 12.39 16
Humidity 988 bytes 1 14.88 16

Temperature 861 bytes 1 10.88 11
Noise level 892 bytes 2 11.86 13

Power consumption 839 bytes 3 10.23 12
Motion 837 bytes 3 10.15 13

a bit array uint8_t codes[], in which all Huffman codes
are concatenated to achieve a small memory footprint. Ac-
cordingly, a supplementary list uint16_t offsets[256]

is required which maps each of the possible input symbols to
the corresponding offset in the codes bit array. A separate
length definition is not necessary, as the length of the code
is bounded by the starting offset of the subsequent symbol.
In order to ensure that all symbols are contained in the list,
the occurrence counter for unused symbols is set to a value
of 1 prior to the extraction of the PACmap.

The resulting codebook sizes are shown in Table II,
which also highlights the minimum, average, and maximum
code lengths. The size comparison shows that less than
one kilobyte of memory is required to store each of the
PACmaps, which is especially important in the domain of
pervasive computing, where tight resource constraints are
often present. From the table, it becomes clear that the
resulting code lengths strongly depend on the distribution of
the input data. For example, the high number of occurrences
of the ‘0’ symbol in the Glacsweb trace (cf. Fig. 2) leads to
the assignment of an output code of only one bit in length.

In WSN deployments, data are continually being col-
lected, and no a priori knowledge about the exact characteris-
tics of the data to be collected in the future exists (otherwise
all future packets would be completely redundant). The code
mappings are thus extracted prior to the actual operation,
and hence only reflect the average characteristics of the
input data. While this decreases their efficiency when char-
acteristics of the sensor data change over time, no updates
to the code tables are required. Especially as the wireless
communication channel in WSNs is often lossy [9], suitable
transport protocols would otherwise have to be employed
to ensure that code information is up-to-date at both sender
and receiver. Such transport protocols often introduce a large
overhead in terms of energy expenditure, which may even
exceed the energy savings introduced by encoding the data.
The presented PACmaps are static, such that the impact of
lossy channels is effectively mitigated.

III. DESIGN OF THE DATA ENCODING FRAMEWORK

Traditional sensor network applications commonly define
packet structures statically at compile time due to efficiency
reasons [10]. In such applications, transmitted packets thus

always have the same size and thus the same energy de-
mand for their transmission, despite possible redundancies
in their content. As our analysis in the preceding section
has shown that redundancies exist in all collected data sets,
our framework precedes the wireless communication with a
data encoding step. Our approach encodes outbound sensor
readings using PACmaps, which have been deployed onto
motes prior to their installation in the field.

A. System Architecture and Algorithm Flow
We have designed our encoder as a TinyOS module [10],

which can be easily integrated into existing applications.
Its general control flow is visualized in Fig. 3, and can be
summarized in the following two steps.

• In the initialization phase as well as when degraded
encoding gains are noticed during its operation, our
framework performs the PACmap selection step.

• Once a PACmap has been selected to encode all further
data, the framework caters to the packet encoding step
and returns the compressed packet along with an iden-
tifier of the used PACmap to the invoking application.

Its interface is simple, as its core method takes an out-
bound radio packet as its input, and returns an encoded
data packet as well as an indicator whether the result has
been compressed and which code mapping has been used.
The system first checks whether a PACmap has already
been selected in a prior selection process (cf. Sec. III-B).
If this is the case, the given map is used to compress
the data, otherwise the selection process is triggered and
all available code mappings are evaluated with regard to
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Figure 3. Control flow in the PACmap encoding architecture



the achieved compression gains. Following the compression
step, a gain monitor checks whether positive compression
gains are achieved and triggers the selection process again
in case the packet size increases after the encoding step. The
proposed solution uses a lossless encoding mechanism and
is agnostic to the actual type of application data.

B. Optimal Map Selection

All nodes that run PACmap come with a pre-defined set
of code mappings that have been extracted from data from
existing deployments. These code mappings have already
been introduced in Sec. II, in which we have collected
and analyzed data from multiple sources and extracted
corresponding PACmaps. Depending on the actual types of
sensors and the expected application domain, this set can be
extended or adapted to reflect the anticipated data types.

When several code mappings are available, the best
PACmap, i.e., the one that yields highest compression gains,
needs to be found. This is done by compressing the first
packet after the node’s reboot using all available mappings.
The PACmap with the highest average compression gain is
selected as the codebook for all subsequent transmissions.
In case changes to the physical phenomenon have occurred,
the selected map becomes less efficient with regard to its
encoding gain. An encoding gain monitor thus constantly
checks whether the encoded packet is smaller than its
unencoded representation. When size increments have been
recognized for three packets, the PACmap selection process
is repeated.

C. Packet Transmission

In order to successfully decode a packet, information
about whether it is present in plain or encoded representation
is required. In our solution, we have decided to use the
active message ID field of the TinyOS operating system in
order to distinguish between regular (i.e., uncompressed) and
encoded transmissions. This way, no additional byte in the
payload is required to identify uncompressed transmissions.
All encoded packets are prefixed by a flag that identifies the
PACmap that has been used in the encoding step. Due to the
limited reliability of WSN channels, upon which we have
designed our solution, the stateless PACmap requires the
identifier of the used map to be transferred in every packet.
Hence, a single additional byte prefixes each encoded packet
and informs the recipient how to decode the data.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the achievable encoding gains
when our proposed PACmap-based data encoding archi-
tecture is used. Subsequently, the energy demand of our
implementation is analyzed using a high-resolution energy
profiling tool and compared to an operation without data
encoding.

A. Evaluation Setup
In order to assess the energy gains under realistic condi-

tions, we have chosen the widely used TelosB platform [11]
as the basis for our implementation. For the analysis of real-
world energy demands, we have used a Hitex PowerScale
unit [12] with ACM probe, which can measure currents at
a resolution of 0.2µA. The sampling rate of the PowerScale
base unit is 100kHz, such that all operations can be analyzed
up to a resolution of 10µs. A trigger pin of the PowerScale
was used to mark the beginning and end of individual oper-
ation phases. Because our PACmap approach focuses on the
optimization of a node’s local energy demand, only a single
transmitting node has been regarded in our evaluation. The
node has been programmed with all of the eight PACmaps
that were presented in Sec. II.

B. Encoding Gains
In order to assess the output sizes of the encoder, we have

segmented each of the input data traces into chunks of 30
bytes size, which represents an average value of the packet
sizes used in WSN deployments. The resulting packets were
compressed with each of the PACmaps presented in Sec. II.
The achieved results are visualized in Fig. 4, which shows
the average output size as well as the encountered minimum
and maximum values. From the figure, it becomes clear that
each PACmap manages to achieve positive encoding gains
when applied to the matching input data. Despite the fact
that an additional byte is required in each encoded packet to
indicate which PACmap has been used during the encoding
step, size reductions by up to 83.3% (i.e., a packet size
reduction from 30 bytes to a mere 4 bytes plus 1 byte
for the prefix) have been achieved. In fact, the PermaSense
PACmap also shows positive encoding gains when applied
to the Glacsweb data. In all other cases, however, losses are
encountered in the average case, with encoded packet sizes
of up to 60 bytes, i.e., twice the size of the unencoded data.
As a result, PACmaps necessarily need to be adapted to the
symbol distributions of the anticipated data streams.

C. Compression Time and Energy Consumption
In order to yield energy savings, the energy required

for local computation must not exceed the energy saved
by transmitting shorter packets over the wireless link. We
thus analyze this tradeoff between local computation and
wireless transmission next. As introduced in Sec. III, the
system operation is composed of two major steps, namely
the selection of the best suited PACmap, followed by the
actual encoding of outbound packets. In the previous size
gain analysis, we have omitted the first step and hard-coded
the application to use a particular codebook.

In this evaluation, we thus investigate the energy overhead
introduced by the PACmap selection process. Therefore, we
have used ten packets of input data for the assessment of
the best-suited PACmap, and quantified the average energy
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Figure 4. Compression gains for the combinations of input data sets and PACmaps (the input packet length was set to 30 bytes)

required to conduct this analysis by means of the Hitex Pow-
erScale. A typical trace of the TelosB’s power consumption
is shown in Fig. 5, in which the three U1 triggers indicate the
PACmap selection, data encoding, and wireless transmission
steps, respectively. The end of the transmission is signaled
by the D1 trigger. The actual PACmap selection process has
been determined to consume approximately 800µJ of energy.
Of these, 735µJ can be attributed to the compression of each
data set (accurate figures of the processing overhead for each
type of input data are shown in Table III), and an additional
65µJ are required by the actual selection process.

In a subsequent experiment, we have analyzed the average
energy consumption for the encoding of each data trace us-
ing the corresponding PACmap. Therefore, we have activated
the radio transceiver upon the completion of the encoding
step, transmitted the packet, and put the transceiver to sleep
mode immediately afterwards. The resulting average energy
budgets for the transmission of encoded packets are also
shown in Table III and compared to the unencoded reference
transmission. The correlation between the average output
size (cf. Fig. 4) and the energy demand for the transmission
of packets becomes clear from the table. Based on the
observation that energy savings of up to 17.2% are given
when applying the PACmap approach, the initial energy
overhead for the PACmap selection is easily compensated. In
fact, in case of the Glacsweb data set, the energy expenditure
for the PACmap selection is amortized after just two packet
transmissions, whilst approximately 80 packet transmissions
are required for the less compressible PermaSense data set.

Figure 5. Excerpt of the power consumption during typical operation

V. RELATED WORK

Many research groups have addressed the challenge of op-
timizing the tradeoff between local computation and wireless
transmission. In [1], Sadler and Martonosi have shown that
the transmission of a single byte over one hop consumes an
amount of energy that is equivalent to performing several
thousand instructions on a Texas Instruments MSP430 mi-
crocontroller. In their paper, they hence propose an adapted
LZW compression algorithm, which uses retransmissions
in order to ensure that updates to the code dictionary are
conducted simultaneously at both the sender and receiver.
Guitton et al. [13] have also confirmed the need for data
compression and applied a modified version of the adaptive
Huffman coding algorithm on motes. Again, in order to
cope with the unreliable wireless channel character, retrans-
missions and block acknowledgments were added such that
losses can be recovered from.

In [2], an approach to compress firmware updates prior to
their wireless distribution has been presented by Tsiftes et
al. The resulting SBZIP algorithm is a derivative of BZIP2
and adapted to the resource constraints of motes. However,
the implementation of SBZIP addresses an opposite chal-
lenge, as only the decompression step is implemented on
motes, whereas the data compression takes place at the sink.
Means to reduce the network’s total energy consumption
by applying the Slepian-Wolf coding theorem in a low-
complexity implementation have been presented by Chou et

Table III
ENERGY DEMAND FOR ENCODING INDIVIDUAL PACKETS

Input data Energy demand Energy gainProcessing Sending
Reference – 4.49 mJ 0%
Glacsweb 50 µJ 3.68 mJ 17.2%

PermaSense 140 µJ 4.39 mJ 2.2%
Porcupine 100 µJ 4.17 mJ 7.1%
Humidity 80 µJ 3.81 mJ 15.1%

Temperature 75 µJ 3.77 mJ 16.0%
Noise level 100 µJ 3.88 mJ 13.6%

Power consumption 100 µJ 4.17 mJ 7.1%
Motion 90 µJ 4.15 mJ 7.6%



al. in [14]. In their implementation, no communication over-
head between nodes is introduced as long as the correlation
between the collected sensor data is known. However, the
major focus of this approach is to reduce the overall number
of packet transmissions. The approach is hence orthogonal
to our concept of reducing the sizes of packets and can be
used supplementary. In our previous work [15], we have
presented the stateful Squeeze.KOM compression layer as
an architectural element for sensor network nodes, which
applies differential coding to outbound packets. Similarly, an
adapted version of adaptive Huffman coding was presented
in [3] with a special focus on the low resource consumption
and the energy gains of the implementation. Due to their
stateful character, however, both approaches require addi-
tional means to recover from packet losses.

In summary, most of the existing approaches rely on
stateful solutions whose performances are severely impacted
when packets are lost. Often, supplementary mechanisms
are used to recover from packet losses, which however
introduce an additional energy demand. We are not aware
of any previous work that discusses the energy efficiency of
stateless packet encoding techniques in detail.

VI. CONCLUSION

We have presented a stateless data encoding scheme based
on pre-allocated code mappings as a lightweight approach
to reduce the size of data packets prior to their transmission.
In contrast to existing stateful approaches, no supplementary
mechanisms to ensure the synchronous exchange of state
information are required, leading to an improved energy
efficiency. Our PACmap approach has been specifically
designed for resource-constrained node platforms, and uses
code mappings that have been extracted from the charac-
teristics of real-world data. When applied, only a slight
overhead to assess the best PACmap is introduced, which is
easily compensated by the subsequent shorter transmission
durations of the encoded packets. In total, energy savings
of up to 17.2% could be achieved when our collected
real-world data traces were compressed using the PACmap
approach. Especially in pervasive computing applications,
in which periodic status messages serve as indicators for
the availability of a mote, the use of PACmaps is a viable
approach to preserve energy and thus extend the network’s
lifetime.
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[14] J. Chou, D. Petrović, and K. Ramchandran, “A Distributed
and Adaptive Signal Processing Approach to Reducing En-
ergy Consumption in Sensor Networks,” in Proceedings of
the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), 2003.

[15] A. Reinhardt, M. Hollick, and R. Steinmetz, “Stream-oriented
Lossless Packet Compression in Wireless Sensor Networks,”
in Proceedings of the 6th Annual IEEE Communications Soci-
ety Conference on Sensor, Mesh and Ad Hoc Communications
and Networks (SECON), 2009.


