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Abstract

In this paper we construct simultaneous confidence bands for a smooth curve using

penalized spline estimators. We consider three types of estimation methods: (i) as a

standard (fixed effect) nonparametric model, (ii) using the mixed model framework

with the spline coefficients as random effects and (iii) a full Bayesian approach.

The volume-of-tube formula is applied for the first two methods and compared

from a frequentist perspective to Bayesian simultaneous confidence bands. It is

shown that the mixed model formulation of penalized splines can help to obtain, at

least approximately, confidence bands with either Bayesian or frequentist proper-

ties. Simulations and data analysis support the methods proposed. The R package

ConfBands accompanies the paper.
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1 Introduction

Penalized spline smoothing has received much attention over the last decade. Eilers and

Marx (1996) coined the term “P-spline” estimator for a version of the O’Sullivan (1986)

estimator with a simplified penalty matrix. The idea is to estimate the function of interest

by some spline. Thereby a generous basis dimension is taken and penalization with an

integrated squared derivative of the spline function helps to avoid overfitting. A small

parameter dimension, a flexible choice of basis and penalties, and direct links to mixed

and Bayesian models made this smoothing technique popular, see Ruppert et al. (2003)

for examples and applications.

The theoretical properties of penalized splines remained less explored. Some first result

can be found in Hall and Opsomer (2005), Li and Ruppert (2008) and Kauermann et al.

(2009). Recently Claeskens et al. (2009) showed that depending on the number of knots,

the asymptotic scenario of the penalized spline estimator is similar to that of either regres-

sion spline or smoothing spline estimator. Thereby the optimal asymptotic orders for the

number of spline functions and for the smoothing parameter were obtained. These new

results can now be applied for inference, in particular for the construction of simultaneous

confidence bands.

In general, simultaneous confidence bands for a function f are constructed by studying

the asymptotic distribution of supa≤x≤b |f̂(x)−f(x)|. The approach by Bickel and Rosen-

blatt (1973) relates this to a study of the distribution of supa≤x≤b |Z(x)|, with Z(x) a

(standardized) Gaussian process satisfying certain conditions, which they show to have

an asymptotic extreme value distribution. This approach for the construction of confi-

dence bands has been used in the context of nonparametric estimation by, amongst others,

Härdle (1989) for M-estimators and Claeskens and Van Keilegom (2003) for local poly-

nomial likelihood estimators. Hall (1991) studied the convergence of normal extremes
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and found them to be slow, with the consequence that all those confidence bands do not

perform satisfactorily for small samples, and bootstrap methods are often applied (see for

example, Neumann and Polzehl, 1998; Claeskens and Van Keilegom, 2003).

Knafl et al. (1985) and Hall and Titterington (1988) developed confidence bands based

on large-sample upper bounds for the size of supa≤x≤b |f̂(x) − f(x)|. The main challenge

of this approach is to take the bias of a nonparametric estimator into account. Also the

choice of the smoothing parameter is a delicate matter. Eubank and Speckman (1993)

applied a similar technique to obtain confidence bands for a periodic twice differentiable

function, using a kernel estimator. Thereby the smoothing parameter was chosen data-

driven and the bias was approximated using the estimator of the second derivative of the

underlying mean function. Xia (1998) extended the approach of Eubank and Speckman

(1993) using local polynomial estimators.

Another attractive approach is to construct confidence bands based on the volume of

tube formula. Sun (1993) studied the tail probabilities of suprema of Gaussian ran-

dom processes, which can be used for the construction of simultaneous confidence bands.

It turns out that the leading coefficient in the approximation of the tail probability

P (supa≤x≤b |Z(x)| > c) for c → ∞ is connected through Weyl’s (1939) formula for the

volume of a tube of a manifold (also referred to as a Hotelling (1939) formula) to the

volume of the manifold embedded in a unit sphere. The main attraction of this method is

its straightforward extendability to more general and high dimensional settings. However,

the problem of the smoothing parameter choice and handling the bias still remains an

important issue. Sun and Loader (1994) suggested a bias correction for a particular class

of functions, but left the smoothing parameter choice open. Zhou et al. (1998, Theorem

4.2) used the volume-of-tube formula for estimation by regression splines (without using

a penalty), but did not account for the bias, which lead to undercoverage. We will use

this method for the construction of confidence bands for estimation by penalized spline
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estimators in the fixed and mixed model framework.

In contrast to the frequentist setting, the Bayesian confidence bands are constructed based

on the posterior distribution of the underlying process, given the data. Even though high-

est posterior density credible bands should be optimal from a theoretical perspective, they

are in general hard to obtain, in particular when the estimation is based on Markov chain

Monte Carlo (MCMC) simulation techniques (as will be the case in this paper and is

common practice in complex statistical models). In this case, the posterior density is not

available and, as a consequence, confidence intervals are typically constructed based on

sample quantiles obtained from the Monte Carlo output. The difficulty in constructing

simultaneous confidence bands then lies in combining the sample quantiles such that a

simultaneous coverage for a vector parameter is achieved. Besag et al. (1995) propose to

combine appropriate order statistics of the univariate samples. Crainiceanu et al. (2007)

consider simultaneous confidence bands when posterior normality for the parameter vec-

tor can be assumed. Held (2004) constructs simultaneous posterior probability statements

about vector parameters based on a Rao-Blackwellized estimate of the posterior density.

In principle, the posterior probabilities could be inverted to obtain a highest posterior

density credible band, but the computational burden is high since additional simulations

are required to obtain the posterior density estimate.

In this work we demonstrate advantages of the mixed model formulation, which combines

both frequentist and Bayesian approaches. We develop a new approach for the mixed

model based confidence bands, as well as a new Bayesian simultaneous confidence band.

In fact, the confidence bands obtained in the marginal mixed model framework are iden-

tical to the Bayesian ones, up to an unaccounted variability due to variance estimation.

Since the Bayesian confidence bands (and thus the marginal mixed model based ones)

tend to be conservative in the nonparametric setting (see Cox, 1993), we show how the

confidence bands with the approximately frequentist properties can be obtained using the
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mixed model representation of penalized splines. Thereby no explicit bias estimation is

necessary and the smoothing parameter is estimated in the usual way from the corre-

sponding (restricted) likelihood.

We first introduce the curve estimators in Section 2, then, in Sections 3 and 4 we construct

confidence bands for each setting, where we obtain a new result for the mixed models as

well as for the Bayesian method. A comparison and discussion follows in Section 5, while

simulation results and a data example are contained in Sections 6 and 7.

2 Penalized splines in three frameworks

We wish to construct a simultaneous confidence band for an unknown smooth function f ∈

Cq([a, b]), which is a q times continuously differentiable function. We have observations

(Yi, xi), with xi ∈ [a, b], i = 1, . . . , n, from the model

Yi = f(xi) + εi. (1)

The residuals εi are assumed to be independent and identically distributed as N(0, σ2
ǫ ).

We first introduce some notation and explain the three frameworks for penalized splines.

2.1 Penalized spline estimator

We denote by S(p + 1; τ) the set of spline functions of degree p with knots τ = {a = τ0 <

τ1 < . . . < τK < τK+1 = b}. This set consists of all functions that are a polynomial of

degree p on each interval [τj , τj+1], and are p − 1 times continuously differentiable. The

set S(1, τ) consists of piecewise constant functions with jumps at the knots.

A penalized spline estimator of degree p based on the set of knots τ is the solution to

min
s(x)∈S(p+1;τ)

[
n∑

i=1

{Yi − s(xi)}2 + λ

∫ b

a

{
s(q)(x)

}2
dx

]
, (2)
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with q ≤ p. Denote by a row vector P (x, τ) = {P1(x, τ ), . . . , PK+p+1(x, τ )} a basis for

S(p + 1, τ). One example is the set of polynomial and piecewise polynomial functions

{1, x, . . . , xp, (x− τ1)
p
+, . . . , (x− τK)p

+}, another example is a basis of B-spline functions of

degree p. With this notation, the spline function can be written as s(x) = P (x, τ)θ, with

an unknown parameter θ of length K + p+ 1 and (2) can be represented as minimization

problem over θ.

The penalty in (2) is the integrated squared qth derivative of the spline function, which

is assumed to be finite. Let D be the matrix such that
∫ b

a

[
{P (x, τ )θ}(q)

]2
dx = θtDθ.

Define the spline basis matrix P = {P (x1, τ)t, . . . , P (xn, τ)t}t, and the response vector

Y = (Y1, . . . , Yn)
t, then, for a given λ, the penalized spline estimator can be written as

f̃ = P θ̃ = P (P tP + λD)−1P tY , (3)

where the estimator f̃ = {f̃(x1), . . . , f̃(xn)}t.

The penalty constant λ plays the role of a smoothing parameter. It can be estimated with

any data-driven method that asymptotically minimizes the average mean squared error,

like (generalized) cross validation or the Akaike information criterion (AIC). Replacing λ

by its estimate λ̂, one gets f̂ = P (P tP + λ̂D)−1P tY .

2.2 Penalized spline estimators as predictors in mixed models

A penalized spline estimator is equivalent to a best linear unbiased predictor (BLUP) in

the corresponding mixed model (Brumback et al., 1999). To show this, we first decompose

Pθ = P (F ββ + F uu) = Xβ + Zu, (4)

such that (F β, F u) is of full rank, providing uniqueness of transformation, and F t
βF u =

F t
uF β = F t

βDF β = 0, F t
uDF u = IK+p+1−q, ensuring that only coefficients u are pe-
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nalized. Thereby P is a n × (K + p + 1), X is a n × q and Z is a n × K̃ matrix, with

K̃ = K +p+1−q. There are several approaches to obtain such a decomposition, for more

details consult e.g. Durban and Currie (2003) or Fahrmeir et al. (2004). If we assume

that Y |u ∼ N(Xβ + Zu, σ2
ǫ In) and u ∼ N(0, σ2

uIK̃), this leads to the standard linear

mixed model with the best linear unbiased predictor (BLUP)

f̃m = P mθ̃m = P m

(
P t

mP m +
σ2

ǫ

σ2
u

Dm

)−1

P t
mY ,

where P m = [X, Z], θm = [β, u], Dm = diag{0q, 1K̃}.

If we replace further σ2
ǫ and σ2

u with the corresponding (restricted) maximum likelihood

estimators in the mixed model, this results in the estimated best linear unbiased predictor

(EBLUP) f̂m = P mθ̂m = P m

(
P t

mP m + σ̂2
ǫ /σ̂

2
uDm

)−1
P t

mY . Due to the construction

of P m there always exists a square invertible matrix L such that P = P mL and D =

(L−1)tDmL−1. We therefore do not further distinguish between the different forms for

the model and penalty matrices. However, the notation with a subscript ‘m’ as in f̂m

and θ̂m will stress that that the estimators are obtained in the mixed model framework.

Note that the smoothing parameter in this mixed model formulation is the ratio of two

variance components λ = σ2
ǫ /σ

2
u.

2.3 Bayesian penalized splines

In a Bayesian framework the penalty on spline coefficients is related to a specific prior

distribution for θ. For example, a quadratic penalty θtDθ/(2σ2
θ) is the special case of

a Gaussian prior π(θ) ∝ exp{−θtDθ/(2σ2
θ)}, where the scaled penalty D/σ2

θ equals the

precision matrix of the prior. Assuming normality for the responses Yi, the posterior

π(θ|Y ) for the spline coefficients under this prior is given by

π(θ|Y ) ∝ π(Y |θ)π(θ) ∝
n∏

i=1

exp

[
− 1

2σ2
ǫ

{Yi − P (xi, τ)θ}2

]
exp

(
− 1

2σ2
θ

θtDθ

)
, (5)
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where π(Y |θ) corresponds to the likelihood of the observation model (1). By taking

logarithms and multiplying with −2σ2
ǫ , maximizing the posterior distribution in (5) is

equivalent to minimizing
∑n

i=1{Yi − P (xi, τ)θ}2 + σ2
ǫ θ

tDθ/σ2
θ , so that the penalized

spline estimator (3) and the posterior mode coincide for a fixed variance and smoothing

parameter. Similar to the mixed model interpretation of penalized splines is that the

smoothing parameter corresponds to the ratio of the error variance and the prior variance.

The mixed model representation is a simple reparametrization of the Bayesian formulation

of penalized splines that avoids the partial impropriety in the Gaussian prior if D is

rank-deficient. Fahrmeir et al. (2004) employ this connection to derive empirical Bayes

estimators based on mixed model methodology yielding posterior mode estimators.

In a fully Bayesian formulation, additional hyperpriors are assigned to the error variance

σ2
ǫ and the prior variance σ2

θ . The simplest and conjugate choices are inverse gamma

distributions and a standard choice is σ2
ǫ ∼ IG(0.001, 0.001) and σ2

θ ∼ IG(0.001, 0.001).

Inferences in the fully Bayesian approach are then typically based on Markov chain Monte

Carlo (MCMC) simulation techniques, see Brezger and Lang (2006) for details.

3 Simultaneous Bayesian Credible Bands

In this section we focus on Bayesian credible bands derived from MCMC simulation

output. In all approaches we assume that we are interested in computing simultaneous

credible bands for a collection of function evaluations f̂ = P θ̂ = {f̂(x1), . . . , f̂(xn)}t

based on simulation realizations f (j)(x1), . . . , f
(j)(xn), j = 1, . . . , J .

Note that the principle question in the construction of a Bayesian confidence band is

conceptually different from frequentist confidence bands. The construction is based on the

posterior distribution and one seeks a confidence region Iα such that Pf|Y (f ∈ Iα) = 1−α,

i.e. the coverage is defined in terms of the posterior distribution of f = {f(x1), . . . , f(xn)}t
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given the observed data Y .

An obvious way to construct a simultaneous credible region for f̂ is outlined in Crainiceanu

et al. (2007). Suppose that f̂ is the posterior mean estimator and that the posterior

standard deviation

√
v̂ar{f̂(xi)} for each point contained in f̂ has been computed. By

assuming approximate posterior normality and deriving the (1−α) sample quantile cb of

max
i=1,...,n

∣∣∣∣∣∣
f (j)(xi) − f̂(xi)√

v̂ar{f̂(xi)}

∣∣∣∣∣∣
, j = 1, . . . , J, (6)

a simultaneous credible region is given by the hyperrectangular

[
f̂(xi) − cb

√
v̂ar{f̂(xi)}, f̂(xi) + cb

√
v̂ar{f̂(xi)}

]
, i = 1, . . . , n. (7)

These confidence bands implicitly rely on the approximate normality. In particular, the

standard deviation is used as a measure of uncertainty (assuming symmetry of the poste-

rior distribution) and the posterior mean is considered as a center point. Hence, the full

posterior distribution information contained in the sample is not utilized.

Alternatively, we propose a new simultaneous credible band that avoids the assumption

of posterior normality but is still based on pointwise measures of uncertainty. To be more

specific, we base our considerations on the pointwise credible intervals derived from the

α/2 and 1− α/2 quantiles of the samples f (j)(x1), . . . , f
(j)(xn), j = 1, . . . , J . In a second

step, these pointwise credible intervals are scaled with a constant factor until (1−α)100%

of all sampled curves are contained in the credible band. The rationale is the follow-

ing. The pointwise credible intervals provide us with a measure of where information

on the estimated curve is sparse corresponding to wider intervals or dense corresponding

to narrower intervals. In the approach by Crainiceanu et al. (2007) this information is

obtained from posterior standard deviations. This, however, has the drawback that over-

and underestimation of the penalized spline are treated in a symmetric fashion whereas
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the quantile-based approach allows for different uncertainty for over- and underestimation

of the curve. This may be of particular relevance in local minima and maxima, where un-

certainty may be attributed more strongly to one of the directions. While such differences

may be generally small in Gaussian smoothing situations, they will typically become more

relevant in non-Gaussian observation models. For example, the likelihood and therefore

also the posterior in binary regression models or for Poisson data will be inherently asym-

metric such that posterior normality will be questionable, at least for moderate sample

sizes. In such situations, the proposed new band will be useful since it involves possibly

asymmetric local measures of uncertainty. Note that determining Bayesian simultaneous

confidence bands in non-Gaussian regression models is easy, since all computations only

rely on the sampled curves and do not involve the simulation model. A further advantage

over the credible band by Crainiceanu et al. (2007) is that our proposal does not depend

on a specific point estimator, since our credible band makes full use of the posterior sample

information, considering a 1 − α sample of the curves to determine the required scaling

factor.

4 Simultaneous confidence bands with the volume of

tube formula

4.1 The use of the volume of tube formula

The construction of simultaneous confidence bands using Weyl’s (1939) volume of tube

formula has been considered, among others, by Naiman (1986), Johansen and Johnstone

(1990) and Sun and Loader (1994). While rigorous proofs are given by Sun (1993), we here

sketch the basic ideas for completeness since these results will be used in the subsequent

sections.
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Let us consider the regression model (1) and some unbiased estimator f̃(x) = l(x)tY with

var{f̃(x)} = σ2
ǫ‖l(x)‖2. Since f̃(x) is unbiased, Z(x) = {f̃(x) − f(x)}σ−1

ǫ ‖l(x)‖−1 is a

zero mean Gaussian random field with var{Z(x)} = 1 and

cov{Z(x1), Z(x2)} =

(
l(x1)

‖l(x1)‖

)t (
l(x2)

‖l(x2)‖

)
≡

n∑

i=1

vi(x1)vi(x2),

where
∑n

i=1 v2
i (x) = 1. The set Vn = {v(x) : x ∈ [a, b], v(x) = (v1(x), . . . , vn(x))}

is a one-dimensional manifold embedded in Sn−1, which is a unit sphere in R
n. Let

κ0 =
∫ b

a
‖ d

dx
v(x)‖dx be the length of Vn and define the vector ǫ = Y − f . Then, Sun and

Loader (1994) obtained that

α = P

(
max
x∈[a,b]

|l(x)tǫ|
σǫ‖l(x)‖ ≥ c

)
=

κ0

π
exp(−c2/2) + 2{1 − Φ(c)} + o{exp(−c2/2)}, (8)

with Φ(·) denoting the distribution function of a standard normal distribution. If σǫ is

unknown and is estimated with some σ̂ǫ such that ςσ̂ǫ
2/σ2

ǫ ∼ χ2
ς , then

α ≈ κ0

π

(
1 +

c2

ς

)−ς/2

+ P (|tς | > c), (9)

with tς a t-distributed random variable with ς degrees of freedom. A value for c is obtained

from (9) and the simultaneous 100(1−α)% confidence band for f(x) for x in the interval

[a, b] is constructed as

[f̃(x) − cσ̂ε‖l(x)‖, f̃(x) + cσ̂ε‖l(x)‖]. (10)

4.2 Simultaneous confidence bands for penalized spline estima-

tors

Consider now the penalized spline estimator with l(x) = P (P tP + λD)−1P t(x, τ). In

contrast to the setting of the previous section, l(x), as well as any other nonparametric
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estimator, is biased. A penalized spline estimator has two contributions to the bias. The

approximation bias is due to the spline representation of the true function, while the

shrinkage bias enters via the penalization. Theorem 1 of Claeskens et al. (2009) stated

that depending on some assumptions on the number of knots K, the sample size n and the

penalty λ, the theoretical properties of the penalized spline estimators are either similar

to those of regression splines or to those of smoothing splines with a clear breakpoint

between the two cases. In the later case, that is if the penalized splines asymptotics

is close to that of smoothing splines, the shrinkage bias dominates the average mean

squared error, while the approximation bias vanishes with the growing number of knots.

Namely, the average squared approximation bias is of order O(K−2q) with K ∼ C̃ nν/(2q+1)

for some constants C̃ and ν > 1, while the average squared shrinkage bias is of order

O{n−2q/(2q+1)}. Subsequently we assume that sufficiently many knots are taken, so that

we can replace f(x) with P (x, τ )θ directly, with the approximation bias being negligible

(see also assumption (A3) in the appendix).

Thus, for the construction of confidence bands one rather deals with

PY

(
max
x∈[a,b]

|l(x)tǫ + m(x)|
σǫ‖l(x)‖ ≥ c∗

)
= α,

with ǫ = Y − Pθ, the shrinkage bias m(x) = l(x)tPθ − P (x, τ )θ and a critical value

c∗ that accounts for the bias. The critical value c∗ is typically difficult to find due to

the unknown bias. Ignoring the shrinkage bias can lead to serious undercoverage, as is

demonstrated in the simulation study presented in Section 6. Sun and Loader (1994)

found that a plug-in correction with m(x) replaced by an estimator fails badly, being in

some cases even worse than no correction. They also suggested a bias correction procedure

for a class of functions with Lipschitz continuous m(x)/‖l(x)‖, based on the estimator of

maxx∈[a,b] |m(x)|/‖l(x)‖. In their simulation study with the local polynomial regression

estimates, the resulting coverage of the confidence bands appeared to be conservative and
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highly dependent on the choice of the smoothing parameter. Sun and Loader (1994) did

not discuss a strategy for the best smoothing parameter choice in their setting. Clearly,

choosing a smoothing parameter smaller than the optimal one in the mean squared error

sense reduces the bias. However, no general guideline is available how small the smoothing

parameter should be chosen. Note also that so far we assumed the smoothing parameter

(λ or σ2
ǫ /σ

2
u) to be known. Replacing smoothing parameter by its estimator introduces

an extra source of variability, which one has to account for.

In general, in this framework for penalized splines one faces the same problems as for any

other nonparametric estimator – need for the bias correction and appropriate smoothing

parameter choice. In the next section we consider simultaneous confidence bands which

result from the mixed model representation of penalized splines and propose a simple bias

correction for the standard nonparametric setting considered in this section.

4.3 Simultaneous confidence bands with the mixed model rep-

resentation of penalized splines

4.3.1 Confidence bands based on the marginal mixed model

Let us now consider the mixed model representation of penalized splines, i.e. we approxi-

mate f(x) by P (x, τ)θ = X(x)β+Z(x)u, with u ∼ N(0, σ2
uIK̃) as in (4). Here P (x, τ )θ

is random due to randomness of u. Note that Sun et al. (1999) worked with a similar

mixed model, but they aimed to build a confidence bands around the marginal mean of

Y , that is around X(x)β only. From the standard results on mixed models it is known

that

Zm(x) =
P (x, τ)(θ̃m − θ)√

var{P (x, τ)(θ̃m − θ)}
=

P (x, τ)(θ̃m − θ)√
σ2

ǫ P (x, τ)(P tP + σ2
ǫ /σ

2
uD)−1P (x, τ )t

∼ N(0, 1).
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Since cov(θ̃m−θ) = σ2
ǫ (P

tP +σ2
ǫ /σ

2
uD)−1, we find that Zm(x) is a nonsingular Gaussian

zero mean random field with var{Zm(x)} = 1 and

cov{Zm(x1), Zm(x2)} =

(
lm(x1)

‖lm(x1)‖

)t (
lm(x2)

‖lm(x2)‖

)
≡

K̃∑

i=1

vm,i(x1)vm,i(x2),

where lm(x) = (P tP +σ2
ǫ /σ

2
uD)−1/2P (x, τ)t is the K̃×1 vector and V m,K̃ = {vm(x) : x ∈

[a, b], vm(x) = (vm,1(x), . . . , vm,K̃(x))} is a one dimensional manifold embedded in SK̃−1.

We replace κ0 in (8) with the length of the mixed model manifold, κm,0 =
∫ b

a
‖ d

dx
vm(x)‖dx,

to obtain that

α = PY ,u

(
max
x∈[a,b]

|lm(x)tǫm|
σǫ‖lm(x)‖ ≥ cm

)
= PY ,u

(
max
x∈[a,b]

|l(x)tǫ + m(x, u)|
σǫ‖lm(x)‖ ≥ cm

)
(11)

=
κm,0

π
exp(−c2

m/2) + 2{1 − Φ(cm)} + o{exp(−c2
m/2)}, (12)

with ǫm = (P tP + σ2
ǫ /σ

2
uD)1/2(θ̃m − θ) ∼ N(0, σ2

ǫ IK̃). An unknown σǫ can be replaced

by any consistent estimator leading to an expression similar to (9).

Hence, our confidence band, obtained in the marginal mixed model framework is

[f̃m(x) − cmσ̂ǫ‖lm(x)‖, f̃m(x) + cmσ̂ǫ‖lm(x)‖]. (13)

In practice, the smoothing parameter σ2
ǫ /σ

2
u has to be replaced with its estimator. The

following lemma shows that the variability due to smoothing parameter estimation can

be ignored in the mixed model framework for n sufficiently large.

Lemma 1 Under assumptions (A1)–(A3) listed in the appendix it holds

l̂(x)tY − P (x, τ )θ

‖l̂m(x)‖
=

lm(x)tǫm

‖lm(x)‖ + Op

(
n− 1

4q+2

)
, (14)

l̂(x)tY − P (x, τ )θ

‖l̂(x)‖
=

l(x)tY − P (x, τ )θ

‖l(x)‖ + Op

(
n− 1

4q+2

)
, (15)

with l̂m(x) = lm(x; σ̂2
ǫ /σ̂

2
u) and l̂(x) = l(x; σ̂2

ǫ /σ̂
2
u).
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The proof is given in the appendix. Note that using a smaller q implies a smaller variability

due to smoothing parameter estimation.

Using the same marginal mixed model framework for penalized splines, Ruppert et al.

(2003) suggested a Monte Carlo procedure for estimation of cm. Namely, a sufficiently

large number (N = 10, 000, say) of realizations of the random variable (θ̂m − θ)
approx.∼

N(0, σ̂2
ǫ (P

tP + σ̂2
ǫ /σ̂

2
uD)−1) are generated and the corresponding values of

C = max
j=1,...,M


 P (zj , τ)(θ̂m − θ)√

v̂ar{P (zj , τ)(θ̂m − θ)}




are calculated for a specified grid of x values z1, . . . , zM . Their critical value ĉm is the

empirical (1 − α) quantile of the hence obtained values C1, . . . , CN . A simultaneous

confidence band is given by the hyperrectangular

[
P (zj, τ )θ̂m − ĉm

√
v̂ar{P (zj , τ)(θ̂m − θ)}, P (zj , τ)θ̂m + ĉm

√
v̂ar{P (zj , τ)(θ̂m − θ)}

]
,(16)

for j = 1, . . . , M . Note that this approach also does not take into account the variabil-

ity due to variance parameters estimation. Hence, one can expect (13) and (16) to be

approximately equal. Obviously, (7) is in fact the Bayesian version of (16), where the

variability due to parameters estimation is taken into account. However, since in our sim-

ulation study in Section 6 we found no significant differences between the results obtained

immediately from the tube formula and from (6), we believe that the tube formula offers

an attractive alternative to the computationally intensive simulation based techniques.

4.3.2 Confidence bands based on the conditional mixed model

Let us now treat u in (4) as fixed and consider the probability

α = PY |u



max
x∈[a,b]

∣∣∣P (x, τ )(θ̃m − θ)
∣∣∣

σǫ‖l(x)‖ ≥ c∗



 = PY |u

(
max
x∈[a,b]

|l(x)tǫ + m(x, u)|
σǫ‖l(x)‖ ≥ c∗

)
, (17)
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where l(x) = l(x, σ2
ǫ /σ

2
u). Up to a smoothing parameter this is exactly the probability

discussed in Section 4.2. As already mentioned in Section 4.2, a plug-in correction of the

form

[
f̃(x) −

(
c +

m(x, u)

σǫ‖l(x)‖

)
σǫ‖l(x)‖, f̃(x) +

(
c − m(x, u)

σǫ‖l(x)‖

)
σǫ‖l(x)‖

]
, (18)

with the bias m(x, u) replaced by its estimate and c obtained from (8), performs poor.

Instead, we suggest to use in place of c∗ the critical value cm obtained from (12). To

justify this we compare (11) with (17) averaged over u, that is with

α = EuPY |u

(
max
x∈[a,b]

|l(x)tǫ + m(x, u)|
σǫ‖l(x)‖ ≥ c∗

)
= PY ,u

(
max
x∈[a,b]

|l(x)tǫ + m(x, u)|
σǫ‖l(x)‖ ≥ c∗

)
.

Hence,

PY ,u

(
max
x∈[a,b]

|Zm(x)| ≥ cm

)
= PY ,u

(
max
x∈[a,b]

|Zm(x)|‖lm(x)‖
‖l(x)‖ ≥ c∗

)
. (19)

Formally, from (19) it follows that cm ≤ c∗ ≤ rmcm, with rm = maxx∈[a,b] ‖lm(x)‖/‖l(x)‖.

To have an idea how big rm can be, note that if K is small and λ → 0, the penalized spline

estimator converges to a projection (regression spline) estimator with lm(x) → l(x), for all

x ∈ [a, b] so that rm → 1. As K → n a penalized spline estimator converges to a smoothing

spline estimator, for which is known that
√

avex‖lm(x)‖2/avex‖l(x)‖2 ≈
√

2q/(2q − 1),

see Wahba (1983). For example, for q = 2 one finds
√

2q/(2q − 1) ≈ 1.15.

Another way to look at cm offers the following theorem.

Theorem 1 For the critical values c and cm, obtained from (8) and (12) respectively, it

holds

c2
m = c2 + 2

κm,0 − κ0

κ0
+ o(1),

where o(1) converges to zero as c → ∞. Additionally, if

(A4) κm,0κ0
−1 = maxx∈[a,b] ‖lm(x)‖2‖l(x)‖−2 + o(1)

16



is fulfilled and the mixed model (4) with u ∼ N(0, σ2
uIK̃) holds, then

c2
m = c2 + max

x∈[a,b]

2varu{m(x, u)}
σ2

ǫ‖l(x)‖2
+ o(1). (20)

The proof of the theorem can be found in the appendix and the assumption (A4) is easy

to check in practice, using the R-package ConfBands that accompanies the paper. All

together, we can conclude that the critical value cm automatically accounts for the bias.

Thus, one can build a confidence band

[f̃m(x) − cmσ̂ǫ‖l(x, σ2
ǫ /σ

2
u)‖, f̃m(x) + cmσ̂ǫ‖l(x, σ2

ǫ /σ
2
u)‖], (21)

which will have approximately coverage probability 1 − α, given that enough knots are

taken so that the approximation bias is negligible. Lemma 1 justifies replacement of

the smoothing parameter by its estimate. In fact, the confidence band (21) is similar in

spirit to the bias correction suggested by Sun and Loader (1994), but we avoid explicit

estimation of maxx∈[a,b] |m(x, u)|/‖l(x)‖, using instead the critical value cm obtained from

the marginal mixed model framework.

5 Confidence bands in three frameworks

The confidence bands discussed in Sections 3 and 4 are obtained in different frameworks.

They rely on different assumptions about the function f , the corresponding estimators use

different smoothing parameter estimates and the interpretation of the confidence bands is

also different. In the standard nonparametric model with f as a fixed sufficiently smooth

function, the frequentist confidence bands are calculated with respect to the distribution

of the data, given the function f . In other words, if one samples the data with the same

mean function f many times, then one can expect that in 100(1 − α)% cases the true

f will be inside the bands. In the Bayesian framework f is considered to be a sample

17



path of a stochastic process and one is looking for the posterior probability that the

true f is within the band, given the data. In the finite dimensional parametric setting

both intervals – frequentist and Bayesian – are asymptotically equivalent. The well-

known Bernstein-von Mises Theorem states that the posterior distribution of the finite

dimensional parameter vector around its posterior mean is close to the distribution of

the maximum likelihood estimate around the truth and herewith the Bayesian confidence

sets have good frequentist coverage properties. Unfortunately, this is not true in the

nonparametric regression context. In particular, Cox (1993) has shown that the Bayesian

coverage probability for Bayesian smoothing splines with Gaussian priors tends to be

larger than (1−α)100%, see also Freedman (1999). Hence, we expect to find our Bayesian

credible bands to be conservative for f ∈ Cq[a, b].

The mixed model based bands are something intermediate. On the one hand, one can

consider them as an empirical version of the Bayesian confidence bands (with σǫ, σu and

β treated as fixed) having the same interpretation. On the other hand, one can view

the mixed model based band as a confidence band averaged over u. Thus, as shown in

the previous section, the mixed model formulation of penalized splines can help to obtain

confidence bands which have asymptotically either Bayesian or frequentist properties.

Namely, the confidence band (13) is approximately equivalent to the Bayesian one and

the band as defined in (21) has approximately frequentist properties. Our simulation

results presented in Section 6 confirmed this.

The following theorem gives the asymptotic width of the intervals considered in our paper.

Theorem 2 Under assumptions (A1)–(A3) the width of the confidence bands (10), (13)

and (21) based on the volume of tube formula for a penalized spline estimator has the

asymptotic order Op(
√

log K2n−q/(2q+1)) = Op(
√

log n2ν/(2q+1)n−q/(2q+1)), ν > 1.

The proof is provided in the appendix. This theorem holds also if the smoothing param-

eter is replaced by its estimator σ̂2
ǫ /σ̂

2
u, as follows immediately from Lemma 1. It follows
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that the interval is getting more narrow with growing n and getting wider with K.

Up to a constant
√

2ν/(2q + 1) this asymptotic order coincides with the one given in Eu-

bank and Speckman (1993) for a twice differentiable function (q = 2), namely Op(
√

log nn−2/5),

which is slightly slower, than the optimal rate of (log n/n)q/(2q+1) of Hall and Tittering-

ton (1988). Eubank and Speckman (1993) stressed that Hall and Titterington (1988)

“chose a smoothing parameter designed to minimize the length of their intervals, rather

than MSE” and conjectured that their rate of
√

log nn−2/5 is the best attainable with the

smoothing parameter which minimizes the mean squared error. Using penalized splines

one can get narrow intervals not only by taking a larger smoothing parameter, but also

by choosing a smaller K. However, K should not be taken too small to avoid a growing

approximation bias. More discussion on a practical choice of K is contained in Section 6.

6 Simulations

To assess the performance of the discussed approaches we ran a simulation study. We

considered two functions. The first

f1(x) =
6

10
β30,17(x) +

4

10
β3,11(x),

with βl,m(x) = Γ(l + m){Γ(l)Γ(m)}−1xl−1(1 − x)m−1 was used in Wahba (1983) and

f2(x) = sin2{2π(x − 0.5)}

has been considered in Eubank and Speckman (1993) and Xia (1998). These functions are

shown in Figure 1. The x values are taken to be uniformly distributed over [0, 1]. Three

samples sizes were considered: a small one with n = 50, a moderate one with n = 250 and

a large one with n = 500. The errors are taken to be independent N(0, σ2
ǫ ) distributed

with σǫ = 0.3. There are also simulation results available for σǫ = 0.1 and σǫ = 0.6,
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Figure 1: Functions used in the simulations: (a) f1(x), (b) f2(x).

but since there were no significant differences found we do not report them here. We

estimated the curves with a different number of equidistant knots K = 15, 40, 100 and

K = 200, depending on the sample size. Thereby we used a B-spline basis of degree 3 and

as penalty the integrated squared second derivative of the spline function. The results

for the 95% confidence bands that are reported in Table 1 are based on a Monte Carlo

sample of size 1000.

The rows labeled F represent the coverage probabilities and corresponding areas for the

confidence bands (10) built under the fixed effects nonparametric model without any bias

correction, as described in Section 4.2. Since the volume of tube formula assumes the

errors to be normally distributed but does not require n → ∞, we do not discover any

improvements in coverage with growing n, this holds for both functions. As expected from

the results of Theorem 2, the width (and thus the area) of the bands is getting smaller

as n increases. Overall we find that the confidence bands in the standard nonparametric

framework which ignore the bias have on average a 5 – 10% smaller coverage for all com-

binations of n and K.

The rows labeled C show the coverage probability of the mixed model based bands, con-

ditional on u, as discussed in Section 4.3.2. They should result in a coverage probability

close to the nominal value, which we indeed observe. In general, it is recommended to
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n = 50 n = 250 n = 500
K = 15 40 K = 15 40 100 K = 15 40 100 200

f1, F 0.91 0.86 0.89 0.88 0.90 0.87 0.90 0.90 0.89
(0.91) (0.91) (0.43) (0.44) (0.45) (0.31) (0.33) (0.33) (0.33)

C 0.92 0.94 0.94 0.96 0.95 0.93 0.96 0.96 0.96
(0.90) (0.93) (0.46) (0.50) (0.50) (0.34) (0.38) (0.39) (0.39)

M 0.96 0.97 0.96 0.99 0.99 0.94 0.99 0.99 0.99
(0.98) (1.04) (0.48) (0.56) (0.58) (0.35) (0.43) (0.44) (0.44)

N 0.95 0.96 0.95 0.98 0.99 0.94 0.99 0.99 1.00
(0.96) (1.01) (0.47) (0.56) (0.57) (0.34) (0.43) (0.44) (0.44)

U 0.95 0.96 0.95 0.98 0.99 0.95 0.98 0.99 1.00
(0.97) (1.02) (0.48) (0.57) (0.59) (0.35) (0.44) (0.45) (0.45)

f2, F 0.85 0.86 0.78 0.73 0.81 0.86 0.88 0.85 0.88
(0.70) (0.71) (0.32) (0.32) (0.33) (0.25) (0.25) (0.25) (0.25)

C 0.93 0.93 0.95 0.96 0.94 0.95 0.96 0.95 0.96
(0.68) (0.69) (0.35) (0.37) (0.37) (0.27) (0.28) (0.28) (0.28)

M 0.97 0.97 0.98 0.98 0.99 0.98 1.00 0.99 1.00
(0.76) (0.78) (0.39) (0.42) (0.42) (0.29) (0.32) (0.32) (0.32)

N 0.96 0.97 0.97 0.99 0.99 0.97 0.99 0.99 0.99
(0.76) (0.78) (0.39) (0.42) (0.43) (0.29) (0.32) (0.33) (0.33)

U 0.96 0.97 0.97 0.98 0.99 0.97 0.99 0.99 0.99
(0.77) (0.79) (0.40) (0.43) (0.44) (0.30) (0.33) (0.33) (0.34)

Table 1: Coverage probabilities and (areas) for f1(x) and f2(x), with nominal level 0.95
using F a fixed effect model, C a mixed model conditional on u, M a marginal mixed
effect model and Bayesian method based on normal posteriors N and univariate credible
bands U . The range of the standard errors for the reported average areas is between 2.6%
and 15.8% of the area for f1(x) and between 2.9% and 23.7% of the area for f2(x).

use moderate number of knots (K = 25 to 50, depending on the sample size) in this

framework, since the width of the interval is growing with K. Overall, we find that the

bias correction resulted from the mixed model representation of penalized splines is not

only simple but is also very efficient.

The rows labeled M represent the coverage probabilities and corresponding areas for the

confidence bands resulted from the marginal mixed model framework, as discussed in Sec-

tion 4.3.1. These bands appear to become more and more conservative as K grows. This

agrees with the finding of Cox (1993). Taking a small number of knots leads to a nearly
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parametric model where the smoothing parameter has little importance, which eliminates

the differences between the mixed model representation of penalized splines and its stan-

dard nonparametric formulation. Thus, in the marginal mixed model framework taking

a small K will imply less conservative bands from the frequentist point of view.

Finally, we consider the Bayesian confidence bands based on posterior normality (6) (de-

noted as N). These bands are conceptually close to the marginal mixed model based

bands, which is also reflected in a similar behaviour. This supports the asymptotic re-

sults of Lemma 1, which suggest that the variability due to smoothing parameter can

be ignored. Our new proposed confidence bands denoted with U are typically somewhat

wider than the N bands but in general yield a similar coverage, since the data were sim-

ulated from the normal distribution. Another method for the construction of Bayesian

simultaneous credible bands can be found in Besag et al. (1995). This approach is based

on order statistics of the samples. However, in our simulation study we found that the

resulted credible bands suffer from serious undercoverage and we refrain on giving more

details here.

Overall, we found that the frequentist confidence bands without any bias correction lead

to undercoverage, while the Bayesian confidence bands typically become conservative with

the growing K. The confidence bands based on the conditional mixed model result in the

confidence bands with the coverage which is at most close to the nominal one.

7 Examples

To illustrate our method we present two examples. In the first example we consider

the data on ratios of strontium isotopes found in fossil shells and their age, collected

by T. Bralower of the University of North Carolina. First analyzed by Chaudhuri and

Marron (1999), this data set was used in Section 6.2 on simultaneous confidence bands
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of Ruppert et al. (2003). 106 observations are shown in Figure 2. Ruppert et al. (2003)
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Figure 2: Fossil data with the confidence bands obtained from the conditional mixed
model (shaded area) and the marginal mixed model (bold lines) (a) based on 10 knots,
(b) based on 80 knots.

found the critical value using the simulation procedure described in Section 4.3.1, building

the band (16). From five independent simulations of N = 10, 000 each they got values

ĉm ≃ 3.172, 3.198, 3.172, 3.201, 3.199.

From Theorem 2 follows that the critical values and thus the width of the band depends

on the number of knots. We will illustrate this result using the fossil shells data. For

the estimation we used penalized splines with the third degree B-splines basis and the

second order penalty. We found critical values from the marginal mixed model using

10 and 80 knots. The volume of tube formula (12) delivered critical values cm(K =

10) = 3.229 and cm(K = 80) = 3.380. The simulation based critical values of Ruppert

et al. (2003) for the band (16) with M = 150 and N = 10, 000 in five independent runs

resulted in ĉm(K = 10) ≃ 3.107, 3.089, 3.080, 3.106, 3.092 and to ĉm(K = 80) ≃

3.251, 3.267, 3.255, 3.253, 3.272. Obviously, the growing number of knots results in

somewhat bigger critical values. Note that Ruppert et al. (2003) did not provide the

number of knots used, but one can conjecture it was around 30 – 40.

23



The grey area in Figure 2 represents the simultaneous confidence bands (21) obtained

from the conditional mixed model and the bold lines show the bands (13) based on the

marginal mixed model, using 10 knots (left) and 80 knots (right). The marginal mixed

model based bands (16) and (13) with the critical values obtained from the simulations

and with the volume of tube formula, respectively, are indistinguishable on the plot. As

we already mentioned, the marginal mixed model based bands become more and more

conservative as the number of knots grows, while the small number of knots leads to

a nearly parametric model with a smaller difference between marginal and conditional

mixed model based bands, which is clearly observed in Figure 2.

The second example is on undernutrition among children in Kenya. The data come from

the 2003 Kenya Demographic and Health Survey (2003 KDHS) carried out by the Kenya

Central Bureau of Statistics and are available free of charge from www.measuredhs.com

for research purposes. We consider the so-called Z-score for stunting, depending on the
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Figure 3: Z-scores for underweight of children in Kenya. (a) The data and a nonparametric
fit based on 50 knots. (b) Simultaneous confidence bands based on the conditional mixed
model (shaded area) and the marginal mixed model (bold lines).

age of a child. The Z-score for stunting is defined as the standardized height for age, i.e.
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Z = (H−m)/σ, where H is the height of a child and m, σ are the median and the standard

deviation of some reference population, correspondingly. The children with Z-scores below

−2 are considered as stunted. All 4686 observations are shown in the left hand side plot

of Figure 3. The data are cross-sectional (no same individuals) and available with the

interval of one month. Note the low signal to noise ratio for this data. The grey area

in the right hand side plot shows the confidence band (21) using the conditional mixed

model representation of penalized splines based on 80 knots, while the bold lines are the

corresponding marginal mixed model based bands (13), which are indistinguishable from

the Bayesian confidence bands. Using these confidence bands one can perform a further

analysis, e.g. a formal test for significance of bumps and dips between 1 and 4 years.

8 Discussion

In this paper we considered the construction of simultaneous confidence bands in three

frameworks for penalized splines. We used the volume of tube formula in the standard

nonparametric setting and for the mixed model representation of penalized splines. A full

Bayesian analogue of the mixed model representation of penalized splines, as well as a

new approach for Bayesian credible bands were considered. We found that the volume of

tube formula for the mixed model formulation of penalized splines delivers results nearly

identical to the full Bayesian framework, but with considerably less computational costs.

Our main finding is that the mixed model formulation of penalized splines helps also

to build the simultaneous bands with the frequentist coverage. Thereby no explicit bias

estimation is necessary and the smoothing parameter is estimated from the correspond-

ing (restricted) likelihood. Our approach appeared to be effective in the simulations,

extremely fast and easy to implement. The R package ConfBands that accompanies the

paper allows to obtain all the confidence bands discussed.
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It is important to note that the volume of tube formula relies on the Gaussian distribu-

tion assumption for the errors. However, if the sample size is large and the central limit

theorem applies, the volume of tube formula is still valid for the models with any non-

Gaussian additive independent errors. Moreover, Loader and Sun (1997) showed that the

volume of tube formula holds without modifications for spherically symmetric errors. In

the linear regression context there were some modifications of the volume of tube formula

developed in order to adjust for the cases with heteroscedastic (Faraway and Sun, 1995)

and correlated errors (Sun et al., 1999), while Sun et al. (2000) considered generalized

linear models. Extensions of our work to a generalized framework, as well as handling

correlated and heteroscedastic data offers interesting directions for further research.
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Appendix. Technical details

A.1 Proofs

We adopt the framework of Claeskens et al. (2009) and use the same assumptions.

(A1) Let δ = max0≤j≤K(δj), δj = τj − τj−1. There exists a constant M > 0, such that

δ/ min1≤j≤K(δj) ≤ M and max0≤j≤K |δj+1 − δj | = o(K−1).
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(A2) For deterministic design points xi ∈ [a, b], i = 1, . . . , n, assume that there exists a

distribution function Q with corresponding positive continuous design density ρ such

that, with Qn the empirical distribution of x1, . . . , xn, supx∈[a,b] |Qn(x) − Q(x)| =

o(K−1).

(A3) Kq = (K + p + 1− q)(λč)1/2qn−1/2q > 1 for some constant č that depends only on q

and the design density ρ and K ∼ C̃ nν/(2q+1) for some constants C̃ and ν > 1.

Proof of Lemma 1

Let us denote σ2
ǫ /σ

2
u = λm. Since λ̂m is a maximum likelihood estimator, a routine

calculation shows that

λ̂m
approx.∼ N

(
λm,

2λ2
m

tr(S2) − p + o(1)

)
,

where o(1) → 0 as n → ∞, tr(·) denotes the trace of the matrix and S = P (P tP +

λmD)−1P t. We prove equation (15) only, the proof of (14) is completely analogous.

Using

∂‖l(x)‖−1

∂λ
=

lt(x)(In − S)l(x)

λ‖l(x)‖3
,

∂l(x)

∂λ
=

(S − In)l(x)

λ
,

and applying the delta method results in

l̂(x)tf
approx.∼ N

{
l(x)tf , var(λ̂m)

(
∂l(x)tf

∂λm

)2
}

,

‖l̂(x)‖−1 approx.∼ N

{
‖l(x)‖−1, var(λ̂m)

(
∂‖l(x)‖−1

∂λm

)2
}

.

With this one finds

var
(
l̂(x)tf

)
=

[{(In − S)l(x)}tf ]2

tr(S2) − p + o(1)
,

var(‖l̂(x)‖−1) =
{lt(x)(In − S)l(x)}2

2‖l(x)‖6{tr(S2) − p + o(1)} .
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To obtain the asymptotic orders we use the results of Claeskens et al. (2009). In particular,

from their Theorem 1 under assumptions (A1)–(A3) n−1
∑n

i=1 var{f̃(xi)} = n−1tr(S2) =

O(n−2q/(2q+1)) for Kq > 1. Thus, var{f̃(x)} = σ2
ǫ ‖l(x)‖2 = O(n−2q/(2q+1)) for any x ∈ [a, b]

and tr(S2) = O(n1/(2q+1)). With the arguments used in the proof of the asymptotic order

of tr(S2) in Claeskens et al. (2009), it is not difficult to see that tr(S) and tr(S3) have

the same order O(n1/(2q+1)), implying, in particular, that l(x)tSl(x) = O(n−2q/(2q+1)).

Noting that {(In −S)l(x)}tf = lt(x){f −E(f̃ )}, we conclude that its asymptotic order

is the same as that of the bias of f̃ (x), that is O(n−q/(2q+1)). Thus, we obtain l̂(x)tf =

l(x)tf + Op(n
−1/2) and ‖l̂(x)‖−1 = ‖l(x)‖−1 + Op(n

(2q−1)/(4q+2)). Finally

l̂(x)tY − P (x, τ )tθ

‖l̂(x)‖
=

l(x)tY − P (x, τ )tθ + {l̂(x) − l(x)}t{f + Op(1)}
‖l(x)‖

‖l(x)‖
‖l̂(x)‖

=

{
l(x)tY − P (x, τ)tθ

‖l(x)‖ + Op

(
n− 1

4q+2

)}{
1 + Op

(
n− 1

4q+2

)}
,

proving the lemma.

Proof of Theorem 1

From (8) and (12) we conclude

κm,0

π
exp(−c2

m/2)− 2Φ(cm) + o{exp(−c2
m/2)} =

κ0

π
exp(−c2/2)− 2Φ(c) + o{exp(−c2/2)},

leading to exp(−c2
m/2) = exp(−c2/2)κ0κm,0

−1[1 + o{exp(−c2/2)}]. Taking the logarithm

from the both sides of the last equality and using the Taylor expansion of log(κm,0) around

log(κ0), we find

c2
m = c2 + 2

κm,0 − κ0

κ0

+ o(1),

where o(1) converges to zero as c → ∞. Note now that

varu{m(x, u)} = varu{P (x)(P tP + σ2
ǫ /σ

2
uD)−1σ2

ǫ /σ
2
uDθ} = σ2

ǫ (‖lm(x)‖2 − ‖l(x)‖2).
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To obtain (20), it remains to apply (A4).

To prove Theorem 2 we need the following lemma.

Lemma 2 Under assumption (A1) it holds

‖l′m(x)‖2‖lm(x)‖−2 = c1(x)K2, {lt
m(x)l

′

m(x)}2‖lm(x)‖−4 = c̃1(x)K2,

‖l′(x)‖2‖l(x)‖−2 = c2(x)K2, {lt(x)l
′

(x)}2‖l(x)‖−4 = c̃2(x)K2,

for some positive constants c1(x), c2(x), c̃1(x), c̃2(x) depending only on p and x.

Proof of lemma 2

Without loss of generality we take p-degree (order p + 1) B-splines as basis functions,

so that for x ∈ [τi, τi+1), i = 0, . . . , K the basis vector takes the form P (x, τ ) =

{0i, Pi−p,p+1(x), . . . , Pi,p+1(x), 0K−i}, with Pi,p+1(x) denoting an ith B-spline of degree p

evaluated at x and 0i as an i-dimensional vector of zeros. It is known (see e.g. Zhou et al.,

1998) that P
′

(x, τ) = pP p(x, τ )∆, where P p(x, τ ) = {0i, Pi−p+1,p(x), . . . , Pi,p(x), 0K−i}

and ∆ is a (K + p) × (K + p + 1) matrix of weighted first order differences, that is a

matrix with the rows {0j,−(τj+1+p−τj+1)
−1, (τj+1+p−τj+1)

−1, 0, . . .}, j = 0, . . . , K+p−1,

each of length K + p + 1. With this for x ∈ [τi, τi+1) we can rewrite ‖lm(x)‖2 =
∑p

s,t=0 Pi−s,p+1(x)Pi−t,p+1(x)hst and ‖l(x)‖2 =
∑p

s,t=0 Pi−s,p+1(x)Pi−t,p+1(x)h̃st, where hst =

{(P tP +λmD)−1}i+1+s,i+1+t and h̃st = {(P tP +λmD)−1P tP (P tP +λmD)−1}i+1+s,i+1+t.

Moreover,

‖l′m(x)‖2 = p2

p∑

s,t=0

hst

(
Pi−s,p(x)

τi+s+p − τi+s

− Pi+1−s,p(x)

τi+1+s+p − τi+1+s

) (
Pi−t,p(x)

τi+t+p − τi+t

− Pi+1+t,p(x)

τi+1+t+p − τi+1+t

)
,

{ltm(x)l
′

m(x)}2 = p2

{
p∑

s,t=0

hst

(
Pi−s,p(x)

τi+s+p − τi+s

− Pi+1−s,p(x)

τi+1+s+p − τi+1+s

)
Pi−t,p(x)

}2

,

where Pi−p,p(x) = Pi+1,p(x) = 0. The analogous expressions hold for ‖l′(x)‖ and {lt(x)l
′

(x)}2

with hst replaced by h̃st. According to (A1) there exist positive constants cj,k < ∞ inde-
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pendent of n and K such that (τj+k+p − τj+k) = c−1
j,k p/K. Thus, since 0 ≤ Pi,p+1(x) ≤ 1

as well as 0 ≤ Pi,p(x) ≤ 1 for any i and only hst depends on K and n, we find that

c1(x) =

∑p
s,t=0 hst {Pi−s,p(x)ci,s − Pi+1−s,p(x)ci+1,s} {Pi−t,p(x)ci,t − Pi+1−t,p(x)ci+1,t}∑p

s,t=0 hst Pi−s,p+1(x)Pi−t,p+1(x)

is independent of K and n. Similar expressions can be obtained for c̃1(x), c2(x) and c̃2(x).

Proof of Theorem 2

The width of the confidence band based on the volume of tube formula for penalized

splines at a fixed x is determined by the critical value c or cm and the standard deviation

σǫ‖l(x)‖ or σǫ‖lm(x)‖. From (8) and (12) follows that c =
√

log[κ2
0{1 + O(1)}] and

cm =
√

log[κ2
m,0{1 + O(1)}], where O(1) is bounded for c, cm → ∞. As discussed in the

proof of Lemma 1, the standard deviation σǫ‖l(x)‖ = O(n−q/(2q+1)) and σǫ‖lm(x)‖ =

O(n−q/(2q+1)). It remains to find the order of κm,0 and κ0. By definition

κm,0 =

∫ b

a

∥∥∥∥
d

dx

lm(x)

‖lm(x)‖

∥∥∥∥ dx =

∫ b

a

√
‖lm(x)‖2‖l′m(x)‖2 − {lm(x)tl

′

m(x)}2

‖lm(x)‖2
dx,

κ0 =

∫ b

a

∥∥∥∥
d

dx

l(x)

‖l(x)‖

∥∥∥∥ dx =

∫ b

a

√
‖l(x)‖2‖l′(x)‖2 − {l(x)tl

′

(x)}2

‖l(x)‖2
dx.

Using lemma 2 we find κm,0 = O(K) = O(nν/(2q+1)), κ0 = O(K) = O(nν/(2q+1)) and the

width of the confidence band based on the volume of tube formula for penalized splines

has the asymptotic order Op(
√

log n2ν/(2q+1)n−q/(2q+1)), ν > 1.
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