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Penalized LS (ML) Estimators

Linear regression model

y = θ1 x.1 + . . . θk x.k + ε

response y ∈ Rn (known)

regressors x.i ∈ Rn, 1 ≤ i ≤ k (known)

errors ε ∈ Rn (unknown)

parameter vector θ = (θ1, . . . , θk)
′ ∈ Rk (unknown)

A penalized least-squares (LS) estimator θ̂ for θ is given by

θ̂ = arg min
θ∈Rk

‖y − Xθ‖2︸ ︷︷ ︸
likelihood or LS -part

+ λn p(θ)︸ ︷︷ ︸
penalty

λn > 0 is a tuning parameter (λn = 0 corresponds to unpenalized/
ordinary LS), X = [x.1, . . . , x.k ] the n × k regression matrix.
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Penalized LS (ML) Estimators (cont’d)

Clearly, different penalties give rise to different estimators.

General class of Bridge-estimators (Frank & Friedman, 1993)
using lγ - type penalties

λnp(θ) = λn

k∑
i=1

|θi |γ

γ = 2: Ridge-estimator (Hoerl & Kennard, 1970)
γ = 1: LASSO (Tibshirani, 1996).

Hard- and soft-thresholding estimators.

Smoothly clipped absolute deviation (SCAD) estimator (Fan
& Li, 2001).

Adaptive LASSO estimator (Zou, 2006).
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Relationship to classical PMS-estimators

Brigde-estimators satisfy

min
θ∈Rk

‖y − Xθ‖2 + λn

k∑
i=1

|θi |γ (0 < γ < ∞)

For γ → 0, get

min
θ∈Rk

‖y − Xθ‖2 + λn card{i : θi 6= 0}

which yields a minimum Cp-type procedure such as AIC and BIC.
(lγ-type penalty with “γ = 0”)
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Relationship to classical PMS-estimators (cont’d)

For “γ = 0” procedures are computationally expensive.

For γ > 0 (Bridge) estimators are more computationally
tractable, especially for γ ≥ 1 (convex objective function).

For γ ≤ 1, estimators perform model selection

Pn,θ(θ̂i = 0) > 0 if θi = 0.

Same for SCAD, hard- and soft-thresholding. Phenomenon is
more pronounced for smaller γ.

γ = 1 (LASSO and adaptive LASSO) as compromise between
the wish to detect zeros and computational simplicity. (SCAD
leads to a non-convex optimization problem.)

The PLS estimator(s) we treat in the following can be viewed to
simultaneously perform model selection and parameter estimation.
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Some terminology (model selection)

Consistent model selection – Zero coefficients are found with
asymptotic probability equal to 1.

lim
n→∞

Pn,θ(θ̂i = 0) = 1 whenever θi = 0 (1 ≤ i ≤ k)

lim
n→∞

Pn,θ(θ̂i = 0) = 0 whenever θi 6= 0 (1 ≤ i ≤ k)

An estimator performing consistent model selection is said to
have the sparsity property.

Conservative model selection – Zero coefficients are found
with asymptotic probability less than 1.

lim
n→∞

Pn,θ(θ̂i = 0) < 1 whenever θi = 0 (1 ≤ i ≤ k)

lim
n→∞

Pn,θ(θ̂i = 0) = 0 whenever θi 6= 0 (1 ≤ i ≤ k)
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Some terminology (model selection) (cont’d)

Consistent vs. conservative model selection can in our context
be driven by the asymptotic behavior of the tuning parameters
λn. Also called “sparsely” vs. “non-sparsely” tuned
procedures.

Oracle property – Asymptotic distribution coincides with the
one of the infeasible unpenalized estimator using the true zero
restrictions (with VC-matrix Σθ).

n1/2(θ̂ − θ) → N(0,Σθ)

Seems to suggest that θ̂ performs as well as if we would know
the true zero coefficients of θ.
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Literature on distributional properties of PLSEs

Knight & Fu, 2000. Moving-parameter asymptotics for
non-sparsely tuned LASSO and Bridge estimators in general.

Fan & Li, 2001. Fixed-parameter asymptotics for SCAD.

Zou, 2006. Fixed-parameter asymptotics for sparsely-tuned
LASSO and adaptive LASSO.

Additional papers establishing the oracle property for
sparsely-tuned PLSEs and related estimators within a
fixed-parameter framework.

Fan & Li (2002, 2004), Bunea (2004), Bunea & McKeague (2005),

Wang & Leng (2007), Li & Liang (2007), Wang, G. Li, & Tsai

(2007), Zhang & Li (2007), Wang, R. Li, & Tsai (2007), Zou &

Yuan (2008), Zou & Li (2008), Johnson, Lin, & Zeng (2008), . . .
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Literature on distributional properties of PLSEs (cont’d)

This talk is based on

Pötscher & Leeb, 2007. Finite-sample distribution,
moving-parameter asymptotics for hard-thresholding, LASSO,
and SCAD. Impossibility result for the estimation of the cdf.

Pötscher & Schneider, 2007. Analogous results for the
adaptive LASSO.

Pötscher & Schneider, 2008. Finite-sample and asymptotic
coverage probabilities of confidence sets for hard-thresholing,
LASSO, ad. LASSO.
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Definition of the (adaptive) LASSO estimator θ̂AL

LASSO estimator (Tibshirani, 1996)

θ̂L = arg min
θ∈Rk

‖y − Xθ‖2 + 2nµn

k∑
i=1

|θi | µn > 0

Tuning parameter λn = 2nµn. For k = 1:
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Definition of the (adaptive) LASSO estimator θ̂AL

adaptive LASSO estimator (Zou, 2006)

θ̂AL = arg min
θ∈Rk

‖y − Xθ‖2 + 2nµ2
n

k∑
i=1

|θi |/|θ̂OLS,j | µn > 0

Tuning parameter λn = 2nµ2
n. For k = 1:
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Two regimes for consistency

In terms of model selection consistency, two possible regimes for
the tuning parameter µn arise.

1 The case µn → 0 and n1/2µn → m, 0 ≤ m < ∞, corresponds
to conservative model selection (non-sparsely tuned).

2 The case µn → 0 and n1/2µn →∞ corresponds to consistent
model selection (sparsely tuned).

Remark (estimation consistency).

If µn 6→ 0, then θ̂AL is not even consistent for θ. Therefore,
µn → 0 is a “basic condition”.

We will focus on 2 here, also discuss 1 .
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Asymptotics in the consistent case

Zou (2006) “oracle property”

Suppose X ′X/n → Q > 0 and εt
iid∼ (0, σ2).

If µn → 0 and n1/2µn →∞ and additionally n1/4µn → 0, then

n1/2(θ̂AL − θ) → N(0,Σθ),

where Σθ is the asymptotic VC-matrix of the restricted
LS-estimator based on the unknown true zero restrictions.
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Questions

Does this theorem provide meaningful insights? Finite-sample
distribution?

Asymptotic behavior under regime 1 ?

What if condition n1/4µn → 0 is dropped in 2 ?

Pointwise vs. uniform consistency rates?

Properties of confidence intervals?

Estimability of finite-sample distribution?

We answer these questions within a normal linear regression model
and address the non-orthogonal case in a simulation study.
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Explicit solution in a simple model

X is non-stochastic (n × k), rk(X ) = k.

ε ∼ Nn(0, σ2In)

For the theoretical analysis, assume that σ2 is known and that
X ′X is diagonal, in particular X ′X = nIk .

Remove these assumptions for simulation results concerning
the finite-sample distribution.

Wlog consider Gaussian location model y1, . . . , yn
iid∼ N(θ, 1).

Then θ̂OLS = ȳ with θ̂OLS ∼ N(θ, 1/n) and

θ̂AL =

{
0 if |ȳ | ≤ µn

ȳ − µ2
n/ȳ if |ȳ | > µn

Selects between restricted {N(0, 1)} and full model {N(θ, 1) : θ ∈ R}
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The finite-sample distribution of θ̂AL

The cdf Fn,θ(x) = Pn,θ(n
1/2(θ̂AL − θ) ≤ x) of θ̂AL is given by

1(n1/2θ + x ≥ 0) Φ
(
z

(2)
n,θ (x)

)
+ 1(n1/2θ + x < 0) Φ

(
z

(1)
n,θ (x)

)
.

z
(2)
n,θ(x) and z

(1)
n,θ(x) are −(n1/2θ − x)/2±

√
((n1/2θ + x)/2)2 + nµ2

n.

dFn,θ is given by

{ Φ(n1/2(−θ + µn)) − Φ(n1/2(−θ − µn)) } dδ−n1/2θ(x) +

0.5× {1(n1/2θ + x > 0) φ
(
z

(2)
n,θ (x)

)
(1 + tn,θ(x)) +

1(n1/2θ + x < 0) φ
(
z

(1)
n,θ (x)

)
(1− tn,θ(x)) } dx

where tn,θ(x) :=
(
((n1/2θ + x)/2)2 + nµ2

n

)−1/2
.

Φ and φ the cdf and pdf of N(0, 1), resp.
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The finite-sample distribution of θ̂AL

n = 40, θ = 0.05, µn = 0.05
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Non-normality??

Finite-sample distribution is highly non-normal.

Oracle property predicts normality (asymptotically).
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The Oracle (fixed-parameter asymptotics)

n = 1, µn = n−1/3 (consistent case)
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The Oracle (fixed-parameter asymptotics)
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Is the non-normality of the finite-sample distribution really a transient
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Need to look at moving-parameter asymptotics!
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Moving-parameter asymptotics?

Let underlying parameter θ depend on sample size:

Let θn ∈ R be arbitrary, subject only to
θn/µn → ζ ∈ R ∪ {−∞,∞} and n1/2θn → ν ∈ R ∪ {−∞,∞}.

This is not really a restriction since every subsequence of θn

contains a further subsequence with these properties. Also note
that ζ 6= 0 implies ν = ±∞.
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Moving-parameter asymptotics 2

2 Consistent case.

Let µn → 0 and n1/2µn →∞. Suppose the true parameter θn ∈ R
satisfies θn/µn → ζ ∈ R ∪ {−∞,∞} and n1/2θn → ν ∈ R ∪ {−∞,∞}.
Then Fn,θn converges weakly to

If 0 ≤ |ζ| < ∞: pointmass at −ν

If |ζ| = ∞: Φ(. + ρ/θ) where n1/2µ2
n → ρ.

Depending on ζ, ν and ρ, three possible limits arise.

Distribution collapses at a point.

Total mass escapes to ±∞.

Limit distribution is normal (possibly shifted!).

Non-normality persists!!
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Illustration: collapsing to pointmass

Example 1: n = 1, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Illustration: collapsing to pointmass
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Illustration: collapsing to pointmass

Example 1: n = 5× 104, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Illustration: mass escaping to −∞

Example 2: n = 1, ζ = 1, ν = ∞ (µn = n−1/5, θn = n−1/5)
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Moving-parameter asymptotics 2 (cont’d)

2 Consistent case.

Let µn → 0 and n1/2µn →∞. Suppose the true parameter θn ∈ R
satisfies θn/µn → ζ ∈ R ∪ {−∞,∞} and n1/2θn → ν ∈ R ∪ {−∞,∞}.
Then Fn,θn converges weakly to

If 0 ≤ |ζ| < ∞: pointmass at −ν

If |ζ| = ∞: Φ(. + ρ/θ) where n1/2µ2
n → ρ.

Zou (pointwise case) ? Above theorem implies that

Fn,θ(x) →
{

1(x ≥ 0) θ = 0 ( =⇒ ζ, ν = 0)
Φ(x + ρ/θ) θ 6= 0 ( =⇒ |ζ| = ∞)

Remark: ρ = 0 ⇐⇒ n1/4µn → 0.
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Uniform consistency and alternative scaling 2

Adaptive LASSO has in a uniform sense a rate of convergence
that is slower than n1/2.

The “correct” uniform rate can be shown to be µ−1
n .

In a moving-parameter framework, the asymptotic distribution
of µ−1

n (θ̂AL − θ) collapses to pointmass.

Let µn → 0 and n1/2µn →∞. Suppose the true parameter θn ∈ R
satisfies θn/µn → ζ ∈ R ∪ {−∞,∞}. Then
Gn,θn := P(µ−1

n (θ̂AL − θ) ≤ x) converges weakly to

If |ζ| < 1: pointmass at −ζ

If 1 ≤ |ζ| < ∞: pointmass at −1/ζ

If |ζ| = ∞: pointmass at 0
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Moving parameter asymptotic 2 “conclusion”

Above theorems reflect that

θ̂AL − θ = “bias” + “fluctuation”

where

“bias” is O(n−1/2) in a pointwise sense but is only O(µn) in a
uniform sense, whereas

“fluctuation” is always of order n−1/2.
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Moving parameter asymptotics 1

1 Conservative case.

Let µn → 0 and n1/2µn → m, 0 ≤ m < ∞. Suppose the true
parameter θn ∈ R satisfies n1/2θn → ν ∈ R ∪ {−∞,∞}. Then Fn,θn

converges weakly to

If ν ∈ R
1(ν + x ≥ 0) Φ

(
−(ν − x)/2 +

√
((ν + x)/2)2 + m2

)
+

1(ν + x < 0) Φ
(
−(ν − x)/2−

√
((ν + x)/2)2 + m2

)
Φ(x) if |ν| = ∞.

Note: Asymptotic distributions are the same as finite-sample
distribution, except that n1/2θn and n1/2µn have settled down to
their limiting values, capturing finite-sample behavior very well.
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Moving parameter asymptotics 1 (cont’d)

θ̂AL is now uniformly n1/2-consistent.

Fixed-parameter asymptotics: previous theorem implies that
Fn,θ(x) converges to

1(x≥0) Φ
(

x
2 +

√
( x

2 )2+m2
)

+ 1(x <0) Φ
(

x
2−

√
( x

2 )2+m2
)

if θ=0 (ν = 0)

Φ(x) if θ 6=0 (|ν| = ∞)

Fixed-parameter asymptotic distributions are also non-normal,
capturing behavior the finite-sample distributions to some
extent (no oracle here).
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Other PLSEs

Results are similar for hard-thresholding, soft-thresholding
(LASSO), and SCAD estimator. (Pötscher & Leeb, 2007).

Identical results in terms of (uniform) consistency.

Analogous (asymptotic) distributional results.

26 / 33



Confidence sets based on the adaptive LASSO

Let Cn = [θ̂AL − an, θ̂AL + bn].

The infimal coverage probability inf
θ∈R

Pn,θ(θ̂AL ∈ Cn) is given by

Φ(n1/2(an − µn))− Φ
(
n1/2((an − bn)/2−

√
((an + bn)/2)2 + µ2

n

)
if an ≤ bn and

Φ
(
n1/2((an − bn)/2 +

√
((an + bn)/2)2 + µ2

n)
)
− Φ(n1/2(−bn + µn))

if an > bn.

Symmetric intervals (an = bn) can be shown to be the shortest
ones for a given infimal coverage probability δ.
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Confidence sets based on PLSEs

For each n ∈ N, we have

an,H > an,AL > an,L > an,OLS for a given δ > 0

Asymptotically, the following holds.

1 Conservative case. All quantities are of the same order n−1/2.

an,H ∼ an,AL ∼ an,L ∼ aOLS

2 Consistent case. an,H , an,L, and an,A are one order of
magnitude larger than an,OLS.

aH/aOLS ∼ aAL/aOLS ∼ aL/aOLS ∼ n1/2µn →∞
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Confidence sets based on PLSEs (cont’d)

Plot of n1/2an against n1/2µn for δ = 0.95.
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

µn = n−1/3

θ1
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Estimation of the cdf of n1/2(θ̂AL − θ)?

Let Fn,θ be the distribution function of n1/2(θ̂AL − θ).

Let µn → 0 and n1/2µn → m with 0 ≤ m ≤ ∞. Then every
consistent estimator F̂n(t) of Fn,θ(t) satisfies

lim
n→∞

sup
|θ|<c/n1/2

Pn,θ

(∣∣∣F̂n(t)− Fn,θ(t)
∣∣∣ > ε

)
≥ 1

2

for each ε < (Φ(t + m)− Φ(t −m))/2 and each c > |t|.

In particular, not uniformly consistent estimator for Fn,θ(t) exisits!

Analogous result for cdf under µ−1-scaling.

Proof rests on Pötscher & Leeb (2006).
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Estimation of the cdf of n1/2(θ̂AL − θ)?

Finite-sample result:

Let µn → 0 and n1/2µn → m with 0 ≤ m ≤ ∞. Then every estimator
F̂n(t) of Fn,θ(t) satisfies

sup
|θ|<c/n1/2

Pn,θ

(∣∣∣F̂n(t)− Fn,θ(t)
∣∣∣ > ε

)
≥ 1

2

for each ε < (Φ(t + m)− Φ(t −m))/2, for each c > |t| and each
sample size n. Hence

lim inf
n→∞

inf
F̂n(t)

sup
|θ|<c/n1/2

Pn,θ

(∣∣∣F̂n(t)− Fn,θ(t)
∣∣∣ > ε

)
= 1

for each ε < (Φ(t + m)− Φ(t −m))/2 and each c > |t| where the
infimum extend over all estimators F̂n(t).
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Conclusions

The finite-sample distribution of the adaptive LASSO
estimator and other PLSEs are highly non-normal.

Non-normality persists in large samples. This can be seen
through a “moving-parameter” asymptotic framework.

Fixed-parameter asymptotics (as underlying the oracle-proper-
ty) paint a misleading picture of the performance of the
estimator due to the non-uniformity of these results.

Confidence intervals in the consistent case are larger by one
order of magnitude compared to the unpenalized estimator.

The distribution function of the adaptive LASSO estimator
and other PLSEs cannot be estimated in a uniformly
consistent manner.

NOT a critisim on PLSEs per se, but relying on
fixed-parameter asymptotics in this context is dangerous.
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