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Model

Nonparametric model for n data pairs (yi , xi )

Yi = f (xi ) + εi , i = 1, . . . , n, εi ∼ N (0, σ2),

for fixed xi ∈ [0, 1] and an unknown smooth f

Smoothing parameter λ for any f̂ (x) = f̂ (x ;λ) can be chosen

to minimize some unbiased estimator of the mean square risk

R(f̂ , f ) = E

[
1

n

n∑
i=1

{
f̂ (xi ;λ)− f (xi )

}2
]
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Choice of λ

In practice GCV (or asymptotic equivalent AIC, Cp) as R̂ is used

E {GCV(λ)} = R(f̂ , f ){1 + o(1)}+ σ2
{

1 + o(n−1)
}

Known practical problems of GCV and similar criteria

• large variability of λ̂ obtained with GCV

• extremely sensitive to serial dependences in εi

• unstable in low signal-to-noise ratio situations
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Two frameworks for splines

Frequentist model

Yi = f (xi ) + εi =

q−1∑
j=0

βjxi
j +

∫ 1

0
f (q)(t)

(x − t)q−1+

(q − 1)!
dt + εi ,

for xi ∈ [0, 1], f ∈ Wq[0, 1], εi ∼ N (0, σ2)

Stochastic model

Yi = F (xi ) + εi =

q−1∑
j=0

βjxi
j + σu

∫ 1

0

(xi − t)q−1+

(q − 1)!
dW (t) + εi ,

for x+ = max{0, x}, W (t) standard Wiener process and i = 1, . . . , n
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Two frameworks

In the frequentist framework f is estimated from

min
f ∈Wq [0,1]

[
1

n

n∑
i=1

{yi − f (xi )}2 + λ

∫ 1

0
{f (x)(q)}2dx

]
,

which is minimized by the smoothing spline estimator f̂

In the stochastic framework F is found as the best linear

unbiased predictor, which equals to f̂ with λ = σ2/(nσ2u)

Note that the sample paths of F /∈ Wq[0, 1] with probability 1

(are less smooth)
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Low-rank splines

Let S(2q − 1, k) be a spline space of degree 2q − 1 based on k knots τj

Making further assumptions on regularity of xi and τj and on

k = const nν , ν ∈ (1/(2q), 1) , λ→ 0, λn→∞

one solves a lower dimensional problem (k < n) to estimate f ∈ Wq

min
s∈S(2q−1,k)

[
1

n

n∑
i=1

{yi − s(xi )}2 + λ

∫ 1

0
{s(q)(x)}2dx

]

Similarly, the estimator in the stochastic framework is generalized
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Two smoothing parameters

Estimators in both models are equal up to the smoothing parameter

Smoothing parameter λ

• relies on the frequentist model with f ∈ Wq[0, 1]

• estimated by minimizing criteria that estimate R(f̂ , f )

Smoothing parameter σ2/σ2u

• relies on the stochastic model

• estimated by maximizing the corresponding likelihood
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Frequentist model

Aim to answer

How both smoothing parameter estimators behave

if the data follow a frequentist model?

Available results

• Sun & Speckman (2000, unpublished) asymptotic
distribution of the estimators (smoothing splines) for
functions satisfying natural boundary conditions
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Oracle smoothing parameters

Let denote

λf = λf (n) = arg min
λ>0

E{GCV(λ)} = arg min
λ>0

R(f̂ , f ){1 + o(1)}

and

λr = λr (n) = arg min
σ2/σ2

u>0
Ef {−lp(σ2/σ2u; y)}

with lp as the profile (restricted) likelihood for σ2/σ2u

λr is the smoothing parameter that one gets in the mean from

the likelihood in case the data follow Yi = f (xi ) + εi , f ∈ Wq
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Oracle smoothing parameters

Let f ∈ Wqm[0, 1], m ∈ [1, 2], where Wqm is a fractional order

Sobolev (Besov) space with certain boundary conditions

λf ≥ C(f , q,m, σ2) n−
2q

2qm+1 , m ∈ [1, 2],

λr = C(f , q, σ2) n−
2q

2q+1 , ∀m

as shown in Wahba (1995, AoS)

• λf adapts to the unknown smoothness and

boundary conditions (up to 2q)

• performance of λr depends on n, q and C (f , q, σ2)

10 / 20



Oracle smoothing parameters

It follows, that λr is suboptimal

• λf /λr →∞ with n→∞ for f ∈ Wqm[0, 1], m ∈ (1, 2]

• f̂ (λr ) (asymptotically) undersmooths f compared to f̂ (λf )

In many small-samples simulation studies (e.g. Kohn, JASA, 1991)

σ̂2/σ̂2u appeared to perform better than λ̂

↪→ look at the properties of estimators σ̂2/σ̂2u and λ̂
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Smoothing parameter estimators

Under the frequentist model and mentioned assumptions on xi , τi , k, λ

σ̂2/σ̂2u
λr

P−→ 1 and
λ̂

λf

P−→ 1.

Moreover,

λ
−1/(4q)
r

(
σ̂2/σ̂2u
λr

− 1

)
D−→ N

(
0, 2C1(q)

)
and

λ
−1/(4q)
f

(
λ̂

λf
− 1

)
D−→ N

(
0, 2C2(q)

)
,

12 / 20



Smoothing parameter estimators

C1(q) = cρ sinc{π/(2q)} q

12q2 − 3

C2(q) = cρ sinc{π/(2q)}q(12q2 + 8q + 1)

15(8q2 − 2q − 1)

• cρ depends on the design density ρ

• C1(q) decreases with q

• C2(q) increases with q

• C2(q)/C1(q) grows fast with q
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Smoothing parameter estimators

var

(
λ̂

λf

)
= O

(
n−

1
2qm+1

)
, m ∈ [1, 2]

var

(
σ̂2/σ̂2u
λr

)
= O

(
n−

1
2q+1

)

• the convergence rate of λ̂/λf and σ̂2/(λr σ̂
2
u) to 1 is very slow

• λ̂/λf converge more slowly for smoother functions
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Smoothing parameter estimators

var(λ̂)

var(σ̂2/σ̂2u)
≈ q(q + 2)

(
λf
λr

)2+1/(2q)

That is due to λf /λr →∞, n→∞

• var(λ̂f )/var(σ̂2/σ̂2u) is large and grows with q and n

• f̂ (σ̂2/σ̂2u) is much more stable than f̂ (λ̂f )
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Simulations q = 2
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Simulations

Simulation results show

• λ̂ is much more variable than σ̂2/σ̂2u
• λf /λr > 1 and grows with n

• for a periodic f2, λf /λr is larger than for f1

• in small samples f̂ (λ̂), f̂ (σ̂2/σ̂2
u) perform comparable for f1

n = 350 n = 1000

f1 f2 f1 f2
R(f̂ (λ̂),f )

R(f̂ (σ̂2/σ̂2
u),f )

1.02 0.99 0.90 0.80

17 / 20



Data-driven q

Large ratio λf /λr suggests that f is smoother than assumed Wq[0, 1]

If q can be chosen data-driven, such that λf /λr ≈ 1 for given n and f ,

then σ̂2/σ̂2u should outperform λ̂ due to much smaller variance

One possible way is to choose q such that

R(q) =
∣∣Y t(In − S)S2Y − σ̂2{tr(S2)− q}

∣∣
is smallest; here S = S(σ̂2/σ̂2u) is the smoother matrix

This criterion is obtained comparing estimating equations

of both smoothing parameters
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Simulations n = 1000
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Conclusion

• λf /λr grows with n

• λf is able to adapt to the unknown smoothness (up to 2q)

• performance of λr depends on n and q

• λ̂ and σ̂2/σ̂2u are both consistent and asymptotically normal

• convergence rate of λ̂ and σ̂2/σ̂2u is very slow

• λ̂ converges to λ slower for smoother functions

• constants in asymptotic variances of λ̂ and σ̂2/σ̂2u are obtained

• taking a larger q can improve the performance of σ̂2/σ̂2u
• data-driven choice of q is interesting direction for further research
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