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Abstract—Smart speakers are gaining popularity in smart
homes, enhancing convenience in managing other devices and
providing entertainment. Despite these benefits, they introduce
privacy concerns that need to be addressed. In this study, we
examine the susceptibility of smart speakers to fingerprinting
attacks, employing Jaccard index and Deep Neural Networks
(DNNs), including Convolutional Neural Networks (CNNs), Long
Short-Term Memory networks (LSTMs), and Stacked Autoencoders
(SAEs). We’ve implemented a new tool for collecting traffic
traces, notably for multi-interaction skills. Jaccard index achieves
a minimum of 97% accuracy in predicting the category of a
voice command, while the CNN model reaches at least 90%.
Both methods struggle with specific command identification that
goes beyond the category. Future work will focus on expanding
our dataset, as the DNN approach might significantly benefit
from more extensive data for improved training. Together, these
approaches underscore the profound privacy threats posed by
fingerprinting attacks on smart speakers and highlight the ur-
gency for enhanced security measures to safeguard user privacy
in the expanding domain of IoT devices.

Index Terms—Smart Speaker, Privacy, Voice Command Fin-
gerprinting, Security, IoT

I. INTRODUCTION

In the era of IoT, smart home speaker systems like Amazon
Echo and Google Home are ubiquitous. These devices are
activated by a wake word and can perform a variety of
functions based on user’s voice commands. These commands
are then processed on remote cloud servers, maintained by
the manufacturers. While this technology offers considerable
benefits in terms of convenience, it also introduces significant
challenges concerning user privacy and security [1]. One of
them is the voice command fingerprinting attack shown in
Fig. 1 and adopted in this paper. In this attack, attackers
can infer specific users’ voice commands by analyzing the
characteristics of the encrypted network traffic without de-
crypting it between the smart speaker and the cloud server [2—
4]. The practicality of this attack stems from its simplicity —
sniffing network traffic is easier and less conspicuous than
attempting decryption. While existing studies have explored
voice command fingerprinting attacks, there remains a need
to delve into more complex interactions like Alexa skills and
associated smart home interactions. Additionally, there is a gap
in comparing the efficacy of proven approaches like Jaccard
index and DNNs in this context.

In our study, while we still collect and analyze standard
voice commands, we place a particular emphasis on Amazon
Alexa skills. This dual approach allows us to compare the
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Fig. 1. Threat model

more complex skill interactions with regular commands. Since
no dataset exists, we have hence developed an automated
tool for the collection of voice command traffic, including a
variety of Alexa skills interactions. This tool systematically
collects traffic traces, to analyze and fingerprint different
voice commands. The collected dataset comprises traffic traces
of voice interactions, including simple commands, multi-
interaction skills, smart home devices (lights and sockets),
Spotify usage, and alarms.

Based on this tool and the collected dataset, we have applied
two different approaches. The first is based on a statistical
analysis based on the Jaccard index, while the second is based
on deep learning techniques, i.e., Convolutional Neural Net-
works (CNNs), Long Short-Term Memory (LSTM) networks,
and Stacked Autoencoders (SAEs). Our choice for the former
approach is motivated by its use in [5], while the latter is also
applied in [2]. By doing so, we can hence benchmark our re-
sults against related work. Our results indicate that the Jaccard
index fingerprinting method is effective in inferring categories,
demonstrating accuracies between 97% to 100%. However,
when it comes to identifying specific voice commands within
these categories, there is a notable decrease in performance.
For instance, accuracy drops to as low as 5% for certain smart
home commands, whereas it reaches up to 93% for multi-
interaction skill commands. A similar trend is observed with
deep learning techniques involving CNN, LSTM, and SAE
models. Here, the CNN model is the most proficient, achieving
an accuracy of 97% in a three-category framework and 90%
across six categories. Nonetheless, these models also struggle
in accurately predicting specific voice commands, with success
rates varying from 6% in the smart home category, specifically
for light device commands, to 60% for multi-interaction skills.

The contributions of this paper are as follows:

« Development of a novel tool for capturing traffic traces
from Amazon Echo Dot, enhanced for both simple single
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interactions and complex, multi-interaction Alexa skills,

o Investigation of the effectiveness of the Jaccard index
in categorizing voice commands, ranging from basic
commands to multi-interaction sKkills,

o Analysis of the performance of CNN, LSTM, and SAE
models in classifying voice command traffic, addressing
both simple and complex command types, and

e Comparison of the the Jaccard index approach with
deep learning techniques, assessing their performance in
fingerprinting diverse types of voice command traffic.

II. RELATED WORK

Automated tools for collecting voice traffic have enabled
large-scale data analysis on devices like Amazon Echo and
Google Home [5]. We’ve refined these tools to not only capture
simple voice commands but also to efficiently gather Alexa
skill interactions for our voice command fingerprinting anal-
ysis. Therefore, our new generated dataset not only includes
standard voice commands but also integrates interactions with
Alexa skills, thus broadening the analytical scope and provid-
ing new insights into voice command fingerprinting. Research
in the area of voice command fingerprinting has adapted
website fingerprinting methods, such as Jaccard index, for
smart speakers like Amazon Echo, in order to identify voice
commands [5]. Deep learning techniques, including CNNs,
LSTMs, and SAEs, applied to these datasets, have shown high
accuracies in inferring voice commands, further underscoring
the privacy risks [2, 4]. Additionally, the fingerprinting of
voice applications on Amazon Echo has been explored beyond
simple voice commands by analyzing encrypted traffic of
interactions with Amazon Echo Skills [3]. Our work extends
the field of voice command fingerprinting by not only an-
alyzing simple voice commands but also placing a focus
on Alexa skills interactions. By incorporating advanced deep
learning methodologies, our research progresses beyond the
conventional machine learning algorithms like Random Forest
and Support Vector Classifiers, as used in prior works [3],
which took a first step in fingerprinting Alexa skills. Moreover,
our study offers a unique comparative analysis between two
distinct fingerprinting methodologies: the established Jaccard
index approach and the sophisticated Deep Neural Network
(DNN) based techniques. This comparison is instrumental in
evaluating the effectiveness and intricacies of various strategies
in fingerprinting voice command traffic, especially in the
context of Alexa skills.

III. METHODOLOGY

To achieve our goal of investigating voice command finger-
printing, our methodology employs a Python-scripted laptop
as a wireless access point, interfacing with an Amazon Echo
Dot via a headset to gather a diverse dataset of simple voice
commands and Alexa skill interactions. Moreover, we employ
a dual fingerprinting approach, using the Jaccard index and
DNNS, including CNNs, LSTMs, and SAEs, for detailed voice
command assessment. More comprehensive details on our data
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Fig. 2. Data collection

collection and fingerprinting strategies are elaborated in the
following subsections.

A. Dataset Generation

Since no dataset exists that includes or focuses on Alexa
skill interactions, we have first generated a dedicated dataset.
We have decided to include the following Alexa skills: “NASA
Mars” (answers questions about Mars), “Mixologist” (suggests
drink recipes), “Capital Cities Quiz” (multiple-choice quiz on
capital cities), “Death Info for Westeros” (confirms deaths
of “Game of Thrones” characters), “Magic 8-Ball” (answers
yes/no questions), “Stopwatch” (time tracking), “Area Code”
(provides area info for codes), “Spin the Wheel” (random
selection from user-provided names), “Save Water by Col-
gate” (tips on water conservation), and “Wine Gal” (wine
recommendations for meals). These skills are multi-interaction
skills where the skill awaits further user input after a request.
Additionally, we collected data on skills for smart home device
interactions, like lights and power sockets, and the Spotify skill
for music playback. We also included timer/alarm commands
and basic simple commands (e.g. “What is the weather for
tomorrow?””). Multi-interaction skills, that include more than
one request-response pair, are especially challenging. These
skills require advanced automation tools for data collection,
as they involve sequences of interactions unique to each skill.
Selection criteria for these skills included allowing multiple
interactions, the feasibility of automation, not triggering real-
world events (e.g. phone calls), no need for account linking,
and a reasonable interaction duration. The complexity of
capturing multi-interaction skills was a significant aspect, as
it demanded a sophisticated approach to automate interactions
without human input and ensure efficient data collection.
This involved selecting multi-interaction skills that did not
necessitate continuous, fluent conversation but rather consisted
of sequential requests, as exemplified by the “NASA” skill, a
skill where Alexa answers user-posed questions about Mars
and prompts for more until the skill is stopped. This strategy
allowed for more efficient data collection by focusing on skills
where the conversation pattern was predictable and could be
automated without relying on real-time speech recognition.
Fig. 2 illustrates our collection tool setup. Data is collected



using a Python script running on a laptop configured as a
wireless access point, capturing all network traffic in .pcap
files. The script interfaced with Alexa through a connected
headset, facilitating the transmission of audio data. Text-To-
Speech technology, particularly the eSpeak speech synthesizer,
was employed to generate audio for voice interactions in real-
time. The dataset consists of approximately 3,200 traces across
all categories, reformatted into a .csv file with each entry
featuring a timestamp and the packet length, marked with ’-’
for incoming and ’+’ for outgoing traffic.

B. Fingerprinting Approaches

Having established a dataset featuring diverse Alexa Skill
interactions and standard voice commands, we now explore the
application of two distinct fingerprinting methods: the Jaccard
index and DNNs.

1) Jaccard Index Approach: The Jaccard index, a measure
of similarity between two sets, is calculated as the size of the
intersection divided by the size of the union of the sets. In the
context of voice command fingerprinting, consider two traffic
traces from different voice commands, each represented as a
set of packet sizes. The direction “from” the considered entity
is coded as a positive value, while the direction “to” is coded
as a negative value. For example, suppose Traffic Trace A
is represented as {+150, -300, +450} and Traffic Trace B as
{+150, +200, -300}. To compute the Jaccard index, we first
find their intersection, i.e.,{+150, -300}, in this case. Next,
we determine the union of the sets, which includes all unique
elements from both sets: {+150, -300, +450, +200}. The
Jaccard index is then calculated as the size of the intersection
divided by the size of the union:

[{+150, —300}| 2
(4. B) = [{+150, —300, +450, +200}| 4 05 )

This index of 0.5 suggests a moderate level of similarity
between the two traffic traces. We hence use this index to
compare the similarity of traffic traces in the fingerprinting
process.

2) Deep Learning Approach: In this study, we further
apply several DNN models for voice command fingerprinting,
building upon modified versions of models used in prior
research [2]. These included:

o CNNs for capturing spatial dependencies within data,

o LSTM networks, ideal for processing time-series data and

capturing temporal dependencies, and

o SAEs for unsupervised learning and feature extraction.

We have tailored each model to the dataset, which featured
six distinct classes of voice commands. The two-step training
process first predicts the class of a voice command, followed
by identifying the specific command within that class. Pre-
processing and training of the models involve limiting voice
command traces to the first 600 packets and normalizing the
data using scikit-learn’s min-max scaler. The dataset is then
split, allocating 80% for training and 20% for testing, with a
further 20% of the training set used for validation purposes.
Each category of voice commands is adequately represented
in all sets to ensure a thorough evaluation.

TABLE I
COMPARISON OF CATEGORY AND COMMAND PREDICTION ACCURACIES
FOR JACCARD INDEX (MULTI: MULTI-INTERACTION SKILLS, SMART:
SMART HOME)

Simple | Multi | Smart | Spotify | Alarms
Category 100% 98% 99% 97% 99%
Command 55% 93% 5% 65% 96%

IV. EVALUATION AND RESULTS
A. Jaccard Index

Tab. I summarizes the accuracies achieved by our Jaccard
index approach for fingerprinting different voice commands.
Using 100 distinct traces per category, we found the Jaccard
index reliably identified the correct category with at least
97% accuracy. However, accurately detecting the exact voice
command varied widely, with accuracies ranging from 5% for
smart home devices to 93% for multi-interaction skills and
96% for alarms. This variation underscores the approach’s
effectiveness in category detection but highlights challenges
in pinpointing specific commands.

Overall, the Jaccard index demonstrated a strong capability
to distinguish between categories of skill interactions, with
accuracy reaching up to 100% in some instances. However,
its performance in identifying specific voice commands was
variable, particularly in the smart home category.

B. DNN Approach

We have further conducted a comprehensive evaluation of
DNN models including eight tests. Each test is designed to
assess the model’s ability to accurately identify and classify
categories and the specific voice commands in that category,
its results can be seen in Tab. II. The tests are structured as
follows:

Category Prediction Tests: We initiated our evaluation
with a three-category test, involving traces from three cat-
egories (alarms, lights, and Spotify), aiming to predict the
correct category. This was followed by a more extensive
six-category test, which included all six categories: simple
commands, multi-interaction skills, smart home devices (in-
cluding sockets and lights), alarms, and Spotify. The initial
three-category test, demonstrates the models’ capabilities in
broader category classification, with the CNN, LSTM, and
SAE models achieving prediction accuracies of 97%, 87%, and
79% respectively. In the more expansive six-category test, the
models demonstrated differing levels of accuracy. Specifically,
the CNN, LSTM, and SAE models achieved accuracies of
90%, 81%, and 73%, respectively.

Specific Voice Command Evaluation: Subsequent tests
delved into each specific category, focusing on the model’s
precision in predicting the exact voice command within that
category. This granular approach allowed us to gauge the
model’s performance in more detailed scenarios. Our findings
revealed varied results across different models and categories.
In the voice command-specific tests, the CNN and LSTM
models exhibited similar yet distinct performance patterns.



TABLE II
MODEL PREDICTION ACCURACIES ACROSS DIFFERENT CATEGORIES

Category CNN | LSTM | SAE
Three-Categories 97% 87% 79%
Six-Categories 90% 81% 73%
Alarms (specific command) 67% 68% 60%
Lights (specific command) 6% 4% 4%
Simple (specific command) 11% 7% 3%
Skills (specific command) 60% 63% 38%
Sockets (specific command) 14% 36% 28%
Spotify (specific command) 39% 36% 18%

While the CNN showed a range of accuracies, achieving 67%
in alarms, 60% in multi-interaction skills, 39% in Spotify,
14% in sockets, 11% in simple commands, and 6% in lights,
the LSTM model’s performance varied in different categories,
indicating that each model had its strengths in predicting
certain types of voice commands. These results illustrate the
diverse challenges posed by different categories, with some
such as lights and simple commands proving to be more
complex for accurate prediction. These results are further
displayed in Tab. II

In the comparison between Jaccard index and DNN methods
for fingerprinting voice commands, Jaccard index slightly
outperforms DNN in category prediction with a 97% accuracy,
compared to DNN’s 90% using CNN. However, both methods
face challenges in accurately predicting specific voice com-
mands. It’s important to note that while the Jaccard index’s
performance is not expected to improve with more data due
to its static methodology, the DNN approach has the potential
for enhanced accuracy with additional training data.

Overall, our research highlights the intricate nature of
voice command fingerprinting, with models showing differing
levels of efficacy across categories. The results underscore the
need for further optimization and training of these models,
particularly in categories with a high diversity of commands
or intricate classification requirements.

V. DISCUSSION AND FUTURE WORK

In future work on voice command fingerprinting, several
issues should be addressed to enhance our contributions.
Firstly, refining the automation of data collection is crucial, es-
pecially for complex multi-interaction skills. Advanced speech
recognition is key in this context, enabling accurate automation
and capture of nuanced conversations inherent to these skills.
Secondly, expanding the dataset size is essential for the
optimal training of deep learning models. A more extensive
dataset, encompassing a broader range of voice commands and
interactions, is critical for improving the models’ accuracy and
generalization capabilities. Finally, developing and rigorously
testing effective countermeasures, such as packet padding,
is important. This includes evaluating the impact of these
countermeasures on network performance and user experience
and assessing their effectiveness in mitigating privacy risks
associated with voice command fingerprinting. Through these
enhancements, future research can provide a more comprehen-
sive and secure framework for voice command fingerprinting.

VI. CONCLUSION

In our ongoing research, we are delving into the nuances of
voice command fingerprinting, focusing on a comprehensive
dataset that includes traces from e.g. simple voice commands
and interactions with Amazon Alexa skills. This investiga-
tion encompasses two distinct approaches for executing fin-
gerprinting attacks: Firstly, the Jaccard index method, and
secondly, DNN-based approaches (CNN, LSTM, and SAE).
Both the Jaccard index method and the DNN-based approaches
demonstrated comparable effectiveness in accurately classify-
ing voice commands into categories. However, each method
faced challenges in precisely predicting the specific voice
command used within a given category. Despite the dataset’s
current limitations, our study successfully demonstrates the
feasibility of conducting voice command fingerprinting attacks
with a specialized focus on Alexa skills, although the overall
performance can still be improved in the future. We thus aim
to validate our hypothesis that enlarging the training dataset
will substantially improve the effectiveness of fingerprinting
attacks on skill interactions, thus contributing to better un-
derstanding of the security as well as privacy challenges and
potential vulnerabilities within smart speaker ecosystems. This
future work will be crucial in advancing our understanding
and capabilities of voice command fingerprinting, particularly
in more complex and varied interaction scenarios.
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