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Linear regression model
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y=01x1+...0kx,+e

@ response y € R” (known)

@ regressors x; € R", 1 <<k (known)

@ errors € € R” (unknown)

@ parameter vector @ = (0y,...,0x) € R (unknown)

A penalized least-squares (LS) estimator 0 for 0 is given by

6=argmin |y—X0|> + X\,p(6)

OcRK —— N——
likelihood or LS -part penalty

An > 0 is a tuning parameter (A, = 0 corresponds to unpenalized/

ordinary LS), X = [x1,...,x«] the n x k regression matrix.
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Penalized LS (ML) Estimators  (cont'd)

Clearly, different penalties give rise to different estimators.

@ General class of Bridge-estimators (Frank & Friedman, 1993)
using I, - type penalties

k
Ap(6) = 2o D 617
i=1
v =2: Ridge-estimator (Hoerl & Kennard, 1970)
v=1: LASSO (Tibshirani, 1996).

@ Hard- and soft-thresholding estimators.

@ Smoothly clipped absolute deviation (SCAD) estimator (Fan
& Li, 2001).

o Adaptive LASSO estimator (Zou, 2006).



Relationship to classical PMS-estimators

Brigde-estimators satisfy
k
min [ly — XO|> + X\, > _ 67 (0 <7 < o0)
OcRK ]
For v — 0, get

i — X0||? + \ycard{i: 0; £ 0
ggﬁ@!ly | card{i : 0; # 0}

which yields a minimum C,-type procedure such as AIC and BIC.
(ly-type penalty with “y =0")



Relationship to classical PMS-estimators  (cont'd)

@ For “y = 0" procedures are computationally expensive.



Relationship to classical PMS-estimators  (cont'd)

@ For “y = 0" procedures are computationally expensive.

e For v > 0 (Bridge) estimators are more computationally
tractable, especially for 7 > 1 (convex objective function).



Relationship to classical PMS-estimators  (cont'd)

@ For “y = 0" procedures are computationally expensive.

e For v > 0 (Bridge) estimators are more computationally
tractable, especially for 7 > 1 (convex objective function).

@ For v <1, estimators perform model selection
Pno(0; =0)>0 if §; =0.

Same for SCAD, hard- and soft-thresholding. Phenomenon is
more pronounced for smaller ~.



Relationship to classical PMS-estimators  (cont'd)

@ For “y = 0" procedures are computationally expensive.

e For v > 0 (Bridge) estimators are more computationally
tractable, especially for 7 > 1 (convex objective function).

@ For v <1, estimators perform model selection
Pno(0; =0)>0 if §; =0.
Same for SCAD, hard- and soft-thresholding. Phenomenon is
more pronounced for smaller ~.

@ 7 =1 (LASSO and adaptive LASSO) as compromise between
the wish to detect zeros and computational simplicity. (SCAD
leads to a non-convex optimization problem.)



Relationship to classical PMS-estimators  (cont'd)

@ For “y = 0" procedures are computationally expensive.

e For v > 0 (Bridge) estimators are more computationally
tractable, especially for 7 > 1 (convex objective function).

@ For v <1, estimators perform model selection
Pno(0; =0)>0 if §; =0.
Same for SCAD, hard- and soft-thresholding. Phenomenon is
more pronounced for smaller ~.

@ 7 =1 (LASSO and adaptive LASSO) as compromise between
the wish to detect zeros and computational simplicity. (SCAD
leads to a non-convex optimization problem.)

The PLS estimator(s) we treat in the following can be viewed to
simultaneously perform model selection and parameter estimation.



Some terminology (model selection)

@ Consistent model selection — Zero coefficients are found with
asymptotic probability equal to 1.

lim P,,,g(é,- =0)=1 whenever ;=0 (1<i<k)
lim P,,ﬂ(é,‘ =0)=0 whenever0; 20 (1<i<k)

n—oo

An estimator performing consistent model selection is said to
have the sparsity property.
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@ Consistent model selection — Zero coefficients are found with
asymptotic probability equal to 1.

lim P,,,g(é,- =0)=1 whenever ;=0 (1<i<k)
lim P,,ﬂ(é,‘ =0)=0 whenever0; 20 (1<i<k)

n—oo

An estimator performing consistent model selection is said to
have the sparsity property.

@ Conservative model selection — Zero coefficients are found
with asymptotic probability less than 1.

n—oo

lim P,g(; =0) <1 whenever 6, =0 (1<i<k)

lim P,.o(0;

n—oo

0)=0 whenever §; 20 (1<i<k)



Some terminology (model selection)  (cont'd)

o Consistent vs. conservative model selection can in our context
be driven by the asymptotic behavior of the tuning parameters
An. Also called “sparsely” vs. “non-sparsely” tuned
procedures.
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Some terminology (model selection)  (cont'd)

o Consistent vs. conservative model selection can in our context
be driven by the asymptotic behavior of the tuning parameters
An. Also called “sparsely” vs. “non-sparsely” tuned
procedures.

@ Oracle property — Asymptotic distribution coincides with the
one of the infeasible unpenalized estimator using the true zero
restrictions (with VC-matrix Xg).

n*/2(6 — ) — N(0, %)

Seems to suggest that 0 performs as well as if we would know
the true zero coefficients of 6.



Literature on distributional properties of PLSEs

@ Knight & Fu, 2000. Moving-parameter asymptotics for
non-sparsely tuned LASSO and Bridge estimators in general.

e Fan & Li, 2001. Fixed-parameter asymptotics for SCAD.

@ Zou, 2006. Fixed-parameter asymptotics for sparsely-tuned
LASSO and adaptive LASSO.

o Additional papers establishing the oracle property for
sparsely-tuned PLSEs and related estimators within a
fixed-parameter framework.

Fan & Li (2002, 2004), Bunea (2004), Bunea & McKeague (2005),
Wang & Leng (2007), Li & Liang (2007), Wang, G. Li, & Tsai
(2007), Zhang & Li (2007), Wang, R. Li, & Tsai (2007), Zou &
Yuan (2008), Zou & Li (2008), Johnson, Lin, & Zeng (2008), ...



Literature on distributional properties of PLSEs  (cont'd)

This talk is based on

@ Potscher & Leeb, 2007. Finite-sample distribution,
moving-parameter asymptotics for hard-thresholding, LASSO,
and SCAD. Impossibility result for the estimation of the cdf.

@ Potscher & Schneider, 2007. Analogous results for the
adaptive LASSO.

@ Potscher & Schneider, 2008. Finite-sample and asymptotic
coverage probabilities of confidence sets for hard-thresholing,
LASSO, ad. LASSO.



~

Definition of the (adaptive) LASSO estimator 6,

LASSO estimator (Tibshirani, 1996)

k

). = argmin Hy—X0H2+2nu,,Z\9,-\ fn >0
OcRK i=1

Tuning parameter A\, = 2nu,. For k = 1:

0.

LASSO

D>

oLs




Definition of the (adaptive) LASSO estimator 6,

adaptive LASSO estimator (Zou, 2006)

6, = argmin |y — X6/ + 2’7an 10 ‘/|00L57J’ pn >0
OcRK

Tuning parameter \, = 2nu2. For k = 1:
GAL

ad. LASSO
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the tuning parameter pu, arise.
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Two regimes for consistency

In terms of model selection consistency, two possible regimes for
the tuning parameter pu, arise.

© The case pu, — 0 and n1/2,u,, — m, 0 < m < oo, corresponds
to conservative model selection (non-sparsely tuned).

@ The case yi, — 0 and n1/2,u,, — 00 corresponds to consistent
model selection (sparsely tuned).

Remark (estimation consistency).

If n # 0, then éAL is not even consistent for 6. Therefore,
tn — 0 is a “basic condition”.

We will focus on @ here, also discuss @ .

10/33



Asymptotics in the consistent case

Zou (2006) “oracle property”

Suppose X’X/n — Q > 0 and &; IS (0,02).
If up — 0 and n/2pu, — oo and additionally n*/4, — 0, then

n*?(6,. — 6) — N(0,%,),

where ¥4 is the asymptotic VC-matrix of the restricted
LS-estimator based on the unknown true zero restrictions.

11/33
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Does this theorem provide meaningful insights? Finite-sample
distribution?

Asymptotic behavior under regime @ 7

What if condition n*/4y, — 0 is dropped in @ ?

@ Pointwise vs. uniform consistency rates?

Properties of confidence intervals?

Estimability of finite-sample distribution?

We answer these questions within a normal linear regression model
and address the non-orthogonal case in a simulation study.

12/33



Explicit solution in a simple model

e X is non-stochastic (n x k), rk(X) = k.
e &~ N,(0,0%Z,)

o For the theoretical analysis, assume that o2 is known and that
X'X is diagonal, in particular X’ X = nZy.

@ Remove these assumptions for simulation results concerning
the finite-sample distribution.

Wilog consider Gaussian location model yy, ..., y, g N(6,1).

Then fos = 7 with G5 ~ N(6,1/n) and

0 :{ 0 if |}_"§,un
M Ty 1Y >

Selects between restricted {N(0,1)} and full model {N(6,1) : 6 € R}

13/33



The finite-sample distribution of HAAL

The cdf F,g(x) = Pro(n*/?(8u. — 0) < x) of G, is given by

1020 +x 2 0) & (23(x)) +1(020 +x < 0) & (23(x)) . J

22)(x) and 21 (x) are —(n"/20 — x)/2 + \/((n720 + x) /2)% + 2.

® and ¢ the cdf and pdf of N(0,1), resp.

14/33



The finite-sample distribution of HAAL

The cdf F,g(x) = Pro(n*/?(8u. — 0) < x) of G, is given by

1020 +x 2 0) & (23(x)) +1(020 +x < 0) & (23(x)) . J

22)(x) and 21 (x) are —(n"/20 — x)/2 + \/((n720 + x) /2)% + 2.

dF, ¢ is given by
{ &(n"2(=0 + pn)) — @(n'/?

(=60 — pn)) } do_p/29(x) +
0.5 x {1(n 1/20+x>0)¢( L
(

0 —
() (1+ tro(x)) +
() (1= tao(x)) } dx

)
%
1(n'/20 + x < 0) ¢ ( v

where t, 5(x) = (((n"/20 + x)/2)% + nu2) 2.
® and ¢ the cdf and pdf of N(0,1), resp.

14 /33



The finite-sample distribution of N

n =40, § = 0.05, 1, = 0.05

0.10 015 0.20 0.25 0.30
1 1 L I

0.05
|

0.00
!
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Non-normality??

o Finite-sample distribution is highly non-normal.

@ Oracle property predicts normality (asymptotically).

15/33



The Oracle (fixed-parameter asymptotics)

n=1, tin = n~1/3 (consistent case)
= _
«@ |
-

©w ]
=
b=
|
b=
| A
L=

r T T T T 1

8 G 4 -2 0 2 4
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The Oracle (fixed-parameter asymptotics)

n =10, ttn = n~1/3 (consistent case)
= _
o | .
©w ]
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L=
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The Oracle (fixed-parameter asymptotics)

n =50, ttn = n~1/3 (consistent case)
= _
.

«@ |
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The Oracle (fixed-parameter asymptotics)

n =100, n = n~1/3 (consistent case)
= _
«@ |
©w ]
=
b=
|
b=
| &
L=
r T T T T 1
8 G 4 -2 0 2 4
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The Oracle (fixed-parameter asymptotics)

n = 200, n = n~1/3 (consistent case)
= _
-

«@ |
©w ]
=
b=
|
b=
| ¥
L=

r T T T T 1

8 G 4 -2 0 2 4
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The Oracle (fixed-parameter asymptotics)

n = 500, n = n~1/3 (consistent case)
= _
«@ |
.
©w ]
=
b
|
o
g | j¥
r T T T T T 1
8 G -4 -2 0 2 4

16/33



The Oracle (fixed-parameter asymptotics)

n=1000, p, = n"%/3 (consistent case)

16/33



The Oracle

(fixed-parameter asymptotics)

n = 2000,

ttn = n~1/3 (consistent case)
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The Oracle (fixed-parameter asymptotics)

n = 10°, ttn = n~1/3 (consistent case)
Is the non-normality of the finite-sample distribution really a transient
feature as n — oo as the oracle suggests?

o:)‘
@
S
S
=]
™
=
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The Oracle (fixed-parameter asymptotics)

n = 10°, tin = n~1/3 (consistent case)
Is the non-normality of the finite-sample distribution really a transient
feature as n — oo as the oracle suggests?

Need to look at moving-parameter asymptotics! J

02
!

0o
L
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Moving-parameter asymptotics?

Let underlying parameter 8 depend on sample size:

Let 0, € R be arbitrary, subject only to
0n/n — ¢ € RU{—00,00} and n'/?, — v € RU {—o00, c0}.

This is not really a restriction since every subsequence of 6,
contains a further subsequence with these properties. Also note
that ¢ # 0 implies v = +o0.

17/33



Moving-parameter asymptotics 2

@ Consistent case.

Let s, — 0 and n*/2p, — co. Suppose the true parameter 6, € R
satisfies 6,/u, — ¢ € RU{—00,00} and n'/?0, — v € RU {—00, 00}.
Then F, 4, converges weakly to

@ If 0 <|(] <oo: pointmass at —v

o If [(| = o0: (. + p/6) where n'/2u2 — p.
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@ Consistent case.

Let s, — 0 and n*/2p, — co. Suppose the true parameter 6, € R
satisfies 6,/u, — ¢ € RU{—00,00} and n'/?0, — v € RU {—00, 00}.
Then F, 4, converges weakly to

@ If 0 <|(] <oo: pointmass at —v

o If [(| = o0: (. + p/6) where n'/2u2 — p.

Depending on (, v and p, three possible limits arise.

@ Distribution collapses at a point.
@ Total mass escapes to +oo.

e Limit distribution is normal (possibly shifted!).

Non-normality persists!! )

18/33



Illustration: collapsing to pointmass

Example 1: n =1, (=0,v=2 (un=n""3 6,=2n"1?)
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Illustration: collapsing to pointmass
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Illustration: collapsing to pointmass

Example 1: n=5000, (=0,v=2 (un=n"3 6,=2n"1?)
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lllustration: mass escaping to —oo

Example 2: n =1, (=1l v=0c0 (un=n""% 0,=n"""%
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lllustration: mass escaping to —oo

Example 2: n = 50, (=1L v=00 (un=n""3 0,=n"15
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lllustration: mass escaping to —oo
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lllustration: mass escaping to —oo

0[

Example 2: n = 500, (=1 v=0c0 (un=n""3 0,=n"""%
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lllustration: mass escaping to —oo

Example 2: n=1000, (=1, v=00 (un=n"3 0,=n"1")
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lllustration: mass escaping to —oo

Example 2: n=2000, (=1, v=00 (un=n"3 0,=n"1")
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lllustration: mass escaping to —oo

Example 2: n =5000, (=1, v=00 (un=n"3 0,=n"1")
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lllustration: mass escaping to —oo

Example 2: n = 104, (=1L v=00 (un=n"3 0,=n"15)
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Moving-parameter asymptotics 2  (cont'd)

@ Consistent case.

Let p, — 0 and n/2pu, — co. Suppose the true parameter 6, € R
satisfies 0,/u, — ¢ € RU{—o00,00} and n'/26, — v € RU {—00, c0}.
Then F, 4, converges weakly to

@ If 0 <|¢|] <oo: pointmass at —v

o If || = oc: ®(. + p/0) where n'/22 — p.

Zou (pointwise case) 7
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Moving-parameter asymptotics 2  (cont'd)

@ Consistent case.

Let p, — 0 and n/2pu, — co. Suppose the true parameter 6, € R
satisfies 0,/u, — ¢ € RU{—o00,00} and n'/26, — v € RU {—00, c0}.
Then F, 4, converges weakly to

@ If 0 <|¢|] <oo: pointmass at —v

o If || = oc: ®(. + p/0) where n'/22 — p.

Zou (pointwise case) 7 Above theorem implies that

[ Ux=0) §=0 ( = C,v=0)
ol = { gt o) 020 ( = 10— o0

Remark: p=0 <= n'/*u, — 0.
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Uniform consistency and alternative scaling =

o Adaptive LASSO has in a uniform sense a rate of convergence
that is slower than n'/2.
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Uniform consistency and alternative scaling =

@ Adaptive LASSO has in a uniform sense a rate of convergence
that is slower than n'/2.

@ The “correct” uniform rate can be shown to be p!.

@ In a moving-parameter framework, the asymptotic distribution
of 1171 (Aa — 0) collapses to pointmass.

Let s, — 0 and n/2p, — co. Suppose the true parameter 6, € R
satisfies 0,/p, — ¢ € RU{—00,00}. Then
G, = P(u; 1 (Oa. — 0) < x) converges weakly to

o If |¢] < 1: pointmass at —(
o If 1 <|(|] <oo:  pointmass at —1/¢
o If || = o0: pointmass at 0
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Moving parameter asymptotic 2 “conclusion”

Above theorems reflect that

Oy — 0 = “BIAS” + “FLUCTUATION”
where

@ “BIAS” is O(n~%/?) in a pointwise sense but is only O(u,) in a
uniform sense, whereas

@ “FLUCTUATION” is always of order n=1/2.
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Moving parameter asymptotics *

@ Conservative case.

Let p, — 0 and n'/?u, — m, 0 < m < co. Suppose the true
parameter 6, € R satisfies n'/20,, — v € RU {—00,00}. Then F, 4,
converges weakly to

o lfrelR
1(v+x > 0) & (—(1/ —x)/2+ V(v +x)/2)7 + m2) +

(v +x<0)o (—(y —x)/2— /(v +x)/2)2 + m2)
o O(x) if |v| = o0,
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@ Conservative case.

Let p, — 0 and n'/?u, — m, 0 < m < co. Suppose the true
parameter 6, € R satisfies n'/20,, — v € RU {—00,00}. Then F, 4,
converges weakly to

o lfrekR
(v +x>0)0 (_(y —x)/2+ (v +x)/2)2 + m2) n

1(v +x<0) o (—(y —x)/2 = /(v +x)/2)2 + m2)

o O(x) if |v| = oo,

Note: Asymptotic distributions are the same as finite-sample
distribution, except that n'/26, and n'/?, have settled down to
their limiting values, capturing finite-sample behavior very well.
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Moving parameter asymptotics *  (cont'd)
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Moving parameter asymptotics *  (cont'd)

2

@ Ox_ is now uniformly n'/2_consistent.
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Moving parameter asymptotics *  (cont'd)

@ Ox_ is now uniformly n'/2_consistent.

o Fixed-parameter asymptotics: previous theorem implies that
Fno(x) converges to

o 1(x>0)® (3+/(3)2+m?) +1(x<0)® (£ —/(3)2+m?)
if0=0 (v=0)
o ®(x) if6#0 (Jv| = o0)
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Moving parameter asymptotics *  (cont'd)

2

@ Ox_ is now uniformly n'/2_consistent.

o Fixed-parameter asymptotics: previous theorem implies that
Fno(x) converges to

o 1(x>0)® (3+/(3)2+m?) +1(x<0)® (£ —/(3)2+m?)
if0=0 (v=0)
o ®(x) if6#0 (Jv| = o0)

o Fixed-parameter asymptotic distributions are also non-normal,
capturing behavior the finite-sample distributions to some
extent (no oracle here).
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Other PLSEs

Results are similar for hard-thresholding, soft-thresholding
(LASSO), and SCAD estimator. (Potscher & Leeb, 2007).

@ Identical results in terms of (uniform) consistency.

@ Analogous (asymptotic) distributional results.

26 /33



Confidence sets based on the adaptive LASSO

Let Cn — [é\AL — dap, é\AL + bn]

The infimal coverage probability ein]% P,,,(;(HAAL € C,) is given by
€

(02 (an = pr)) = @ (0"/%((an = b2)/2 = /(@0 + b:) /27 + 1)
if a, < b, and

& (n/2((an = bn)/2+ /(@0 + B) /2P + 1)) = O("/2(=by + 1))

if a, > bp.

Symmetric intervals (a, = bp) can be shown to be the shortest
ones for a given infimal coverage probability 6.
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Confidence sets based on PLSEs

@ For each n € N, we have
an,H > anaL > anL > anows for agiven 6 >0
e Asymptotically, the following holds.
© Conservative case. All quantities are of the same order n~1/2.
dn,H ™~ dnaL ™~ dp, L ™~ doLs

@ Consistent case. a, H,an, and a, 4 are one order of
magnitude larger than a, os.

1/2
aH/aOLS ~ aAL/aOLS ~ aL/aOLS ~n / Hp — OO
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Confidence sets based on PLSEs  (cont'd)

Plot of n'/2a, against nl/zu,, for 6 = 0.95.
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Simulations - remove orthogonality assumption

k=4, n=200, 6 =(3,1.5,0,0) +2/n*/2(0,0,1,1)", X'X = nQ with
Q;; = 0.5/"=J1, 1000 simulations

o 11y = n~1/3
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Simulations - remove orthogonality assumption

k=4, n=200, 6 =(3,1.5,0,0) +2/n*/2(0,0,1,1)", X'X = nQ with
Q;; = 0.5/"=J1, 1000 simulations

@ Choose pu, through cross-validation.
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Estimation of the cdf of n'/2(4, — 0)?

Let F, 4 be the distribution function of n'/2(Aa — 6).

Let yn — 0 and n*/2p, — m with 0 < m < co. Then every
consistent estimator F,(t) of F,(t) satisfies

1
2

lim  sup P,,,e(ﬁn(t)—Fn,e(t)‘ > 5) >

=00 9| <c/nt/2

for each ¢ < (®(t + m) — ®(t — m))/2 and each ¢ > |t].

In particular, not uniformly consistent estimator for F, y(t) exisits!

v

Analogous result for cdf under p~!-scaling.
Proof rests on Pdtscher & Leeb (2006).
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Estimation of the cdf of n'/2(4, — 0)?

Finite-sample result:

Let 41, — 0 and /21, — m with 0 < m < co. Then every estimator
Fa(t) of Fne(t) satisfies

sup  Pno (
10]<c/nt/2

N =

,‘A:,,(t)—F,,)o(t)‘ > g) >

for each ¢ < (®(t + m) — ®(t — m))/2, for each ¢ > |t| and each
sample size n. Hence

liminf inf  sup Ppyg (
=00 Fo(t) |0|<c/nt/?

,,(t)—F,,ﬂ(t)’ > 5) — 1

for each e < (®(t + m) — ®(t — m))/2 and each ¢ > |t| where the
infimum extend over all estimators F,(t).
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Conclusions

@ The finite-sample distribution of the adaptive LASSO
estimator and other PLSEs are highly non-normal.

@ Non-normality persists in large samples. This can be seen
through a “moving-parameter” asymptotic framework.

o Fixed-parameter asymptotics (as underlying the oracle-proper-
ty) paint a misleading picture of the performance of the
estimator due to the non-uniformity of these results.

e Confidence intervals in the consistent case are larger by one
order of magnitude compared to the unpenalized estimator.

@ The distribution function of the adaptive LASSO estimator
and other PLSEs cannot be estimated in a uniformly
consistent manner.

@ NOT a critisim on PLSEs per se, but relying on
fixed-parameter asymptotics in this context is dangerous.
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