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Abstract

The paper discusses asymptotic properties of penalized spline smooth-

ing if the spline basis increases with the sample size. The proof is

provided in a generalized smoothing model allowing for non-normal

responses. The results are extended in two ways. First, assuming

the spline coefficients to be a priori normally distributed links the

smoothing framework to generalized linear mixed models (GLMM).

We consider the asymptotic rates such that Laplace approximation is

justified and the resulting fits in the mixed model correspond to pe-

nalized spline estimates. Secondly, we make use of a fully Bayesian

viewpoint by imposing a priori distribution on all parameters and co-

efficients. We argue that with the postulated rates at which the spline

basis dimension increases with the sample size the posterior distribu-

tion of the spline coefficients is approximately normal. The validity of

this result is investigated in finite samples by comparing Markov Chain

Monte Carlo (MCMC) results with their asymptotic approximation in

a simulation study.
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1 Introduction

Recent years have seen an increasing use of penalized spline estimation as

smoothing technique. Originally suggested by O’Sullivan (1986), the ap-

proach has achieved general attention with the paper by Eilers & Marx (1996)

who phrased the routine as P-spline smoothing. A general introduction and

a description of the flexibility of penalized spline smoothing is found in Rup-

pert, Wand & Carroll (2003). Even though penalized splines are practically

convincing, theoretical investigations of their performance and properties are

less explored. A recent investigation is found in Opsomer & Hall (2005)

who reformulate the approach as white noise representation. Some first re-

sults were provided in Wand (1999) and Aerts, Claeskens & Wand (2002)

who use simplifying assumption that the dimension of the spline basis is

fixed. Though this is a stringent assumption in theoretical terms, it has little

practical impact if the dimension of the spline basis is chosen in lush and

generous manner, see Ruppert (2002). The theoretical advantage of fixing

the number of spline functions in advance is that asymptotically one achieves

a parametric model and penalization looses its influence.

In this paper, we start from a penalized spline approach, but allow the number

of spline basis functions to depend on the sample size. Recently, Claeskens,

Krivobokova & Opsomer (2008) showed that depending on the assumption

formulated for the number of knots the asymptotic properties of penalized

splines are either similar to those of regression splines (for a“small”number of

knots) or to those of smoothing splines (for a“large”number of knots), with a

clear breakpoint between two asymptotic scenarios. Cardot (2002) considered

penalized splines with adaptive penalties and presented some results in the

first asymptotic scenario with a “small” number of knots. Recently, Li &

Ruppert (2008) provided first theoretical results in the second asymptotic

scenario with a “large” number of knots, deriving equivalence between kernel

smoothing and penalized splines. All these results are based on a normal

response model. We go a step towards generalized response models of the
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form

µ(x) = E{y(x)} = h{η(x)}, (1.1)

with x as a continuous covariate and y as response, assumed to be distributed

according to an exponential family distribution. Function h(·) is a known in-

vertible (inverse) link function while function η(x) is supposed to be smooth

and will be estimated via penalized spline smoothing. In this paper we pur-

sue the asymptotic scenario with a “small” number of knots growing with the

sample size.

Penalized spline smoothing has an interesting link to mixed models, by com-

prehending the penalty imposed on the spline coefficients as a Gaussian prior,

see Wand (2003). In this case, the smoothing parameter steering the amount

of penalization becomes the ratio of the dispersion parameter over the a pri-

ori variance of the random spline effect. This has the practical impact that

smoothing parameter selection can now be carried out by Maximum Likeli-

hood (ML) or Restricted Maximum Likelihood (REML) estimation (see e.g.

McCulloch & Searle, 2001 or Kauermann, 2005). If a generalized smooth-

ing model like (1.1) is assumed, penalized spline fitting can be linked to

generalized linear mixed models (GLMM), again by writing the penalty as

a priori normal distribution on the spline coefficients. Integrating out the

random spline coefficients using a Laplace approximation is then equivalent

to a penalized spline fit (see also Wang, 1998 or Lin & Zhang, 1999 for the

connection in case of classical spline smoothing). In general, the equivalence

of penalized spline fitting and generalized linear mixed models is asymptoti-

cally justified only if the Laplace approximation holds. It has been shown in

Breslow & Lin (1995) or more generally in Shun & McCullagh (1995) that

Laplace approximation can fail for clustered data in generalized linear mixed

models. The asymptotic scenario for penalized spline smoothing is, however,

conceptionally different to clustered data. Here splines play the role of clus-
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ters and the number of spline bases functions is small compared to the sample

size n, while the number of observations for each spline is increasing with the

sample size. This, however, is exactly the condition in which Laplace ap-

proximation works (see Severini, 2000). In this paper we investigate how the

number of spline coefficients may increase without disturbing the accuracy

of the Laplace approximation.

The mixed model approach to penalized splines smoothing can also be in-

terpreted from an empirical Bayes viewpoint. This can be extended by tak-

ing completely the Bayesian perspective, that is assuming all parameters

to have a prior distribution. Based on Fahrmeir, Kneib & Lang (2004) we

consider this fully Bayes approach. Exact finite sample size posterior infer-

ence can be carried out using MCMC simulation. Numerically this is avail-

able for instance with the software package BayesX (Brezger, Kneib & Lang,

2005) which is available from www.stat.uni-muenchen.de/∼bayesx/. The

MCMC calculation provides posterior distributions without relying on the

Laplace or other asymptotic approximations. Our investigation focuses the

question whether approximative numerically less demanding methods based

on Laplace, and exact results, based on MCMC, are comparable with respect

to their accuracy. We investigate the difference between Laplace approxima-

tion and MCMC theoretically as well as in simulations. It is a standard result

in Bayesian analysis that the posterior converges with increasing sample size

to a normal distribution with mean as Maximum Likelihood estimate (the

mode) and the variance as inverse Fisher matrix, as long as the dimension

of the parameter space is fixed, see for instance Bernardo & Smith (2005,

chapter 5.3). Our results go in this direction, but the dimension of the pa-

rameter space increases with the sample size, since the spline basis dimension

is allowed to grow. We explore the derived results also empirically through

a simulation study. Our results confirm that the approximation is accurate.

The paper is organized as follows. Section 2 discusses the generalized smooth-

ing model while Section 3 investigates the mixed model formulation. Section
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4 looks at the Bayesian perspective before a short discussion concludes the

paper. Some technical details are found in the Appendix.

2 Generalized P-Spline Smoothing

We consider the generalized smoothing model (1.1) where y for given x is

assumed to follow an exponential family distribution with notation

y|x ∼ exp

{
yϑ(x) − b{ϑ(x)}

φ
+ c(y, φ)

}

, (2.2)

with ϑ(x) = ϑ{η(x)} as the natural parameter of the underlying exponential

family and φ as dispersion parameter. Functions b(·) and c(·) are determined

by the distribution. For simplicity we ignore the role of the dispersion pa-

rameters in (2.2) and set φ ≡ 1. Functions ϑ(x) and µ(x) stand in the unique

relationship b′(ϑ) = µ, so that ϑ{η(x)} = b
′−1

[h{η(x)}]. Choosing the link

function h(·) = b′(·) provides the natural link. We observe the independent

observations (xi, yi), i = 1, . . . , n. Function η(x) is assumed to be smooth in

x and for fitting we decompose η(x) to

η(x) = X(x)β + Z(x)u + δ(x), (2.3)

where δ(x) = η(x) − {X(x)β + Z(x)u} will be called approximation bias

subsequently. The vector X(x) is thereby a low dimensional polynomial

basis, i.e. X(x) = (1, x, x2/2, . . . , xq/q!), while Z(x) is high-dimensional,

built from truncated polynomials, i.e.

Z(x) =

{
(x − τ1)

q
+

q!
, . . . ,

(x − τk−1)
q
+

q!

}

,

where (x)q
+ = xq for x > 0 and zero otherwise and 0 = τ0 < τ1 < . . . <

τk−1 < τk = 1. To distinguish between vectors and matrices we follow the

following notation. Lower case letters with indices refer to scalars, lower case
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letters without indices refer to column vectors, while capital letters without

indices denote row vectors. Finally, matrices will be denoted with bold capital

letters. Following this convention and ignoring the approximation bias δ(x)

we obtain the log likelihood

l(θ) =
n∑

i=1

yiϑ(Piθ) − b {ϑ(Piθ)} , (2.4)

where Pi = P (xi) = {X(xi), Z(xi)} = (Xi, Zi) and θ = (βT , uT )T . Maxi-

mizing l(θ) will lead to a wiggled estimate if the spline dimension k + q is

large. Therefore, a penalty is imposed on θ. For truncated polynomials one

can employ a simple shrinkage, that is we consider the penalized likelihood

lp(θ, λ) = l(θ) −
λ

2
uT u, (2.5)

where λ is the smoothing or penalty parameter. Both, lp(.) as well as l(.) de-

pend on the sample size n which is suppressed in our notation for simplicity

of presentation. The penalty in (2.5) can also be written as θT Dkθ where Dk

is a block diagonal with zero entries in the upper left (q + 1)× (q + 1) block

and identity matrix Ik−1 in the bottom right block. Increasing λ to infinity

leads to a purely parametric fit with a q-th order polynomial.

Our model is formulated with truncated polynomials in order to utilize the

straightforward connection of such representation to the mixed and Bayesian

models. However, the use of B-splines (de Boor, 2001) is more advisable

numerically and also allows for simple handling of theoretical developments.

In fact, both approaches are equivalent in the following sense (see also Häm-

merlin & Hoffmann, 1992). We define with Pq,k the n by (q +k) dimensional

truncated spline basis with rows

Pi = Pq,k(xi) =

(

1, xi,
x2

i

2!
, . . . ,

xq
i

q!
,
(xi − τ1)

q
+

q!
, . . . ,

(xi − τk−1)
q
+

q!

)

,
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i = 1, . . . , n. From Pq,k we can construct the normed B-spline basis via

Bq,k = kqPq,kLq,k where Lq,k is a (q + k) × (q + k) dimensional invertible

matrix constructed from the (q + 1) order difference matrix (see Fahrmeir,

Kneib & Lang, 2004 or Claeskens, Krivobokova & Opsomer, 2008 for more

details). The spline representation can now be written as Pq,kθ = Bq,kω

with ω = k−qL−1
q,kθ as coefficient vector for the B-spline basis. Note that the

coefficient vectors θ and ω both depend on k which is suppressed for the ease

of notation. We can now formulate the penalized likelihood (2.5) in terms of

parameter vector ω leading to

lp(ω, λ) = l(ω) −
λk2q

2
ωT D̃kω, (2.6)

where D̃k = LT
q,kDkLq,k. Note that D̃k does not have full rank.

We will now investigate how k may grow with increasing sample size, that is

we allow k to depend on n. To do so we will make the following assumptions

(A1) We assume that design points xi are distributed according to a design

density with compact support on [0, 1]. This implies that the distance

between two adjacent values xi and xj , say, converges to zero with order

O(n−1).

(A2) The knots for the spline basis are equidistantly distributed (for sim-

plicity) so that 0 = τ0 < τ1 < . . . < τk−1 < τk = 1 with τj − τj−1 = k−1

for j = 1, . . . , k.

(A3) The penalty parameter λ is assumed to grow with the sample size with

order

λ = O (nγ) , γ ≤
2

2q + 3
(2.7)

(A4) We assume that the dimension of the spline basis grows with the sample
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size with order

k ∼ Cn
1

2q+3 , (2.8)

for some constant C > 0.

(A5) Function η(x) is assumed to be (q + 1) times differentiable and except

of a finite number of isolated points in [0, 1] it is continuously differ-

entiable. Finally, η(x) is bounded so that µ(x) = h{η(x)} is in the

interior of the mean parameter space for all x. This guarantees that

the likelihood contributions are all of the same asymptotic order Op(1).

Let Pq,kθ0 = Bq,kω0 be the best spline approximation of the unknown func-

tion η(x) based on a Kullback Leibler measure, that is θ0 = argmax E {l(θ)|η}

or equivalently ω0 = k−qL−1
q,kθ0 = argmax E{l(ω)|η}, where the expectation

is calculated with the unknown predictor η(x). Accordingly, we define with

δ0(x) = η(x)− Pq,k(x)θ0 = η(x)−Bq,k(x)ω0 the smallest approximation bias

with Bq,k(x) as B-spline basis evaluated at x. Note that θ0 and ω0, respec-

tively, depend on k and therewith on n, which is suppressed notationally. We

can now decompose the Mean Squared Error to

MSE {η̂(x)} = E
[
{η̂(x) − Bq,k(x)ω0}

2]+ δ2
0(x) − 2δ0(x)E {η̂(x) − Bq,k(x)ω0} .

The first component mirrors a conventional Mean Squared Error in penal-

ized parametric regression, while the remaining two components include the

approximation bias. The central result of this section can now be stated as

follows.

Theorem 1 With assumptions (A1) to (A5) we find that the penalized

estimate η̂(x) = Bq,k(x)ω̂ obtained from (2.6) is consistent with the

Mean Squared Error of order

MSE{η̂(x)} = O
(

n− 2q+2
2q+3

)

.
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In particular we can expand the estimate η̂(x) as

η̂(x) − η(x) =

[

Bq,k(x)F(λ)−1

{
∂l(ω)

∂ω
− λk2qD̃kω

}

− δ(x)

]

{1 + op(1)} ,(2.9)

with F(λ) = E
(

−∂2l(ω)/∂ω∂ωT + λk2qD̃k

)

. The leading stochastic

component in (2.9) has the asymptotic order Op

(

n− 1
2

2q+2
2q+3

)

.

The proof of the theorem is provided in the Appendix.

Remarks

1. Based on the expansions we can use (2.9) to derive an approximate

distribution for the estimate. Using the central limit theorem we get

η̂(x) − η(x) ∼a N [bias {η̂(x)} , Var {η̂(x)}] , (2.10)

with bias{η̂(x)} = −Bq,k(x)F(λ)−1λk2qD̃kω0 − δ(x) and

Var{η̂(x)} = Bq,k(x)F−1(λ)F(λ = 0)F−1(λ)BT
q,k(x). (2.11)

2. The variance of η̂(x) is build in a sandwich form from Fisher type

matrices. Due to the fact that the dimension k of ω grows with the

sample size, the dimension of the Fisher matrix grows as well. It is

shown in the Appendix that the sandwich type variance in (2.11) is

decreasing to zero with order O(k/n).

3 P-Spline Smoothing and Mixed Models

3.1 Laplace Approximation

Penalized spline smoothing can be linked to mixed models by comprehending

the penalty as a priori normal distribution on the spline coefficients. We show
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now that the penalized estimate is asymptotically equivalent to the posterior

Bayes estimate resulting in the mixed model. This equivalence holds exactly

in the normal response model with identity link and normal distribution im-

posed on the spline coefficients. The smoothing parameter λ plays the role

of the ratio of the residual variance and the prior variance of the spline coef-

ficients. Consequently, based on the mixed model, the smoothing parameter

can be estimated by maximizing the marginal likelihood, or an adjusted ver-

sion of it yielding a Restricted Maximum Likelihood estimate (REML). For

generalized response models, however, integration over the spline coefficients

is not available analytically and alternative methods have to be used. The

link to penalized spline estimation results by pursuing a Laplace approxima-

tion. The latter is justified asymptotically only, if the remaining correction

terms converge to zero with growing sample size. In the following section

we show that the Laplace approximation is justified if we assume the spline

dimension to grow with the previously proposed order k ∼ Cn
1

2q+3 .

We now model spline coefficient vector u as a priori normally distributed.

Moreover, we assume in this section for the sake of simplicity that link func-

tion h(.) is the canonical link. This leads to the generalized linear mixed

model (GLMM)

E(y|u) = h(Xβ + Zu), u ∼ N
(
0, σ2

uIk−1

)
, (3.12)

with y = (y1, . . . , yn)
T and X and Z as matrices with rows Xi and Zi, re-

spectively. Integrating out the random spline effects leads to the marginal

likelihood (up to a constant)

L(β, σ2
u) = σ−(k−1)

u

∫

Rk−1

exp[−g(u)]du, (3.13)

with g(u) = −yT (Xβ + Zu) + 1T
nb(Xβ + Zu) + uT u/(2σ2

u), with 1n =

(1, . . . , 1)T . The integral in (3.13) does not generally have an analytic so-
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lution. We therefore make use of a Laplace approximation to obtain the

marginal likelihood (3.13). Note that g(u) = g(β, u, σ2
u), that is g(u) depends

on other quantities as well which are omitted in (3.13). It is not difficult to

see that ∂g(β̂, û, σ2
u)/∂(β, u) = 0 defines the penalized estimating equation

∂lp(θ, λ)/∂θ = 0 with lp(θ, λ) as defined in (2.5) and λ = σ−2
u playing the role

of the penalization parameter. Instead of deriving a Laplace approximation

for the integral (3.13) directly, we use a B-spline formulation for technical

reasons. Let therefore the difference matrix Lq,k from above be decomposed

as

Lq,k =

(

L11 L12

L21 L22

)

,

according to the dimension of β and u, i.e. L11 ∈ R
(q+1)×(q+1). Since the

elements of L12 are all equal to zero it is easy to see that Pk,qθ = Bq,kω can

be represented as

Xβ + Zu = kq(XL11 + ZL21)ω1 + kqZL22ω2 =: Bq,k,1ω1 + Bq,k,2ω2, (3.14)

with ω1 := k−qL−1
11 β and ω2 := k−qL−1

22 (u − L21L
−1
11 β). In this notation the

integral (3.13) takes the form

L(β, σ2
u) = σ−(k−1)

u k(k−1)q|L22|

∫

Rk−1

exp{−g̃(ω2)}dω2, (3.15)

where g̃(ω2) := g̃(ω1, ω2) = g{θ(ω)} = g(β, u). The integral in (3.15) is

approximated using a Laplace approximation by

∫

Rk−1

exp{−g̃(ω2)}dω2 = |G̃|−1/2(2π)
(k−1)

2 exp{−g̃(ω̂2)} {1 + O(ε0)} ,(3.16)

where G̃ = G̃(ω̂2) denotes the second order derivative ∂2g̃(ω̂2)/∂ω2∂ωT
2 , eval-

uated at ω̂2 that minimizes g̃(.). The objective is now to evaluate the asymp-
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totic order of the correction term ε0. Let g̃jl denote the (j, l)-th element of

G̃. Accordingly, third and forth order derivatives of g̃(·) are denoted by g̃jlr

and g̃jlrs, respectively. Moreover with g̃jl we refer to the (i, j)-th element

of the inverse of G̃. Following the results provided in Barndorff-Nielsen &

Cox (1989) or Shun & McCullagh (1995) and using Einstein’s summation

convention we can write the correction term in (3.16) as

ε0 = −g̃jlrsg̃
jlg̃rs[3]/24 + g̃jlrg̃stv

(
g̃jlg̃rsg̃tv[9] + g̃jsg̃ltg̃rv[6]

)
/72.

In (3.17) equal super and subscript imply a summation over the correspond-

ing indices and the bracketed terms refer to the (number of) possible per-

mutations over the indices, e.g. the first component in (3.17) is a short

form for 1/24g̃jlrs

(
g̃jlg̃rs+ g̃jrg̃ls + g̃jsg̃rl

)
. The objective is now to show

that the term ε0 vanishes asymptotically with the sample size n increasing.

Let W be the diagonal matrix of the conditional variances Var(yi|u), that is

W = diag
{
b
′′

(Bq,kω)
}

and we denote with Ŵ matrix W with ω2 replaced

by ω̂2. Note that

g̃jl = BT
q,k,jŴBq,k,l +

k2q

σ2
u

(LT
22L22)jl, (3.17)

with Bq,k,l denoting the l-th column of Bq,k,2 defined in (3.14) and (LT
22L22)jl

as (j, l)-th element of LT
22L22. With assumptions (A1) and (A2) we obtain

that the number of non zero elements for each column of the spline basis

Bq,k is of order O(n/k). Consequently the first element in (3.17) equals 0 if

|j − l| > q and is of order Op(n/k) otherwise. Considering the definition of

LT
22L22 we find that the second component in (3.17) has similar structure and

takes values 0 if |j − l| > q + 1 and has order Op(k
2q/σ2

u) otherwise. Hence

g̃jl =

{

Op (n/k + k2q/σ2
u) , |j − l| ≤ q + 1

0, otherwise
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For higher order derivatives we get with the same arguments

g̃jlr =

{

Op (n/k) , |j − l| ≤ q and |j − r| ≤ q and |l − r| ≤ q

0, otherwise

and according results for g̃jlrs. Considering the inverse matrix g̃jl we can

make use of results derived in Demko (1977). In the line of the arguments of

Remark 10 in the Appendix we get

g̃jl = ρ|j−l|Op

{(n

k
+ k2qσ−2

u

)−1
}

for some 0 < ρ < 1. The proof is in line with the arguments used to derive

(A.32) in the Appendix and therefore not explicitly listed here again.

These orders imply that ε0 has the order

ε0 = Op

{

n

(
n

k
+

k2q

σ2
u

)−2
}

+ Op

{

n2

(
n

k
+

k2q

σ2
u

)−3
}

. (3.18)

The second component in (3.18) is asymptotically dominating, and letting

now k grow with order n
1

2q+3 allows to rewrite the asymptotic order of (3.18)

to

ε0 = Op

{

n− 2q

2q+3

(

1 + n− 2
2q+3 σ−2

u

)−3
}

.

If we set σ−2
u = O(nγ) with γ ≤ 2/(2q + 3) we get ε0 = Op

(

n− 2q

2q+3

)

so

that the Laplace approximation is asymptotically justified for q > 0. The

condition imposed on σ2
u resembles assumption (A3) in the previous Section.

We therefore reformulate (A3) to

(A3′) The a priori variance σ2
u is assumed to have the asymptotic order

σ−2
u = O (nγ) , γ ≤

2

2q + 3
(3.19)
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It remains to demonstrate that this assumption is sound and justified which

will be discussed in Section 3.3 below. Due to the equivalence of B-splines and

truncated polynomials the result transfers directly to the original formulation

(3.12) with truncated polynomials. The latter is formulated in the following

theorem.

Theorem 2 With assumptions (A1), (A2), (A3′) and (A4) we find that

the marginal likelihood function of the generalized linear mixed model

(3.12) can be approximated using Laplace approximation, that is

L(β, σ2
u) =

[
σ−(k−1)

u |G|−1/2 exp
{
−g(β, û, σ2

u)
}]

{1 + op(1)} , (3.20)

with g(û, β, σ2
u) = −yT (Xβ + Zû) + 1T

nb(Xβ + Zû) + ûT û/2σ2
u where

y = (y1, . . . , yn)
T and û as minimizer of g(β, u, σ2

u). Matrix G is defined

through ∂2g(β, û, σ2
u)/∂u∂uT = ZTŴZ + Ik−1/σ

2
u.

Remarks

3. Shun & McCullagh (1995) showed that the Laplace approximation of

a likelihood for some k dimensional parameter based on n data points

(from an exponential family) is reliable provided that k = o(n1/3). This

is satisfied for our choice k ∼ Cn
1

2q+3 , given q > 0, but for q = 0 the

Laplace approximation fails.

3.2 Posterior Cumulants

For further estimation it is common to ignore the dependence of Ŵ on β

(and û). This is motivated in Breslow & Clayton (1993) and can be justified

since the dependence is mirrored in higher order asymptotic terms only. We

will therefore subsequently treat matrix Ŵ as deterministic and look now

more generally at posterior cumulants of the spline coefficients based on the

generalized linear mixed model (3.12). Based on (3.13), the corresponding
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moment generating function is defined through

Mω2|y(t) =

∫

Rk−1 exp(tT ω2) exp{−g̃(ω2)}dω2
∫

Rk−1 exp{−g̃(ω2)}dω2

. (3.21)

Following the results from above, the denominator in (3.21) can be approx-

imated by (3.16). Applying Laplace approximation in the same style to the

nominator of (3.21) (see Barndorff-Nielsen & Cox, 1989) we obtain for the

numerator in (3.21)

(2π)(k−1)/2|G̃|−1/2 exp{−g̃(ω̂2)}
[
Mz(t) + exp(tT ω̂2)Op {ε0 + ε1(t)}

]
,

where Mz(t) denotes the moment generating function of the normally dis-

tributed random variable z ∼ N(ω̂2, Ṽ) with Ṽ = G̃−1. The correction term

ε0 is defined in (3.17) and ε1(t) results to ε1(t) = ˆ̃gjlrts ˆ̃g
jlˆ̃grs[3]/6, where ts

is the s-th elements in t. Note that ε0 and ε1(t) are of the same asymp-

totic order for any fixed value of t > 0. Applying Laplace approximation to

denominator and nominator of (3.21) gives

Mω2|y(t) = Mz(t)
1 + exp(−tT Ṽt/2)Op {ε0 + ε1(t)}

1 + Op(ε0)
.

and the corresponding cumulant generating function can be written as

Kω2|y(t) = Kz(t) + H̃(t) + Op(ε0), (3.22)

with H̃(t) = exp(−tT Ṽt/2)Op {ε0 + ε1(t)}. Hence, the pth derivative of H̃(t)

with respect to tj1 , ..., tjp
evaluated at t = 0 defines the difference between

the pth order posterior cumulant of the ω2 given y and the approximate

cumulant of the N(ω̂2, Ṽ). We will now show that the derivatives of H̃(t)

are asymptotically negligible. Using the subscript notation from above, that

is H̃j1,...,jp
(t) = ∂pH̃(t)/∂tj1 ...∂tjp

and bearing in mind that the derivatives of
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Op {ε0 + ε1(t)} with respect to t are equal to zero for p > 2, we obtain

H̃j1,...,jp
(t) = [exp(−tT Ṽt/2)]j1,...,jp

Op {ε0 + ε1(t)}

+ p[exp(−tT Ṽt/2)]j1,...,jp−1Op(εjp
),

with εjp
= g̃rstg̃

rsg̃tjp[3]/6. From standard results on the multivariate normal

distribution we find [exp(−tT Ṽt/2)]j1,...,jp
= h̃j1,...,jp

exp(−tT Ṽt/2), where

h̃j1,...,jp
are the Hermite tensors (see McCullagh, 1987, pages 149-151). We

are now interested in H̃j1,...,jp
(t = 0) and since h̃j(t = 0) = 0 we immediately

obtain

H̃j(0) = O(εj) , H̃jr(0) = O(−ṽjrε0)

H̃jrs(0) = O(−3ṽjrεs) , H̃jrst(0) = O(ṽjrṽst[3]ε0)

and so on, where ṽjr denotes the (j, r)-th element of matrix Ṽ = G̃−1.

Since ṽjr = g̃jr = ρ|j−r|O(k/n) for some ρ ∈ (0, 1), see also remark 10

in the Appendix, and εj = O(k/n), it results that H̃(t) is asymptotically

negligible in (3.22) and posterior cumulants can be approximated by the

cumulant generating function of a normal distribution. In particular we have

E(ωj
2|y) ≈ ωj

2 and Cov(ωj
2, ω

r
2|y) ≈ g̃jr. Using the connection between ω and

θ = (βT , uT )T we find that û approximates the posterior mean and V = G−1

approximates the posterior variance of u given y (and β and σ2
u). Higher oder

cumulants tend to zero.

3.3 Maximum Likelihood Estimation

We have assumed above that the inverse a priori variance σ−2
u increases with

order O(nγ), γ ≤ 2/(2q + 3). We will now demonstrate that this rate of

convergence is sound by looking at the Maximum Likelihood estimate. Based

on (3.20) the leading term in the Laplace approximated log likelihood is
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written as

l(β, σ2
u) ≈ −

1

2
log |G| − g(û) −

k − 1

2
log σ2

u, (3.23)

with G = ZT ŴZ + Ik−1/σ
2
u. Inserting the estimate for β and differentiating

(3.23) with respect to σ2
u yields

∂l(β̂, σ2
u)

∂σ2
u

= −
1

2
tr

(

G−1 ∂G

∂σ2
u

)

+
ûT û

2σ4
u

−
k − 1

2σ2
u

(3.24)

=
1

2σ2
u

{
ûT û

σ2
u

− df(σ2
u)

}

, (3.25)

where df(σ2
u) = tr

{

G−1ZTŴZ
}

. We thereby ignored the dependence of

W on β (and σ2
u), as this leads to correction terms of negligible asymptotic

order. We get from (3.24) to (3.25) by reflecting the definition of G and

using the fact that tr(G−1G) = k − 1. The estimate is now defined through

σ̂2
u =

ûT û

df(σ2
u)

=
θ̂TDkθ̂

df(σ2
u)

= k2q ω̂T D̃kω̂

df(σ2
u)

. (3.26)

It should be remarked that (3.26) does not provide an analytic estimate, since

the right hand side of the equation contains the unknown parameter as well.

For our investigation we can however make use of (3.26) be treating σ2
u on

the right hand side as true a priori variance. It is not difficult to see that

E(σ̂2
u) = σ2

u, so that we investigate the variance, expressed here as Fisher

matrix. Tedious calculations yield thereby

∂2l(β, σ2
u)

∂σ2
u∂σ2

u

=

[
1

2σ4
u

+
1

2σ2
u

]
∂l(β, σ2

u)

∂σ2
u

(3.27)

+
1

2σ4
u

[

tr(G−1ZT ŴZG−1ZTŴZ) −
2

σ2
u

ûTG−1ZT ŴZû

]
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Our intention is to show that variational coefficient Var(σ̂2
u)/σ

4
u (and thus

the Var(σ̂2
u)) is decreasing to zero if σ−2

u has the above assumed order. To

do so, we look at the Fisher information. Note that the first component in

(3.27) has zero expectation. We also derived in the previous section that

û ≈ Eu(u|y) so that with Eu(u) = 0 we get Ey(ûûT ) ≈ Vary {Eu(u|y)}.

Moreover we have shown that G−1 ≈ Varu(u|y) which does not depend on y.

This yields Ey(ûûT ) = σ2
uIk−1 − G−1 and in turn E(ûTG−1ZT ŴZû/σ2

u) =

tr(G−1ZTŴZG−1ZTŴZ). Using the relationship kqZL22 = Bq,k,2 as de-

fined in (3.14) we get the equality tr(G−1ZT ŴZG−1ZT ŴZ) =

tr(G̃−1BT
q,k,2ŴBq,k,2G̃

−1BT
q,k,2ŴBq,k,2), which allows now to apply similar

arguments as used before to calculate the asymptotic order of the Fisher

information. To be specific, we get

E

{

−
∂2l(β, σ2

u)

∂σ2
u∂σ2

u

}

=
1

2σ4
u

tr(G̃−1BT
q,k,2ŴBq,k,2G̃

−1BT
q,k,2ŴBq,k,2)

= O

{

σ−4
u n

1
2q+3

(

1 + σ−2
u n− 2

2q+3

)−2
}

.

For the variational coefficient this leads to

Var(σ̂2
u)

σ4
u

= O

{

n− 1
2q+3

(

1 + σ−2
u n− 2

2q+3

)2
}

,

which tends to zero if σ−2
u is of order O(nγ) with γ ≤ 2

2q+3
and the ML

estimate for σ2
u is consistent.
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4 Bayesian P-Spline Smoothing and MCMC

Inference

4.1 Asymptotic Bayesian Framework

The mixed model approach of Section 3 can be interpreted as empirical Bayes

inference for penalized splines smoothing. In the truncated polynomial rep-

resentation Xβ + Zu coefficient u is taken as random with a Gaussian prior

while β is t considered as a fixed, unknown parameter vector which is, to-

gether with σ2
u estimated through maximum likelihood based on the Laplace

approximation. We will now go a step ahead by taking a fully Bayesian per-

spective and consider both, β and σ2
u to be random with appropriate priors.

Our interest is thereby to investigate the posterior distributions of β, u and

σ2
u. We will see, that an approximate posterior normal distribution results,

even though the spline dimension is growing with the sample size. Let us

start by formulating a prior for coefficient β. It is standard to specify either

a noninformative flat prior p(β) ∝ 1 or weakly informative Gaussian. For

spline coefficients u we make use of the normal prior as used in the mixed

model above, that is

p(u|σ2
u) ∝ exp

(

−
1

2σ2
u

uTu

)

. (4.28)

Finally for the remaining parameter σ2
u we make use of a weakly informative

inverse Gamma prior IG(au, bu), i.e.

p(σ2
u) ∝

1

(σ2
u)

au+1
exp

(

−
bu

σ2
u

)

, (4.29)

with small hyperparameters au = bu (e.g. with values 0.001), see e.g. Lang &

Brezger (2004). Note that the asymptotic scenario implies that the number

of components in u increase with growing sample size. This is, apparently,
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a non standard setting in the fully Bayesian model as the parameter space

changes with the sample size. To relate the fully Bayesian setting to the

results derived above we need a coherent formulation of assumption (A3
′

)

which is given as follows.

(A3′′) We assume that σ2
u has a prior distribution with the constraint

σ−2
u = Op (nγ) , γ ≤

2

2q + 3
.

It is not difficult to show that (A3′′) is fulfilled for the prior (4.29) if au > 0

and bu = o (n−γ) . Finally, in the normal response regression model we will

also assign inverse Gamma or flat priors for the unknown variance σ2
ǫ of the er-

rors. Fully Bayesian inference is now based on the posterior p(θ, σ2
u|y), where

the additional residual variance σ2
ǫ occurs in the normal response model. As

remarked before, for computational reasons, a B-spline basis representation

can be advantageous. In this case we assume for ω = k−qLq,kθ the Gaus-

sian prior p(ω) ∝ exp
(

−k2qωT D̃ω/2σ2
u

)

which is partially improper, with

rank deficiency equal to the dimension q + 1 of β. Fahrmeir & Kneib (2006)

provide theorems guaranteeing propriety of the posterior under fairly mild

regularity conditions, which are fulfilled here.

Inference is carried out via MCMC simulation, drawing iteratively from the

full conditionals p(θ|σ2
u, σ

2
ǫ ; y), p(σ2

u|θ, σ
2
ǫ ; y) and p(σ2

ǫ |θ, σ
2
u; y). In the Gaus-

sian case, the full conditional for θ is Gaussian again, and the full conditionals

for σ2
u and σ2

ǫ are inverse Gamma, so that a Gibbs sampler results. In the

non-Gaussian case, σ2
ǫ is fixed, whereas the full conditional for θ has no an-

alytic form and sampling can be done through Metropolis-Hastings steps,

see Brezger & Lang (2006) for details. After a burn in phase, the sample

{θ(t), t = 1, ..., T} can be used to (approximately) compute the marginal pos-

terior density p(θ|y) through its empirical density. Our intention is now to

compare the fully Bayesian approach to its approximate version which can

be derived from the results from above. In principle we could take the prior
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for β and (4.28) and apply a Laplace approximation as done in the previous

section. The only difference is that integration in (3.13) is not only carried

out over u but also over β. Since β is low dimensional it is a classical result

in Bayesian statistics that the posterior is approximately normal with β̂ as

posterior mean and the Fisher matrix as posterior variance. In the same line

we can generalize the results derived in (3.21) to derive the posterior distri-

bution for θ = (βT , uT )T or ω = (ωT
1 , ωT

2 )T , respectively if integration takes

place over θ or ω. In fact, with assumptions (A1), (A2), (A3′) and (A4) we

find

θ|y, σ2
u

a
∼ N

(

θ̂, V̂
)

with V̂ =
{

PT
q,kŴPq,k + diag(0q+1, 1k−1σ

−2
u )
}−1

(4.30)

This result shows that the conditional posterior (or full conditional) p(θ|y, σ2
u)

is approximately normal for given σ2
u, with σ2

u obeying assumption (A3′).

Fully Bayesian inference is based, however, on the marginal posterior p(θ|y) =
∫

p(θ|y, σ2
u)p(σ2

u|y)dσ2
u after integrating out σ2

u. Even in a classical Bayesian

linear model setting, the marginal posterior does not necessarily follow a

standard distribution, see e.g. O’Hagan & Foster (2004). Avoiding numerical

integration, samples from this marginal posterior can be obtained through

MCMC with Metropolis-Hastings steps, drawing from the full conditionals

(i) p(θ|y, σ2
u) and (ii) p(σ2

u|y, θ). For σ2
u fulfilling (A3′′) we may use the nor-

mal approximation (4.30) for p(θ|y, σ2
u). This leads to an approximate but

simple MCMC scheme with Gibbs steps instead of Metropolis-Hastings steps

used for (i). It remains to check that the sample drawn from (ii) also fulfills

the order (A3′′). In this case we may use (4.30) iteratively in the MCMC

steps. Note that p(σ2
u|y, θ) ∝ p(y|θ)p(θ|σ2

u)p(σ2
u). Using the normal distribu-

tion (4.28) for p(θ|σ2
u) it follow directly that with σ2

u fulfilling (A3′′) we have

σ−2
u |y, θ = Op(n

γ), γ ≤ 2
2q+3

.

A Bayesian approach avoiding MCMC at all has been recently suggested

by Rue & Martino (2005) by combining a Laplace approximation for the

posterior p(σ2
u|y) with numerical integration, see also Rue & Held (2005). A
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simple approximation is to replace σ2
u in (4.30) by its posterior mode estimate,

which corresponds to a (restricted) ML estimate. By doing so one is back

in a frequentist penalized likelihood setting. We compare the true marginal

distribution based on the MCMC sample with the approximate estimates

derived in the upper way which use Laplace approximations and setting σ2
u

to its ML estimate. The corresponding simulation results are discussed in

the next section.

4.2 Simulation Study

To explore the theoretical findings empirically we run a small simulation

study. We simulate n = 500 data points from the binomial model

logit {P (yi = 1|xi)} = sin(2πxi)

with xi as equidistantly distributed on [0, 1], i = 1, . . . , n. For fitting we

make use of a truncated linear basis (i.e. q = 1) with K = 30 knots. The

model is fitted in two ways, first following the mixed model framework of

section 3 we apply a Laplace approximation and estimate the remaining pa-

rameters, that is β and σ2
u, by maximum likelihood. Secondly, we follow the

fully Bayesian framework as described above by using an MCMC approach

(with burn in sample size 2000 and a Markov chain of length 52.000, storing

every 50th simulation as draw from the posterior distribution providing 1000

replicants of the posterior distribution). The resulting fits based on the pos-

terior mean are shown in Figure 1. Our focus is on the posterior distribution

of η(x)|y = Pq,k(x)θ with θ as random given y = (y1, . . . , yn). The theoreti-

cal arguments derived above state that η(x)|y is approximative normal with

mean η̂(x) = Pq,k(x)θ̂ obtained from the Laplace approximation and vari-

ance Pq,k(x)V̂P T
q,k(x). To check this approximation we now compare the true

posterior obtained from the MCMC output with the approximating distribu-

tion. We repeat the simulation 50 times, with a MCMC sample of the above
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stated size in each simulation. For each repeated simulation we calculate at

locations x = 0.25, x = 0.5, x = 0.75 and x = 1 the Kolmogorov-Smirnov

statistics between the (simulated) posterior distribution based on the MCMC

sample, standardized with the moments obtained from the Laplace approx-

imation and standard normal distribution. The corresponding values of the

statistics are shown in Figure 2, boxplot a). We now modify the simulation

setting by using K = 80 knots (boxplot b) and increasing the sample size to

n = 1000, with K = 30 and K = 80 knots, respectively (boxplots c and d).

As reference we draw 1000 random variables from the standard normal and

calculate the resulting Kolmogorov-Smirnov statistics (boxplot e). Overall

we see accordance to the theoretical findings that the Laplace approximation

provides a usable alternative to the full MCMC approach. This has been

found empirically in numerous other examples, described for instance in the

PhD thesis by Kneib (2006).

5 Conclusion

The paper shows that the Mixed Model framework and its usage for penal-

ized spline smoothing is asymptotically justified even if the dimension of the

spline basis is allowed to increase with the sample size with the rate n1/(2q+3),

provided that q ≥ 1. This implies that critiques published concerning the Pe-

nalized Quasi Likelihood (PQL) approach (see e.g. Breslow & Clayton, 1993,

and Breslow & Lin, 1995) are not applicable in this framework of penalized

spline smoothing. We derive asymptotic rates which balances bias and vari-

ance and which in the same way guarantee the equivalence between penalized

spline smoothing and PQL estimation. Therewith, the use of mixed model

software using PQL and Laplace approximation for smoothing is justified for

non-normal response models. Moreover, a fully Bayesian formulation of the

model yields approximately the same results as a Laplace approximation,

again even for growing dimensions of the spline basis.

23



A Technical Details

A.1 Proof of Theorem 1

Our asymptotic scenario is built on the assumptions (A1) to (A5).

Before we get deeper in the proof we want to give the following remarks.

Remarks

4. An essential component in the subsequent proof is the order of the

penalized Fisher matrix defined through

F(λ) = BT
q,kŴBq,k + λk2qD̃k, (A.31)

where Ŵ is the n dimensional diagonal weight matrix resulting from

the variance function. It should be noted that F(λ) is band diagonal

with 2q + 1 diagonal bands having elements of order O(n/k + λk2q)

and the outer 2q + 2 band with elements of order O(λk2q). Inserting

the order of λ and k, respectively, i.e. using (2.7) and (2.8), we find

F(λ) as band diagonal matrix with elements of order O(n(2q+2)/(2q+3)).

Normalizing F̄k(λ) = F(λ)n−(2q+1)/(2q+3) we obtain from the structure

of B-splines and with the penalty matrix D̃k that the (j, l)-th element of

the matrix F̄(λ) denoted with f̄jl is decreasing in |j− l| and maximal is

on the diagonal. That is to say that F̄(λ) is a strictly diagonal dominant

matrix. Making use of results derived in Demko (1977) we can therefore

bound the elements of the inverse matrix f̄ jl(λ) ≤ constρ|j−l| with

0 < ρ < 1, or equivalently

f jl(λ) = ρ|j−l|O

{(n

k
+ λk2q

)−1
}

(A.32)
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where f jl(λ) is the (j, l)-th elements of F(λ).

For the proof of Theorem 1 we use the following notation. Let l(ϑ) =
∑n

i=1 yT
i ϑ(xi) − b{ϑ(xi)} define the log-likelihood function and denote the

derivative with respect to the vector ϑ = (ϑ(x1), . . . , ϑ(xn)) as lϑ(ϑ) :=

∂l(ϑ)/∂ϑ =
[
yi − µ{ϑ(xi)}

]

i=1,...,n
. Accordingly we write lη(η) for the n

dimensional column vector

lη(η) :=
∂ϑT

∂η
· lϑ(ϑ) =

(
∂ϑ(xi)

∂η(xi)

[
yi − µ {ϑ(xi)}

]
)

i=1,...,n

(A.33)

Let η0 = Bq,kω0, where ω0 is the best coefficient in the sense that ω0 minimizes

the Kullback-Leibler distance, that is E
[
BT

q,k lη {ϑ(Bq,kω0)}
]

= 0, where the

expectation is carried out with respect to the true function η(x). Coefficient

ω0 defines the optimal approximation bias δ(x) in (2.3) through

δ0(x) = η(x) − Bq,k(x)ω0. (A.34)

The proof of the theorem follows now by decomposing

E
[
{η̂(x) − η(x)}2] = E

[
{η̂(x) − η0(x)}2]

︸ ︷︷ ︸

1

+ δ2
0(x)
︸ ︷︷ ︸

2

− 2E {η̂(x) − η0(x)} δ0(x)
︸ ︷︷ ︸

3

. (A.35)

We consider the separate components in (A.35). We show first convergence

of ω̂ to ω0. Note that the penalized estimating equation for ω̂ results to

0 = BT
q,k lη {ϑ(Bq,kω̂)} − λ k2q D̃kω̂. (A.36)

The subsequent proof will make use of Einstein’s summation convention (see

McCullagh, 1987 or Barndorff-Nielsen & Cox, 1989). To apply the tech-

nique we need some additional notation. Let the j-th component of vector

ω be subsequently denoted with a superscript instead of a subscript, that

25



is ω = (ω1, ω2, . . . , ωk+q). With 0 = lp,j(ω̂) we denote the j-th component

of equation (A.36), that is lp,j(ω̂) = ∂lp(ω)/∂ωj|ω=ω̂ with lp(·) as defined in

(2.6). The objective is now to expand lp,j(ω̂) around lp,j(ω0). We use the

convention that we omit the explicit listing of parameters if the best coef-

ficient ω0 is used, that is lp,j = lp,j(ω0). Moreover, the hat notation l̂p,j is

used for lp,j(ω̂). Finally, higher order derivatives are notated by multiple sub-

scripts, e.g. lp,jl = ∂2lp(ω0)/∂ωj∂ωl. We are now able to expand l̂p,j around

lp,j. Using the Einstein summation convention implies that equal sub and

superscripts are being summed over. This allows to write the expansion as

0 = l̂p,j = lp,j + lp,jl(ω̂
l − ωl

0) +
1

2
lp,jlr(ω̂

l − ωl
0)(ω̂

r − ωr
0) + . . . (A.37)

Solving (A.37) for ω̂l − ωl
0 can be done with series inversion (see Barndorff-

Nielsen & Cox, 1989) and we get

ω̂j − ωj
0 = −ljlp lp,l −

1

2
ljlrp lp,llp,r + . . . (A.38)

with ljlp as (j, l)-th element of the matrix inverse of lp,jl, j, l = 1, . . . , q + k,

and ljlrp = ljsp lltp lru
p lp,stu. The remaining components not explicitly listed in

(A.37) and (A.38) are of lower asymptotic order and are therefore omitted.

In the style of classical Maximum Likelihood theory (see McCullagh, 1987)

we simplify (A.38) using the following arguments. First, we decompose lp,jl =

fjl(λ)+sjl, with fjl(λ) = fjl(0)+λk2qd̃jl, where fjl(0) is the weight or Fisher

matrix contribution −E(∂2l(ω0)/∂ωj∂ωl), d̃jl is the jl element of D̃ and sjl is

the stochastic component of the second order derivative without the penalty,

i.e. sjl = ljl − fjl(0). Using assumption (A3) we find from (A.32) that

f jl(λ) = ρ|j−l|O(k/n). Similarly we get that matrix sjl is block diagonal,

with elements of order Op

{
(n/k)1/2

}
. The first component in (A.38) can

then be simplified using

ljlp = f jl(λ) − f jr(λ)f ls(λ)srs + ... = f jl(λ)

[

1 + Op

{(n

k

)−1 (n

k

)1/2
}]

.
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With the same arguments we see that lp,stu is of diagonal structure, meaning

that lp,stu is zero if max{|s− t|, |s−u|, |t−u|} > q +1, otherwise the element

has order O(n/k). This allows to quantify the remaining components in

(A.38) and we get with tedious but simple calculations

ω̂j − ωj
0 = f jl(λ)lp,l + op

(
k

n

)

(A.39)

With (A.39) we can now also rewrite the leading component in (A.39) in

matrix notation

ω̂ − ω0 = F−1(λ)
(

BT
q,klη − λ k2qD̃kω0

)

+ . . . (A.40)

with lη = lη{ϑ(Bq,kω0)}. Note that k2qD̃kω0 = kq−1LT
q,kDkk

q+1Lq,kω0 =

kq−1LT
q,kDkkθ0. Defining the qth order difference vector as η

(q)
0 = k{η(q−1)

0 (τq)−

ηq−1
0 (τq−1), η

(q−1)
0 (τq+2) − η

(q−1)
0 (τq+1), . . .}, q > 1 we obtain η

(q)
0 as a dis-

cretized version of the qth order derivative of η0(x). Since kDkθ0 = (0q, η
(q+1)
0 ),

with 0q as q-dimensional zero vector, we obtain with (A5) and the defini-

tion of θ0 that the elements of kDkθ0 have order O(1) to achieve differ-

entiability in the limit. Based on the structure of Lq,k this implies that

‖k2qD̃kω0‖∞ = O(kq−1).

Consequently, with (A3) the Mean Squared Error for ω̂ has the leading terms

E [ω̂ − ω0] = −F−1(λ)λk2qD̃kω0 {1 + o(1)}

= O

{(n

k

)−1

λkq−1

}

= O(n−1kq+2), (A.41)

Var(ω̂) = F−1(λ)F(λ = 0)F−1(λ) {1 + o(1)} (A.42)

= O

{(n

k

)−2 n

k

}

= O

(
k

n

)
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The Mean Squared Error taking ω0 as true coefficient has the order

MSE(ω̂|ω0) = E(ω̂ − ω0)
2 + Var(ω̂) = O(n−2k2q+4)) + O

(
k

n

)

which is minimized for k postulated in (A4). The Mean Squared Error for

ω̂ is then of order O
(

n− 2q+2
2q+3

)

. The asymptotic orders for η̂(x) and ω̂ is the

same.

In the second part of the proof we focus the approximation bias δ0(x) given in

(A.34). Since η(x) is approximated in each interval [τj , τj+1] by a polynomial

of order q we find for η(.) being (q+1) times differentiable by Taylor series an

approximation bias δ0(x) of order O(k−(q+1)). Observing the order of k given

in (2.8) we find the squared approximation bias to be of order O
(
k−2(q+1)

)
=

O
(

n− 2q+2
2q+3

)

. Hence, the second and first components in (A.35) carry the same

asymptotic order. The explicit formula for approximation bias as appropriate

scaled Bernoulli polynomials can be found in Barrow & Smith (1978).

Finally, the third component in (A.35) results by multiplication of the bias

(A.41) and the approximation bias. Keeping the above results in mind we

find with the same arguments as used before, that this component is also of

order O
(

n− 2q+2
2q+3

)

so that (A.35) is a decomposition with elements having all

the same asymptotic order.

Combining the results we get the final expansion

η̂(x) − η(x) = Bq,k(x)ω̂ − η(x) (A.43)

= Bq,k(x)
{

BT
q,kŴBq,k + λ n

2q

2q+3 D̃k

}−1

×
{

BT
q,klη − λ n

2q

2q+3 D̃kω
}

+ Op

(

n− q+1
2q+3

)

, (A.44)

where Ŵ = diag{b
′′

(Bq,kω̂)}. Finally, with (A.40) we see that the dominant

stochastic part of ω̂ − ω0 is F−1(λ)BT
q,llη. Since lη is a vector of independent

random variables the central limit theorem applies so that with (A.41) and

(A.42) we get (2.10).
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Figure 1: Simulated data and corresponding estimates based on a Laplace
approximation (bold) and as mean from the MCMC posterior (dashed), re-
spectively. The true curve is shown as thin line.
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Figure 2: Kolmogorov-Smirnov statistics for comparing the posterior distri-
bution based on MCMC standardized with the moments obtained from the
Laplace approximation and the standard normal distribution a) n = 500
and K = 30, b) n = 500 and K = 80, c) n = 1000 and K = 30 and d)
n = 1000 and K = 80. Plot e) shows as reference the distribution of the
Kolmogorov-Smirnov statistics if random variables are drawn from a normal
distribution.
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