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¥/ J Model

7

Nonparametric model for n data pairs (y;, x;)

Y,':f(X,')—i-G,', i=1,...,n, EiNN(O,O'z),

for fixed x; € [0, 1] and an unknown smooth f

~ ~

Smoothing parameter A for any f(x) = f(x; \) can be chosen

to minimize some unbiased estimator of the mean square risk

n

R(F,f) = E [,17 S {Fid) - f(x,-)}2]

i=1

)
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7 J Choice of A

In practice GCV (or asymptotic equivalent AIC, C,) as R is used

E{GCV(\)} = R(F, A){1 + o(1)} + 0% {1+ o(n" 1)}

Known practical problems of GCV and similar criteria

o large variability of X obtained with GCV
e extremely sensitive to serial dependences in ¢;

e unstable in low signal-to-noise ratio situations
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7 J Two frameworks for splines
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Frequentist model

(x—f"
Yi = f(x;)+ e = Zﬁm / (f)ﬁd““i’
for x; € [0,1], f € WI[0,1], € ~ N(0,02)

Stochastic model

q—1 ) 1 (Xi - t)q 1
YiZF(Xi)+6i:Z/BjXIJ+UU/ RCEE _1—; dW(t) + €,
j=0 0

for x; = max{0, x}, W(t) standard Wiener process and i =1,...,

n
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7 J Two frameworks

7

In the frequentist framework f is estimated from

_ 2 (q 2
s [t ]

which is minimized by the smoothing spline estimator f

In the stochastic framework F is found as the best linear

unbiased predictor, which equals to f with A = 02/(no?)

Note that the sample paths of F ¢ W9[0, 1] with probability 1
(are less smooth)
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7 J Low-rank splines

Let S(2g — 1, k) be a spline space of degree 2¢g — 1 based on k knots 7;

Making further assumptions on regularity of x; and 7; and on
= const n¥, v € (1/(29),1) , A = 0, An = ¢

one solves a lower dimensional problem (k < n) to estimate f € W4

s€S(2q—1,k)

1
min 1Z{y,—s(x,)}2+)\/ {s(q)(x)}2dx]

Similarly, the estimator in the stochastic framework is generalized

6
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7 J Two smoothing parameters

7

Estimators in both models are equal up to the smoothing parameter

Smoothing parameter A

e relies on the frequentist model with f € W90, 1]

e estimated by minimizing criteria that estimate R(f, f)

; 2.2
Smoothing parameter o< /07

e relies on the stochastic model

e estimated by maximizing the corresponding likelihood
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& J Frequentist model
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Aim to answer
How both smoothing parameter estimators behave

if the data follow a frequentist model?

Available results

e Sun & Speckman (2000, unpublished) asymptotic
distribution of the estimators (smoothing splines) for
functions satisfying natural boundary conditions
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Z J Oracle smoothing parameters

t73%

Let denote

Ar = Af(n) = arg &n>|8 E{GCV(\)} = arg &n>|r3 R(f, F){1+ o(1)}

and
Ar = A\(n) = arg min Ef{—/p(‘72/‘75;5/)}
02/02>0

2
u

with I, as the profile (restricted) likelihood for 02 /o

A, is the smoothing parameter that one gets in the mean from

the likelihood in case the data follow Y; = f(x;) +¢;, f € W4
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Z J Oracle smoothing parameters
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Let £ € WI7[0,1], m € [1,2], where W9™ is a fractional order

Sobolev (Besov) space with certain boundary conditions

Af

v

C(f,q, m, 02) n_2q$"q+1, m € [1,2],
A = C(f,q,6%)n 2q+1 Vm

as shown in Wahba (1995, AoS)

e \s adapts to the unknown smoothness and
boundary conditions (up to 2q)
e performance of A\, depends on n, g and C(f,q,c?)
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Z J Oracle smoothing parameters
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It follows, that A, is suboptimal

® \f/Ar — 00 with n — oo for f € WIM[0,1], m € (1,2]

~ -~

e f(Ar) (asymptotically) undersmooths f compared to f(Af)
In many small-samples simulation studies (e.g. Kohn, JASA, 1991)

52/52 appeared to perform better than h)

< look at the properties of estimators 52/52 and A
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& J Smoothing parameter estimators

7

Under the frequentist model and mentioned assumptions on x;, 7;, k, A

52/52 p X P
X —> 1 and x~ — 1.
Moreover,
A, ) < r 1) 2>N(o7zcl(q))
and

- h)
A\ 1/(4q) (Af _ 1) D, /\/(o, 2C2(q)),
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Smoothing parameter estimators

G(q) = o smc{7r/(2q)}m

q(12¢°> +8q + 1)
15(8¢%> —2g — 1)

G(q) = o sinc{7/(2q)} 2

¢, depends on the design density p
C1(q) decreases with g

C>(q) increases with ¢
Co(q)/Ci(q) grows fast with g
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& J Smoothing parameter estimators

var <§f> = 0 (nfﬁ) , me[l,2]
var <82<8‘2’> = O(n_ﬁ>

e the convergence rate of X/)\,c and 52/(\,02) to 1 is very slow

e \/Af converge more slowly for smoother functions
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& J Smoothing parameter estimators

~

var(A A\ 2HY/(29)
% ~qlg+2) (5
var(c?/co?) Ar

That is due to A¢/\, — 00, n — 0

. var(xf)/var(82/83) is large and grows with g and n

~

e 7(52/52) is much more stable than £(Af)
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Function 2

Simulations g = 2

Function 1
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Simulations

Simulation results show

X is much more variable than 52 /52
Af/Ar > 1 and grows with n
for a periodic fp, Af/ )\, is larger than for f;

in small samples F()\), 7(52/52) perform comparable for

n = 350 n = 1000
fi f fi f

R(f()),f)
RFG2/32).7) 1.02 0.99 0.90 0.80
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& J Data-driven g
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Large ratio A\r/\, suggests that f is smoother than assumed WY[0, 1]

If g can be chosen data-driven, such that A\¢/\, ~ 1 for given n and f,
then 5252 should outperform A due to much smaller variance

One possible way is to choose g such that
R(q) = [Y!(ln — $)S?Y — 5*{tr(S?) — g}

is smallest; here S = S(52/52) is the smoother matrix

This criterion is obtained comparing estimating equations

of both smoothing parameters
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Simulations n = 1000
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Function 2

Function 1
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Conclusion

Af/Ar grows with n
Af is able to adapt to the unknown smoothness (up to 2q)

performance of A\, depends on n and g

A and 52/G2 are both consistent and asymptotically normal
convergence rate of A and 52/G2 is very slow
A\ converges to A slower for smoother functions

constants in asymptotic variances of A and 52/5? are obtained

taking a larger g can improve the performance of 52/52

data-driven choice of g is interesting direction for further research
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