Spatial and temporal variation in soil CO₂ efflux in an old-growth neotropical rain forest, La Selva, Costa Rica.

L. Schwendenmann, E. Veldkamp, T. Brenes, J.J. O'Brien, J. Mackensen

Biogeochemistry 64: 111-128 (2003)

Abstract

Our objectives were to quantify and compare soil CO_2 efflux of two dominant soil types in an old-growth neotropical rain forest in the Atlantic zone of Costa Rica, and to evaluate the control of environmental factors on CO_2 release. We measured soil CO_2 efflux from eight permanent soil chambers on six Oxisol sites. Three sites were developed on old river terraces ('old alluvium') and the other three were developed on old lava flows ('residual'). At the same time we measured soil CO_2 concentrations, soil water content and soil temperature at various depths in 6 soil shafts (3 m deep). Between 'old alluvium' sites, the two-year average CO_2 flux rates ranged from 117.3 to 128.9 mg C m⁻² h⁻¹. Significantly higher soil CO_2 efflux were related to fine root biomass, soil carbon and phosphorus concentration but also to soil water content. Spatial variability in CO_2 storage was high and the amount of CO_2 stored in the upper and lower soil profile was different between 'old alluvial' and 'residual' sites. The major factor identified for explaining temporal variations in soil CO_2 efflux was soil water content. During periods of high soil water content CO_2 emission decreased, probably due to lower diffusion and CO_2 production rates. During the 2-year study period inter-annual variation in soil CO_2 efflux was not detected.