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• Nitrous oxide (N2O) fluxes show high temporal and spatial
variability→ challenging its accurate quantification

• N2O fluxes depend on numerous factors and their
interactions (e.g. soil aeration, temperature, mineral
nitrogen, easily available organic carbon, microbial activity) 
→making it difficult to identify the most important drivers
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CONCLUSION

→N2O peaks appear after ferti-
lization or meterological events, 
while the advantages of both EC 

and chambers is needed for detection

→NO3
- and WFPS can explain the

temporal variability of chamber
N2O fluxes but cannot explain

the high spatial variability
after fertilization

• EC-Fluxtower on a 10 ha field with common agricultural practise, location 51.49°N, 9.93°E

• Sowing of sugar beets 2023-04-20 following white mustard as catch crop

• 8 static chambers (diameter 60 cm) located within the tower footprint, gas samples
analyzed with gas chromatography, flux calculation with R package gasfluxes

• Soil samples (NO3
-, NH4

+, DOC) and soil moisture measurements next to each chamber

• 100 points measured with Licor-7820 on 2023-04-27, soil samples at every third point

• EC-tower with closed-path N2O analyzer (LGR) and sonic anemometer (uSonic-3 MP Cage, 
METEK), flux calculation with EddyPro, tower equipped with soil moisture/temperature, 
air temperature and rain sensors

• Management practices (i.e. fertilization) and precipitation
result in short-term N2O peaks which could be missed with 
discontinuous chamber measurements 

• N2O fluxes show a large spatial variability during emission 
peaks which is related to variations in soil properties 

→Combining Eddy Covariance (EC) and chamber
measurements with soil analysis, climate and management
data will help to accurately quantify N2O fluxes and 
understand their drivers

● Analysing dissolved organic
carbon (DOC) in all soil samples

● Measuring N2O fluxes after harvest of 
the sugar beet + leaf incorporation and 
during winter wheat cultivation period

● Improving the mechanistic understanding using
natural-abundance of N2O isotopic species and 
analysis of gene abundance in the soil
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UAN: Urea Ammonium Nitrate 

100 Sampling points:

• High spatial variability of N2O fluxes (COV★ 245.97%)

• Soil nitrate (NO3
-): 90 - 220 kg/ha

• Water fillled pore space (WFPS): 65% - 80% 

• No significant effects of NO3
-, WFPS or temperature on N2O

8 Chambers: ★Coefficient of Variation

• Increased N2O fluxes after fertilization

• Significant positive effect of NO3
- and WFPS:

log(N2O)  = 0.056 × NO3* + 0.051 × WFPS* 
- 0.001 × NO3:WFPS* + (1|chamber) 

*p < 0.05, R² = 0.54

Preliminary EC-N2O fluxes:

• Short-term N2O peak induced by increasing temperature
and 75 mm of precipitation after 5 dry weeks, while NO3

-

decreased to ~50 kg/ha 9 weeks after fertilization

• positive effect of 30-minute means of WFPS and soil
temperature on EC-N2O fluxes

• low signal-to-noise ratio is challenging the detection of small
N2O peaks
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