

Smoothing parameter selection in two frameworks for spline estimators

Tatyana Krivobokova

Georg-August-Universität Göttingen

29th European Meeting of Statisticians Budapest, 20 – 25 Juli 2013

Model

Nonparametric model for n data pairs (y_i, x_i)

$$Y_i = f(x_i) + \epsilon_i, \ i = 1, \dots, n, \ \epsilon_i \sim \mathcal{N}(0, \sigma^2),$$

for fixed $x_i \in [0,1]$ and an unknown smooth f

Smoothing parameter λ for any $\hat{f}(x) = \hat{f}(x; \lambda)$ can be chosen to minimize some unbiased estimator of the mean square risk

$$\mathsf{R}(\widehat{f},f) = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left\{\widehat{f}(x_{i};\lambda) - f(x_{i})\right\}^{2}\right]$$

Choice of λ

In practice GCV (or asymptotic equivalent AIC, C_p) as \widehat{R} is used

$$\mathsf{E}\left\{\mathsf{GCV}(\lambda)\right\} = \mathsf{R}(\widehat{f}, f)\{1 + o(1)\} + \sigma^2\left\{1 + o(n^{-1})\right\}$$

Known practical problems of GCV and similar criteria

- large variability of $\widehat{\lambda}$ obtained with GCV
- extremely sensitive to serial dependences in ϵ_i
- unstable in low signal-to-noise ratio situations

Two frameworks for splines

Frequentist model

$$Y_i = f(x_i) + \epsilon_i = \sum_{j=0}^{q-1} \beta_j x_i^j + \int_0^1 f^{(q)}(t) \frac{(x-t)_+^{q-1}}{(q-1)!} dt + \epsilon_i,$$

for
$$x_i \in [0,1], \ f \in \mathcal{W}^q[0,1], \ \epsilon_i \sim \mathcal{N}(0,\sigma^2)$$

Stochastic model

$$Y_{i} = F(x_{i}) + \epsilon_{i} = \sum_{j=0}^{q-1} \beta_{j} x_{i}^{j} + \sigma_{u} \int_{0}^{1} \frac{(x_{i} - t)_{+}^{q-1}}{(q-1)!} dW(t) + \epsilon_{i},$$

for $x_+ = \max\{0, x\}$, W(t) standard Wiener process and $i = 1, \dots, n$

Two frameworks

In the frequentist framework f is estimated from

$$\min_{f \in \mathcal{W}^{q}[0,1]} \left[\frac{1}{n} \sum_{i=1}^{n} \{y_{i} - f(x_{i})\}^{2} + \lambda \int_{0}^{1} \{f(x)^{(q)}\}^{2} dx \right],$$

which is minimized by the smoothing spline estimator \widehat{f}

In the stochastic framework F is found as the best linear unbiased predictor, which equals to \hat{f} with $\lambda = \sigma^2/(n\sigma_u^2)$

Note that the sample paths of $F \notin W^q[0,1]$ with probability 1 (are less smooth)

Low-rank splines

Let S(2q-1, k) be a spline space of degree 2q-1 based on k knots τ_j Making further assumptions on regularity of x_i and τ_j and on

$$k={
m const}\;n^
u$$
 , $u\in(1/(2q),1)$, $\lambda o 0$, $\lambda n o\infty$

one solves a lower dimensional problem (k < n) to estimate $f \in W^q$

$$\min_{s\in\mathcal{S}(2q-1,k)}\left[\frac{1}{n}\sum_{i=1}^{n}\{y_i-s(x_i)\}^2+\lambda\int_0^1\{s^{(q)}(x)\}^2dx\right]$$

Similarly, the estimator in the stochastic framework is generalized

Two smoothing parameters

Estimators in both models are equal up to the smoothing parameter

Smoothing parameter λ

- relies on the frequentist model with $f \in \mathcal{W}^q[0,1]$
- estimated by minimizing criteria that estimate $\mathsf{R}(\widehat{f},f)$

Smoothing parameter σ^2/σ_u^2

- relies on the stochastic model
- · estimated by maximizing the corresponding likelihood

Frequentist model

Aim to answer

How both smoothing parameter estimators behave if the data follow a frequentist model?

Available results

• Sun & Speckman (2000, unpublished) asymptotic distribution of the estimators (smoothing splines) for functions satisfying natural boundary conditions

Oracle smoothing parameters

Let denote

$$\lambda_f = \lambda_f(n) = \arg\min_{\lambda>0} \mathsf{E}\{\mathsf{GCV}(\lambda)\} = \arg\min_{\lambda>0} \mathsf{R}(\widehat{f}, f)\{1 + o(1)\}$$

and

$$\lambda_r = \lambda_r(n) = \arg\min_{\sigma^2/\sigma_u^2 > 0} \mathsf{E}_f\{-I_p(\sigma^2/\sigma_u^2; y)\}$$

with l_p as the profile (restricted) likelihood for σ^2/σ_u^2

 λ_r is the smoothing parameter that one gets in the mean from the likelihood in case the data follow $Y_i = f(x_i) + \epsilon_i$, $f \in W^q$

Oracle smoothing parameters

Let $f \in W^{qm}[0,1]$, $m \in [1,2]$, where W^{qm} is a fractional order Sobolev (Besov) space with certain boundary conditions

$$\lambda_f \geq \mathsf{C}(f,q,m,\sigma^2) \ n^{-rac{2q}{2qm+1}}, \ m \in [1,2],$$

$$\lambda_r = \mathsf{C}(f, q, \sigma^2) n^{-\frac{2q}{2q+1}}, \forall m$$

as shown in Wahba (1995, AoS)

- λ_f adapts to the unknown smoothness and boundary conditions (up to 2q)
- performance of λ_r depends on *n*, *q* and $C(f, q, \sigma^2)$

It follows, that λ_r is suboptimal

- $\lambda_f/\lambda_r o \infty$ with $n \to \infty$ for $f \in \mathcal{W}^{qm}[0,1]$, $m \in (1,2]$
- $\widehat{f}(\lambda_r)$ (asymptotically) undersmooths f compared to $\widehat{f}(\lambda_f)$

In many small-samples simulation studies (e.g. Kohn, JASA, 1991) $\hat{\sigma}^2/\hat{\sigma}_u^2$ appeared to perform better than $\hat{\lambda}$

 \hookrightarrow look at the properties of estimators $\widehat{\sigma}^2/\widehat{\sigma}_u^2$ and $\widehat{\lambda}$

Smoothing parameter estimators

Under the frequentist model and mentioned assumptions on x_i , τ_i , k, λ

$$\frac{\widehat{\sigma}^2/\widehat{\sigma}_u^2}{\lambda_r} \xrightarrow{\mathcal{P}} 1 \quad \text{and} \quad \frac{\widehat{\lambda}}{\lambda_f} \xrightarrow{\mathcal{P}} 1.$$

Moreover,

$$\lambda_r^{-1/(4q)}\left(\frac{\widehat{\sigma}^2/\widehat{\sigma}_u^2}{\lambda_r}-1\right)\xrightarrow{\mathcal{D}}\mathcal{N}\left(0,2C_1(q)\right)$$

and

$$\lambda_f^{-1/(4q)}\left(\frac{\widehat{\lambda}}{\lambda_f}-1\right)\xrightarrow{\mathcal{D}}\mathcal{N}\left(0,2C_2(q)\right),$$

$$C_1(q) = c_\rho \sin(\pi/(2q)) \frac{q}{12q^2 - 3}$$

$$C_2(q) = c_\rho \sin(\pi/(2q)) \frac{q(12q^2 + 8q + 1)}{15(8q^2 - 2q - 1)}$$

- + $c_{
 ho}$ depends on the design density ho
- $C_1(q)$ decreases with q
- $C_2(q)$ increases with q
- $C_2(q)/C_1(q)$ grows fast with q

Smoothing parameter estimators

$$\operatorname{var}\left(\frac{\widehat{\lambda}}{\lambda_{f}}\right) = O\left(n^{-\frac{1}{2qm+1}}\right), \quad m \in [1, 2]$$
$$\operatorname{var}\left(\frac{\widehat{\sigma}^{2}/\widehat{\sigma}_{u}^{2}}{\lambda_{r}}\right) = O\left(n^{-\frac{1}{2q+1}}\right)$$

- the convergence rate of $\widehat{\lambda}/\lambda_f$ and $\widehat{\sigma}^2/(\lambda_r \widehat{\sigma}_u^2)$ to 1 is very slow
- $\widehat{\lambda}/\lambda_{f}$ converge more slowly for smoother functions

Smoothing parameter estimators

$$\frac{\operatorname{var}(\widehat{\lambda})}{\operatorname{var}(\widehat{\sigma}^2/\widehat{\sigma}_u^2)} \approx q(q+2) \left(\frac{\lambda_f}{\lambda_r}\right)^{2+1/(2q)}$$

That is due to $\lambda_f/\lambda_r
ightarrow \infty$, $n
ightarrow \infty$

- $\operatorname{var}(\widehat{\lambda}_f)/\operatorname{var}(\widehat{\sigma}^2/\widehat{\sigma}_u^2)$ is large and grows with q and n
- $\widehat{f}(\widehat{\sigma}^2/\widehat{\sigma}_u^2)$ is much more stable than $\widehat{f}(\widehat{\lambda}_f)$

Simulations

Simulation results show

- $\widehat{\lambda}$ is much more variable than $\widehat{\sigma}^2/\widehat{\sigma}_u^2$
- $\lambda_f/\lambda_r > 1$ and grows with n
- for a periodic f_2, λ_f/λ_r is larger than for f_1
- in small samples $\hat{f}(\hat{\lambda})$, $\hat{f}(\hat{\sigma}^2/\hat{\sigma}_u^2)$ perform comparable for f_1

	<i>n</i> = 350		<i>n</i> = 1000	
	f_1	f ₂	f_1	<i>f</i> ₂
$\frac{R(\widehat{f}(\widehat{\lambda}),f)}{R(\widehat{f}(\widehat{\sigma}^2/\widehat{\sigma}_u^2),f)}$	1.02	0.99	0.90	0.80

Data-driven q

Large ratio λ_f/λ_r suggests that f is smoother than assumed $\mathcal{W}^q[0,1]$

If q can be chosen data-driven, such that $\lambda_f/\lambda_r \approx 1$ for given n and f, then $\hat{\sigma}^2/\hat{\sigma}_u^2$ should outperform $\hat{\lambda}$ due to much smaller variance

One possible way is to choose q such that

$$R(q) = \left| Y^{t}(I_{n} - S)S^{2}Y - \widehat{\sigma}^{2} \{ \operatorname{tr}(S^{2}) - q \} \right|$$

is smallest; here $S = S(\widehat{\sigma}^2/\widehat{\sigma}_u^2)$ is the smoother matrix

This criterion is obtained comparing estimating equations of both smoothing parameters

Simulations n = 1000

Conclusion

- λ_f/λ_r grows with n
- λ_f is able to adapt to the unknown smoothness (up to 2q)
- performance of λ_r depends on n and q
- + $\widehat{\lambda}$ and $\widehat{\sigma}^2/\widehat{\sigma}_u^2$ are both consistent and asymptotically normal
- convergence rate of $\widehat{\lambda}$ and $\widehat{\sigma}^2/\widehat{\sigma}_u^2$ is very slow
- + $\widehat{\lambda}$ converges to λ slower for smoother functions
- constants in asymptotic variances of $\widehat{\lambda}$ and $\widehat{\sigma}^2/\widehat{\sigma}_u^2$ are obtained
- taking a larger q can improve the performance of $\widehat{\sigma}^2/\widehat{\sigma}_u^2$
- data-driven choice of q is interesting direction for further research