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ABSTRACT

Aim Effort in collecting biodiversity information often varies strongly in space and
may be driven by environmental, cultural and socio-economic factors. Understand-
ing the constraints on collecting effort is crucial for identifying potential bias in
distributional databases and for making future surveys more efficient. Here we test
six competing hypotheses on drivers of geographical variation in collecting effort
and identify the main factors shaping the geography of floristic collections in China.

Location China.

Methods We used the most comprehensive database of Chinese vascular plant
distributions including 4,338,516 county-level occurrences derived from her-
barium specimens and literature sources. Explanatory variables were assembled
representing six different hypotheses: accessibility, human population density, the
‘botanist effect’, mountains, water availability and conservation priority. Ordinary
least-squares models with eigenvector-based spatial filters were applied to inves-
tigate their effects on spatial patterns of two different facets of collecting effort,
i.e. collection density and inventory incompleteness.

Results All hypotheses except accessibility and human population density received
significant support. Elevational range was the strongest predictor with a positive
effect on collection density. Inventory incompleteness in turn was best predicted by
human population density, but unexpectedly showed a positive effect. In contrast to
previous studies, collecting effort was only weakly and negatively related to road
density. Counties with herbaria had significantly higher collecting effort, and the
presence of herbaria had weakly positive effects on neighbouring counties.

Main conclusions Our results indicate that China’s mountains are most inten-
sively and completely collected, whereas densely populated areas are surprisingly
under-sampled. Because densely populated areas are more seriously threatened by
land-use change, our results show a need to increase biological collections in those
areas for conservation assessment and monitoring. More generally, our study sug-
gests that collecting effort and its environmental and socio-economic constraints
have a strong region-specific component influenced by cultural context and by
different botanical traditions.
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INTRODUCTION

Understanding spatial patterns of biodiversity, including the dis-

tribution of individual species and aggregated patterns like

species richness and endemism, is crucial for biogeography,

ecology and conservation management (Wilson, 1988; Gaston,

2000; Whittaker et al., 2005). However, the uneven spatial dis-

tribution of collecting effort common in most databases may
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lead to a biased perception of patterns and drivers of biodiver-

sity (Nelson et al., 1990; Soberón & Peterson, 2004; Ballesteros-

Mejia et al., 2013; Yang et al., 2013; Ficetola et al., 2014). Previ-

ous studies have shown that the geography of biological collec-

tions is strongly related to environmental and socio-economic

factors (Freitag et al., 1998; Dennis & Thomas, 2000; Reddy &

Dávalos, 2003; Sánchez-Fernández et al., 2008). Understanding

the determinants of spatial bias in distributional data should

help to identify data limitations and to improve the efficiency of

future field surveys (Dennis et al., 1999; Romo et al., 2006).

It has been reported that biological collections tend to be

concentrated in areas near roads and navigable rivers (Reddy &

Dávalos, 2003), suggesting that accessibility is an important

factor influencing the selection of collecting sites – the ‘highway

effect’ (Soberón et al., 2000) or the ‘road-map effect’ (Crisp

et al., 2001). For example, plant collections in the inner parts of

Australia have been largely restricted to the vicinity of a few

main roads (Crisp et al., 2001). This pattern has also been found

for other taxa (e.g. frogs and passerine birds; Reddy & Dávalos,

2003; Botts et al., 2011) and regions (e.g. South America and

Thailand; Nelson et al., 1990; Parnell et al., 2003).

Furthermore, positive relationships have been found between

human population density and the number of collections

(Dennis et al., 1999; Küper et al., 2006; Tobler et al., 2007;

Ficetola et al., 2014). Urban areas often show higher collecting

effort than remote areas. For example, collecting sites for vascu-

lar plants in Thailand are concentrated in densely populated

areas (Parnell et al., 2003) – a pattern that may be driven by

better infrastructure for transport and accommodation in

densely populated areas.

Moerman & Estabrook (2006) found that species richness of

flowering plants in the United States is higher in counties with

universities, and argued that counties where botanists live are

generally better sampled, leading to a higher number of docu-

mented species (the ‘botanist effect’). Studies on butterflies

(Dennis & Thomas, 2000) and water beetles (Sánchez-Fernández

et al., 2008) provided further support for the idea that collecting

sites close to the homes of collectors are more frequently visited,

suggesting that the distance to collectors’ homes may affect col-

lecting effort (Hortal et al., 2004; Ahrends et al., 2011).

Collecting effort may also be related to environmental factors.

For Iberian butterflies and water beetles, areas along prominent

mountain ranges and with high precipitation have the highest

collecting efforts (Romo et al., 2006; Sánchez-Fernández et al.,

2008). This relationship might be due to the fact that moist,

mountainous areas usually harbour more species (Kreft & Jetz,

2007; Ruggiero & Hawkins, 2008), and collectors may focus their

effort on such areas to maximize the number of species collected

(‘diversity tracking’; Romo et al., 2006).

Several studies have indicated that collectors tend to concen-

trate their activities within protected areas (e.g. nature reserves

and national parks; Freitag et al., 1998; Parnell et al., 2003;

Reddy & Dávalos, 2003). Protected areas are usually character-

ized by high levels of biodiversity, unique habitats, pristine eco-

systems or protected (or threatened) species, and are thus

particularly attractive to collectors.

Although a number of studies have related collecting effort to

selected single factors, to our knowledge no study has tested the

relative importance of all the above-mentioned factors simulta-

neously in a common framework. It is thus unclear which

factors are the main determinants of the spatial distribution of

collecting effort and whether the determinants and underlying

causes can be generalized across taxa and regions.

With 31,847 currently recognized species of native vascular

plants (Wang et al., 2011), China harbours one of the most

diverse floras in the world. This enormous diversity is due to its

large area (c. 9.6 million km2) and high environmental hetero-

geneity, encompassing boreal, temperate, subtropical and tropi-

cal biomes, and its complex topography and geological history

(Axelrod et al., 1996). The Chinese flora has been intensively

surveyed over the last 100 years and millions of plant specimens

have been collected and preserved (Fu, 1993). Nevertheless, col-

lecting effort varies dramatically among regions and only 9% of

Chinese counties can be considered to be well sampled (Yang

et al., 2013).

Here, we test six hypotheses for the spatial variation in col-

lecting effort and identify the main factors shaping the geogra-

phy of floristic collections in China using the most

comprehensive collection of botanical data for the country.

Based on the results of previous studies, we consider the follow-

ing hypotheses.

Hypothesis 1: easily accessible areas receive higher collecting

effort than less accessible, more remote areas (H1).

Hypothesis 2: collecting effort is higher in more densely

populated areas (H2).

Hypothesis 3: counties with herbaria are better sampled (H3a)

and collecting effort is negatively related to the distance to

herbaria (H3b).

Hypothesis 4: mountainous areas have higher collecting effort

than lowlands (H4).

Hypothesis 5: areas with high water availability are better

sampled (H5).

Hypothesis 6: counties with a larger proportion of areas occu-

pied by protected areas have higher collecting effort (H6).

METHODS

Species distributional data

Distributional information for c. 6.5 million specimens of vas-

cular plants was obtained from the Chinese Virtual Herbarium

(http://www.cvh.org.cn/, accessed December 2008) and the

Chinese Educational Specimen Resource Center (http://

mnh.scu.edu.cn/, accessed January 2009). These specimen data

came from 42 major Chinese herbaria. Additionally, we assem-

bled c. 2.5 million species records from c. 500 national and

provincial floras as well as local survey reports.

To improve the data quality, we cleaned the data according to

the following criteria: (1) multiple entries referring to the same

specimen that occurred during the digitization process were

removed; (2) we excluded records collected outside China; (3)

locality information was georeferenced to county level; (4) sci-
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entific names were standardized according to the Catalogue

of Life: Higher Plants in China (http://www.etaxonomy.ac.cn/,

accessed January 2009; Wang et al., 2011); (5) infraspecific taxa

were merged to species level. After this process, 4,338,516

records remained in the database for subsequent analysis. China

is politically divided into 2377 counties with a mean and median

size per county of 4138 and 1895 km2, respectively.

Response variables

Collection density and inventory incompleteness of counties

were entered as response variables in the regression analyses.

Collection density and inventory incompleteness represent two

different aspects of collecting effort, i.e. the number of collec-

tions per unit area and the degree of completeness reached with

that number of collections. Collection density was calculated as

the number of records per km2 (Fig. 1a). Inventory incomplete-

ness was represented by the slope of the last 10% of specimen

accumulation curves (SACs; Fig. 1b; Yang et al., 2013), based on

the principle that the curvilinearity of species accumulation

curves reflects the level of sampling incompleteness (Colwell &

Coddington, 1994; Tittensor et al., 2010).

Explanatory variables

We used road density to represent the accessibility of collecting

sites (Table 1; see Appendix S1 in Supporting Information).

Road data for the year 1999 were obtained from the Digital

Figure 1 Maps of (a) collection density and (b) inventory incompleteness as indicators of collecting effort for vascular plants in 2377
Chinese counties. (c) Relationship between collection density and inventory incompleteness. (d) Map of absolute residuals from ordinary
least-squares regression in (c). Collection density is calculated as the number of specimens per km2. Inventory incompleteness is
represented by the slope of the last 10% of species accumulation curves (see text for details). Negative values (red) in (d) indicate lower
inventory incompleteness than expected from the collection density, whereas positive values (blue) indicate higher inventory
incompleteness than expected. Legends use quantile classifications and maps are in Albers projections. Insets in the bottom right of maps
show the south boundary of China, including all islands in the South China Sea.
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Chart of the World (DCW; http://www.fas.harvard.edu/~chgis/

data/dcw/, accessed May 2012). Road density was calculated as

the total length of roads (in km) divided by the area (in km2)

of each county. In preliminary analyses, we also considered

the density of navigable rivers and railways as potential explana-

tory variables. However, these two variables were strongly

collinear with each other and with road density (Pearson’s

r ≥ 0.7) and were thus excluded from further analyses. County-

level data of human population density for the year 1999 were

obtained from the China Historical Geographic Information

System (CHGIS; http://www.fas.harvard.edu/~chgis%20/work/

downloads/, accessed May 2012; Table 1, Appendix S1).

The presence or absence of herbaria in each county was incor-

porated as a binary variable into the regression analyses

(Table 1, Appendix S1). The distance of each county to herbaria

was represented by the reciprocal of accumulated kernel den-

sities of herbaria. Kernel densities for each herbarium were cal-

culated in ArcGIS 9.3 (ESRI, 2008) and weighted by the number

of specimens in the herbarium (Table 1, Appendix S1). The pro-

portion of area occupied by protected areas in each county was

calculated to represent conservation priority (Table 1, Appen-

dix S1). Polygon layers of nature reserves (i.e. data category Ia),

the main type of protected area in China, were obtained from

the World Database on Protected Areas (WDPA, http://

www.wdpa.org/), accessed May 2012.

Maximum elevational range was used as an indicator of topo-

graphical complexity and calculated for each county based on

the GTOPO-30 digital elevation model (US Geological Survey,

1996) at a spatial resolution of 30 arcsec (Table 1, Appendix S1).

Annual wet days were extracted from a global high-resolution

climatology at a spatial resolution of 10 arcmin (Table 1, Appen-

dix S1; New et al., 2002) to represent the amount and seasonality

of precipitation (Kreft & Jetz, 2007). Spatial averages of annual

wet days were calculated for each county.

Statistical analyses

Ordinary least-squares (OLS) models were applied to investigate

the relationships between explanatory variables and response

variables. We used the Akaike information criterion (AIC;

Johnson & Omland, 2004) and step-wise backward selection to

identify the most parsimonious multipredictor models as

minimum adequate models. All explanatory variables except the

presence of herbaria, annual wet days and the proportion of

protected areas were log10-transformed to achieve the best

model fits and approximate normally distributed residuals.

Spatial correlograms and global Moran’s I-tests showed that

spatial autocorrelation in the residuals of minimum adequate

models was relatively weak but significant (Appendix S2).

Spatial autocorrelation leads to overestimated degrees of

freedom and results in inflated Type I errors in our OLS models

(Dormann et al., 2007). Eigenfunction-based procedures are

able to address complex spatial patterns and are widely used for

taking spatial autocorrelation in regression analyses into

account (Diniz-Filho & Bini, 2005; Griffith & Peres-Neto,

2006). Geographical coordinates of the centre of each county

were used to calculate pairwise Euclidean distances of all coun-

ties. We truncated the distance matrix at a distance of 300 km,

i.e. we replaced distances over 300 km with 1200 km (four

times the truncation distance), while keeping distances of

300 km or less as they were calculated (Borcard & Legendre,

2002). We chose a distance of 300 km because spatial

autocorrelation in residuals of non-spatial OLS models was

very weak beyond this distance (Appendix S2). Principal coor-

dinates of neighbour matrices (PCNM; Borcard & Legendre,

2002) were applied to decompose the spatial structures among

counties using the function ‘pcnm’ in the R package ‘vegan’ (R

Development Core Team, 2011; Oksanen et al., 2012). One

thousand and seventy-four eigenvectors with positive

eigenvalues were obtained that captured the spatial relation-

ships among counties at different scales. The first eigenvectors

represent broad-scale variation of spatial structures, whereas

those with smaller eigenvalues represent finer-scale variation

(Diniz-Filho & Bini, 2005; Appendix S3).

Eigenvector-based spatial filters were then added as predictors

in multipredictor models (mostly following the procedure by

Diniz-Filho & Bini, 2005). A forward model selection procedure

was performed to select the most significant spatial filters. The

selection started with the first filter (in descending order based

on eigenvalues) and a filter was selected only when it was

Table 1 Predictor variables used to test different hypotheses on the spatial variation in collection density and inventory incompleteness of
vascular plants in Chinese counties.

Hypotheses Predictor variables (units) Data sources

H1 Accessibility (‘road-map effect’ sensu

Crisp et al., 2001)

Road density (km km−2) Digital Chart of the World (DCW)

H2 Human population density Human population density (n km−2) China Historical GIS (CHGIS)

H3 Home of collectors (‘botanist effect’ sensu

Moerman & Estabrook, 2006)

Presence/absence of herbaria (H3a) This study

Distance to herbaria (H3b) Represented by the reciprocal of accumulated kernel

densities of herbaria calculated in ArcGIS 9.3

H4 Mountains Maximum elevational range (m) GTOPO-30 digital elevation model (US Geological

Survey, 1996)

H5 Water availability Annual wet days (number year−1) Climatic Research Unit climatology (New et al., 2002)

H6 Conservation priority Proportion of protected areas World Database on Protected Areas (WDPA)
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significant in the model. This procedure was stopped when

spatial autocorrelation in model residuals disappeared.

We used partial R2 for each predictor from minimum

adequate models with spatial filters to assess the explanatory

power of the predictor for collecting effort while controlling for

the effects of other variables. We obtained residuals from OLS

regressions between the predictor of interest and the other pre-

dictors (including spatial filters) in the minimum adequate

model, and between the response variable and the other predic-

tors, respectively. Partial R2 was the calculated as the R2 of the

OLS regression between these two sets of residuals (Legendre &

Legendre, 2012).

RESULTS

The collection density of vascular plants in Chinese counties

(Fig. 1a) ranged from 0 to 127.2 specimens per km2

(mean = 0.9). The inventory incompleteness (Fig. 1b) varied

between 0.005 and 1 (mean = 0.35). As expected, collection

density and inventory incompleteness were negatively related,

but the relationship was not very strong (r2 = 0.49; Fig. 1c), indi-

cating that counties with a high density of collections are not

necessarily more completely sampled. For example, some coun-

ties in the Tibetan Plateau had fewer collections but more com-

plete inventories than average, whereas many counties in south

China had a much higher collecting density but less complete

inventories than average (Fig. 1a,b,d), which would be expected

based on differences in species richness between the two areas.

Twenty-three and 25 spatial filters from the first 51 were

selected into the minimum adequate OLS models for collect-

ion density and inventory incompleteness, respectively. Global

Moran’s I-tests and correlograms indicated that spatial

autocorrelation was successfully removed in model residuals by

adding spatial filters (Appendices S2 & S4).

The minimum adequate models including all predictors

except road density and 23 spatial filters explained 43% of the

variance in collection density, with 7% explained by spatial

filters alone (Table 2). Elevational range emerged as the strong-

est predictor (Appendix S5), explaining 15% (indicated by

partial R2) of the variance in collection density, whereas annual

wet days was the second strongest predictor (partial R2 = 0.10).

The effects of other variables were relatively weak, with partial

R2 values between 0.02 and 0.03 (Table 2). All predictors except

distance to herbaria showed positive relationships with collec-

tion density.

For inventory incompleteness, all predictors except annual

wet days and 25 spatial filters were included in the minimum

adequate model, explaining 45% of the total variance, with 8%

exclusively explained by the spatial filters (Table 2). Human

population density was the strongest predictor (Appendix S6)

and explained 13% of the variance in inventory incompleteness,

followed by elevational range (partial R2 = 0.09). All other pre-

dictors were of minor importance (partial R2 between 0.01 and

0.04; Table 2). Human population density, distance to herbaria

and road density had positive effects on inventory incomplete-

ness, whereas the other variables had negative effects.

DISCUSSION

Using a large Chinese plant distributional database, this study is

the first to systematically test six proposed hypotheses on the

origin of geographical variation in collecting effort at regional

scales. We found that elevational range was the strongest predic-

tor of collection density and had a positive effect on it, whereas

Table 2 Results from minimum
adequate ordinary least-squares models
with eigenvector-based spatial filters and
either collection density or inventory
incompleteness of vascular plants in
Chinese counties as a dependent
variable.

Explanatory variables Estimate t-value P-value R2
adj Partial R2

Collection density* 0.43

Human population density 0.23 6.05 < 0.01 0.02

Presence of herbaria 0.73 7.06 < 0.001 0.03

Distance to herbaria −1.43 −6.79 < 0.001 0.02

Elevational range 0.61 16.90 < 0.001 0.15

Annual wet days 0.01 11.14 < 0.001 0.10

Protected areas 2.32 7.29 < 0.001 0.03

23 spatial filters < 0.05 0.07

Inventory incompleteness† 0.45

Road density 0.10 3.03 < 0.01 0.01

Human population density 0.22 14.43 < 0.001 0.13

Presence of herbaria −0.43 −9.25 < 0.001 0.04

Distance to herbaria 0.24 5.37 < 0.001 0.02

Elevational range −0.17 −12.31 < 0.001 0.09

Protected areas −0.40 −8.68 < 0.001 0.03

25 spatial filters < 0.05 0.08

*Collection density is calculated as the number of specimens per km2.
†Inventory incompleteness is represented by the slope of the last 10% of species accumulation curves
(see text for details). Protected areas, proportion of area in a county occupied by protected areas; R2

adj,
adjusted R2 of multiple-predictor models; partial R2, partial R2 of each predictor in the models.
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human population density had a strong positive effect and best

predicted inventory incompleteness of vascular plants in China.

Road density only showed a surprisingly weak correlation with

collecting effort. These results are in contrast to previous studies

for other regions or taxa reporting strong positive effects of

human population density and accessibility on collection pat-

terns (Soberón et al., 2000; Reddy & Dávalos, 2003; Tobler et al.,

2007; Ficetola et al., 2014).

Road density was not selected in the multiple-predictor

model for collection density, and was weakly and positively cor-

related with inventory incompleteness, indicating a non-

significant even negative effect of this predictor on collecting

effort (Table 2). This finding does not support our H1 and pre-

vious studies that counties with easy access and good transpor-

tation infrastructure have higher collecting effort (Crisp et al.,

2001; Parnell et al., 2003; Küper et al., 2006). The Chinese flora

is mostly collected by trained taxonomists who might be spe-

cifically interested in surveying pristine vegetation in remote

areas (Chen, 1994). This could explain our result because high

road density not only implies easy access but also higher levels of

human disturbance (Li et al., 2010; Marcantonio et al., 2013).

However, the effect of accessibility is likely to be strongly scale

dependent. At finer spatial resolutions, specimen collections

may still cluster along roads or paths even if such collecting

behaviour is not detectable at the scale of counties or large grid

cells. Fine-scale collection data and cross-scale analyses would

be needed to test this.

Human population density was the strongest and a positive

predictor of inventory incompleteness, but only had a weak

effect on collection density (Table 2). This indicates that species

inventories in densely populated areas tend to be more incom-

plete, sharply contrasting with previous studies (Parnell et al.,

2003; Luck, 2010; Botts et al., 2011; Ficetola et al., 2014) and not

supporting our H2. Moreover, collection density and human

population density for different decades (from the 1970s to the

2000s) in 87 counties of south central China were negatively

related (Appendix S7), suggesting that the overall negative effect

of human population density on collecting effort also holds at

smaller spatial scales and for different time periods. One pos-

sible explanation for this difference is that taxonomists may

expect densely populated areas (e.g. urban and intensive agri-

cultural areas) to have few native or narrow endemic species and

thus regard these areas as less interesting (Redford & Richter,

1999; Angermeier, 2000).

Efforts in biodiversity conservation in China have so far

largely focused on pristine and remote areas and little there has

been little emphasis on integrated conservation in densely

populated or agricultural landscapes (Tang, 2005). Other studies

have reported that urban areas even have higher native species

richness including a large proportion of rare and endangered

species (Kühn et al., 2004; Pautasso & McKinney, 2007). Rapid

land-use change (especially urbanization as well as agricultural

expansion and intensification) is one of the major threats to

global biodiversity, and might be particularly detrimental in

densely populated areas (McKinney, 2002). In the light of these

threats, we see an urgent need to increase collections in and close

to human settlements as an initial step to effectively increase the

knowledge base for conservation assessments and environmen-

tal monitoring in these areas.

Although the explanatory power of the presence of herbaria

was relatively low, it still indicates that counties with herbaria

had a significantly higher collecting effort, i.e. a higher collection

density and lower inventory incompleteness (Table 2). This

finding supports the ‘botanist effect’ hypothesis (H3a) stating

that homes of botanists tend to be better sampled (Moerman &

Estabrook, 2006). For example, collecting effort is very high in

Beijing and Kunming (Fig. 1a,b) where China’s largest herbaria

are located and many taxonomists work. The presence of her-

baria also has a weak but positive impact on the collecting effort

in neighbouring counties (Table 2), supporting H3b that collect-

ing effort is negatively related to the distance to herbaria

(Dennis & Thomas, 2000).

Elevational range had a positive effect on and emerged as the

strongest predictor of collection density, and had a negative

effect on inventory incompleteness (Table 2). This supports H4

that mountainous areas have a higher collecting effort than low-

lands. This may be because expedition teams of trained taxono-

mists have conducted organized surveys in China since the

1950s and have regularly been sent to remote and mountainous

areas anticipated to have particularly high levels of biodiversity,

especially the Hengduan Mountains, where the Himalayan uplift

caused a great complexity of different habitats, stimulated

allopatric speciation and ultimately gave rise to high levels of

species richness and endemism (Chen, 1994). Collecting in such

areas is thought to maximize the number of species in the col-

lections and to result in higher probabilities of finding species

that are rare or new to science (Romo et al., 2006; Tang et al.,

2006; Soria-Auza & Kessler, 2008; Sastre & Lobo, 2009).

However, the northern part of the Tibetan Plateau shows high

levels of completeness because both species richness and broad-

scale turnover are comparatively low (Barthlott et al., 2007), and

it is thus easy to reach fair levels of completeness with only a few

collections (Fig. 1b,d).

We tested whether areas with high water availability are better

sampled (H5). This hypothesis receives support from our find-

ings that annual wet days had a positive effect, and it was the

second strongest predictor of collection density (Table 2). Pre-

vious studies demonstrated that water availability is the most

important environmental constraint on plant species richness in

China (Wang, 1992; Yang et al., 2013). Collectors have probably

been guided by their experience that moister areas usually

harbour more plant species, leading to a higher number of col-

lections in such areas. However, annual wet days had little

explanatory power on inventory incompleteness, indicating that

areas with high water availability are not more completely

sampled.

The proportion of protected areas had a positive yet relatively

weak effect on collecting effort (Table 2), i.e. collection density

was higher and incompleteness lower in counties with large

proportions of protected areas. The effect of protected areas

might be weakened by the fact that some areas are protected not

primarily because of their biological importance (e.g. high
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diversity or endemism) but for their cultural and geological

importance that does not necessarily attract botanists. Never-

theless, this result supports H6 that protected areas receive

higher collecting effort. This is consistent with previous reports

that collecting effort tends to be concentrated in areas desig-

nated as conservation priorities (Freitag et al., 1998; Parnell

et al., 2003; Reddy & Dávalos, 2003). Reddy & Dávalos

(2003) demonstrated that conservation prioritization based on

species richness and endemism might be affected by biased

knowledge about species distributions. It is thus important

to take collecting effort into account when using currently

available distributional data for conservation assessments and

priority setting.

A potential drawback of this as well as of similar previous

analyses is that specimen data and explanatory variables do not

stem from exactly the same time period. While specimen data

have accumulated over more than 100 years, population and

road data are from a recent decade, due to the difficulty of

obtaining historical data for these variables in China. However,

spatial patterns of number of collections in different decades are

similar (pairwise Spearman’s rank rs = 0.54–0.73; Appendices S8

& S9), suggesting a strong temporal autocorrelation in collecting

effort. Furthermore, human population density has not shifted

much spatially in China during the last century (Wang et al.,

1996), because the spatial distribution of human population is

largely controlled by environmental factors such as natural

productivity and soil fertility (Waide et al., 1999). In the light of

the strong temporal autocorrelations of collection patterns and

human activities, we consider that the reliability of our results is

not affected by these drawbacks.

Our results show that different hypotheses on collecting effort

are not mutually exclusive but that many factors can act syner-

gistically as drivers of biological collection patterns. Mountains

and human population density are the two main determinants

of the spatial distribution of collecting effort for vascular plants

in China. Whereas the former have a positive effect, the latter has

a negative effect on collecting effort. Differences from studies

from other parts of the world are probably caused by the fact

that the Chinese flora has been mostly surveyed by experienced

taxonomists. Expedition teams have been centrally organized

and coordinated by governments and research institutes, and

have been regularly sent to mountainous and remote areas

where high levels of biodiversity and pristine vegetation have

been anticipated (Chen, 1994). As the differences between China

and other regions demonstrate, the determinants and causes of

the uneven collecting effort may therefore be strongly depend-

ent on the regional context (Vale & Jenkins, 2012).

In conclusion, our results indicate that mountainous areas are

most intensively collected in China, whereas densely populated

areas tend to be neglected by plant collectors. This sampling bias

leads to woefully incomplete inventories, particular in urban

and agricultural areas, and thus to a pronounced ‘Wallacean

shortfall’, i.e. an incomplete documentation of species ranges.

Our study highlights the need to increase biological collections

in areas with specific environmental and socio-economic char-

acteristics (e.g. densely populated areas) to improve the quality

and representativeness of distributional data as well as the

knowledge base for biological conservation.
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