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We analyse the term structure of interest rates extracted from US
Treasury STRIPS data. There is a potential interest from a scientific
and economic point of view to look at short and long term bonds
simultaneously. In terms of modelling this means to look at smooth
functions over time describing the observed term structure. This is
the approach pursued in this paper, where penalized spline fitting
is employed as smoothing technique. Smoothing is thereby carried
out with the respect to both, calendar time and time left to matu-
rity. While the first reveals long term trends, smoothing with respect
to the time left to maturity can conceptionally be interpreted as in-
terpolation. Since term structure models have implications for both,
the time series and cross-section dimension of yields, estimation tech-
niques involving both dimensions simultaneously are preferred over
one-dimensional techniques. Numerical parsimony is applied to fit
the large data set and smoothing parameter selection is pursued by
building up parallels to linear mixed models.
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1 Introduction

Modeling the term structure of interest rates has become an active
field of research in finance in the last years. Based on historical devel-
opments, a primary area of application is pricing and hedging of dif-
ferent contracts and options written on bonds. Numerous approaches
have been proposed concerning the underlying time structure and the
stochastic framework of term structure models. Furthermore, dif-
ferent perspectives on term structure modeling have stimulated the
development of an enormous variety of models and methods used to
study them.

Generally, term structure models can be divided into two main cate-
gories: equilibrium and arbitrage-free’ models. Within the first cat-
egory a state variable that determines the term structure is identi-
fied and both, the yield curve and the dynamic behaviour of interest
rates are determined endogenously. Therefore, one has to estimate
or choose parameter values to approximate the average yield curve
as well as the short rate. Pioneering models of this kind are Vasicek
(1977) and Cox, Ingersoll & Ross (1985). In the second category,
the currently observed yield curve is used as an input to model the
changes of the term structure over time. The basic model here is
proposed in Ho & Lee (1986). Their approach differs from Vasicek
in so far as it contains additional time dependent adjustment param-
eters to calibrate the initial yield curve with the goal to match the
observed yield curve exactly (see Backus, Foresi & Zin, 1998).
Despite the widespread use and application of these “theoretical”
models, the extraction or estimation of the complete term structure
of interest rates from empirically observed bond prices is of less com-
mon use. In statistical terms this corresponds to an exploratory anal-
ysis of the term structure. In practice it is not possible to obtain the
values of the term structure for all horizons since their number ex-

ceeds the number of available bonds. To overcome this problem one

!Note that both kinds of models are constructed under the assumption of no-
arbitrage, therefore the term “arbitrage-free” may be a little misleading.



may use smoothing as an interpolation technique. This is the task
of a different stream in the term structure literature and emphasis of
the following paper.

In recent work, Ioannides (2003) compares seven estimation methods
for the term structure applied to UK data. The methods used in
his paper can roughly be categorized as (a) parametric and (b) non-
parametric. For the first, a low dimensional basis is used for fitting
the term structure to observed data. This approach traces back to
McCulloch (1971) and is further explored and discussed for instance
in Chambers, Carleton & Waldman (1984) or Nelson & Siegel (1987).
The latter paper, in contrast to McCulloch, uses a parsimonious para-
metric function, with only a small number of unknown parameters,
that is flexible enough to represent the shapes generally associated
with yield curves (see also Steeley, 1990). In nonparametric estima-
tion, a restrictive parametric term structure modelling is abandoned
and replaced by unspecified, unknown functions. The idea is that
the functional form should be estimated from the data and not pre-
specified in advance. This approach was pursued in Fisher, Nychka &
Zervos (1995) and is further employed in this paper. Since the term
structure has implications both for the cross section and time series
dimension of yields, we use a two-dimensional smoothing that leads
to a more efficient estimation.

Nonparametric fitting in general has seen a considerable amount of
research in the last two decades. Nonetheless, it has been just re-
cently that nonparametric techniques have found their way to term
structure modeling. Linton, Mammen, Nielsen & Tanggaard (2000)
and Jeffrey, Linton & Nguyen (2001) concentrate on kernel smooth-
ing while Jarrow, Ruppert & Yu (2004) employ penalized spline es-
timation (P-spline). Comparing the two fitting routines, P-spline
smoothing features a considerably reduced numerical effort. This is
an important issue, in particular if the number of observations is
large, about 125.000 in our application. In P-spline smoothing the

unknown term structure is replaced by a high dimensional basis (30-



200 dimensional) which is then fitted in a penalized manner, that is
coefficients are shrunk towards zero. This guarantees a smooth fit by
prevailing all necessary structure in the function.

The term structure thereby depends on two components, the time left
to maturity m and the calendar time ¢t. We take this into account
by denoting the term structure function as g(¢,m). To explore the
term structure at a given time-point, one can fix t at some specific
value tg, say, and fit g(tp,m) as a function of m only. This is the
approach used in the above cited papers. Fixing now the time left to
maturity m to mg, say, the development of g(t, mg) for a given my is
traditionally understood as a stochastic process. This is useful if the
focus is on prediction of the yield based on data (and history) avail-
able at the current data point. From an exploratory point of view
one might however also be interested in describing or visualising the
smooth trend in g(¢,mg). This is what could be interpreted as long
term development, which is visual from the raw data in crude way
only. In previous applied work this approach is mostly done for the
short-rate, since it can be seen as an important state variable for the
term structure (see e.g. Chan, Karolyi, Longstaff & Sanders, 1992).
Surprisingly, it has been only quite recently that papers in both
streams of the term structure literature, i.e. theoretical modeling
and smoothing techniques, try to model the complete panel of yield
data simultaneously (see e.g Brandt & Yaron, 2003 or Diebold &
Li, 2003). In this paper we combine the two approaches by fitting
g(t,m) simultaneously as a function of both covariates, time ¢ and
time left to maturity m. This means we are using smoothing in two
ways. First as interpolation tool for showing g(t,m) for a fixed time
as function of m. Secondly with smoothing we visualise long term
trends in g(¢,m) taken as function of time for fixed m. This allows to
explore the term structure and its temporal variation simultaneously.
There are two challenges arising in this modeling exercise. First, one
is faced with additional numerical effort, as the dataset has more

than 126000 points. Using the link of penalized splines to the linear



mixed models and thus fitting our data with standard linear mixed
models software makes it possible to overcome this problem. The sec-
ond challenge occurs since bond prices are correlated over time which
has to be taken into account. Ignoring correlation among observa-
tions typically leads to serious undersmoothing, that is overfitting,
as demonstrated in Opsomer, Wang & Yang (2001). Research on
smoothing correlated errors has nearly exclusively discussed univari-
ate or spatial correlation. We here however observe correlation only
along yield price development over time of single bonds. To handle
this problem we offer a simple procedure, based on accounting for
correlation of single yield strips. This means the smoothing parame-
ter is chosen using one-dimensional estimates of correlation structure.
The paper is organized as follows. In Section 2 we describe the data
at hand. Section 3 presents our estimation routine before providing
estimation results in Section 4. A discussion concludes the paper and

an appendix provides technical details.

2 Data

Our investigation is based on daily ask quotations of US Treasury
STRIPS (Separate Trading of Registered Interest and Principal of
Securities). These are securities and synthetic zero-coupon bonds,
which are constructed from coupon bearing Treasury bonds and is-
sued by the US Federal Reserve Bank. The sample runs from July
1998 to July 2003 and contains 107 different US Treasury Strip coupon
securities with maturities from one month to 30 years, a total of
126251 observations. The data are collected on July 11, 2003 using
the Reuters 3000 Xtra information service and include bond prices
with maturity dates from August 2003 to May 2033. Figure 1 shows
the observed time point and maturity pairs. Table 1 shows some spe-
cific properties of the data set. To provide a useful representation,
the daily quotes are summarized in classes of different years to matu-
rity. It should be clear that the average yield curve has an increasing,

concave shape.
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Figure 1: Design of independent covariates time ¢t and maturity m

Maturity Obs Mean St Dev Autocorr
0.0986-0.25 36 1.0064 0.0365 0.0316

0.25-0.5 95 0.9866 0.1062 0.9202
0.5-1 376 1.1212  0.1419 0.9430
1-3 4255 2.5199  1.1757 0.9878
3-6 13882 4.4737 1.3132 0.9938
6-9 14301 5.2139  0.9423 0.9932
9-12 13457 5.4037  0.7329 0.9907

12-15 14655 5.6697  0.5945 0.9882
15-20 24614 5.8301 0.4677 0.9873
20-25 22776 5.8194  0.3920 0.9873
25-30.3616 17894 5.6992  0.3630 0.9863

Table 1: Properties of US Treasury STRIPS Yields

3 Spline Models for the Term Structure

3.1 Bivariate spline smoothing

We denote with P ,, the price of a zero bond at time point ¢ with

m years left to maturity. We consider the continuously compounded



yield obtained as

B log(Prm)
Ytom = — .
m

Let us first assume that we are interested in modelling the term struc-
ture of a zero bond at a particular time tg, say. This is done by

employing a nonparametric function such that

Ytg,m = Gitg (m) + €to,m> (1)

where gy, (m) is the term structure as the function of time and €,
is the residual, for simplicity assumed to be normal and having a
constant variance throughout the fit. Variance heterogeneity can be
taken into account e.g. by weighting observations, which is not fur-
ther explored in this paper. For prediction intervals produced later
we give up the assumption of variance homogeneity. Estimation of
gt,(m) is done using penalized spline smoothing (P-spline, see Eilers

& Marx, 1996). We therefore replace g4, (m) by the parametric form
Gt (m) = XmBm + Zmbm, (2)

where X, is a low dimensional basis in m (e.g. X,, = [1,m]) and
Zm in contrast is a high dimensional basis, linearly independent of
X,. A convenient choice for Z, are truncated polynomials, e.g.
Zm = [(m—p1)4,...,(m— pg)+], where (.)+ gives the positive part,
that is (x)4 equals z, if x is positive and zero otherwise. The knots
i, cover the support of m in some equidistant or appropriately cho-
sen way and the dimension k is chosen generously, i.e between 30 and
100. In principle model (2) is a parametric model, but due to the
large dimension of the parameters standard parametric fitting would
show unsatisfactory behaviour and estimates would be highly variable
leading to a wiggled curve estimate of g, (m). Therefore, coefficients
b, need to be penalized in a ridge regression manner. That is the
likelihood is maximized subject to the penalty constant ambaDmbm,
with a,, as penalty parameter and D,, as some penalty matrix. Us-

ing truncated polynomials for Z,, a convenient choice for D,, is the



identity matrix (see also Ruppert, Wand & Carroll, 2003 for more
justification for this choice).

The P-spline fitting can be easily generalized to accommodate bivari-
ate smoothing as well. We consider now g,(m) in (1) as a function
of both, time and years left to maturity, so that model (1) generalizes

to

Ytm = g(t,m) + €m. (3)

For estimation we again replace g(t,m) in a high dimensional fashion.
A natural extension from one dimensional smoothing towards two
dimensional is to use a tensor product for the corresponding one

dimensional bases, i.e
g(t,m) = (Xt, Zt) ® (Xm, Zm)9

Here X} is a low dimensional basis in time ¢ and Z; is the high dimen-
sional supplement like above. For notational simplicity we rearrange

the basis matrix to
C = [Xt ® XmuXt ® Zm7 Zt ® Xmu Zt & Zm]7

with 6 decomposing to (3, bm, b, be). The different components in C
and 6 capture different aspects of the function. Coeflicient 3 is the
overall parametric fit, b,, models the dependence on maturity, while
by mirrors the temporal variation. Finally, b, captures the interactive
influence of t and m. The disadvantage of tensor product matrices
is that their dimension increases rapidly. For instance if Z; and Z,,
are 30 dimensional, say, Z; ® Z,, is 900 dimensional, which is at the
limit of numerical applicability when it comes to matrix inversion. It
is therefore advisable to replace the last component in C' by Z. =
Zt ® Zm, where Zt and Zm are of lower dimension.

Denoting now with Y the n-dimensional vector of observations ¥,

we write the penalized likelihood to be maximized as

1 1 1 1
—5 (V= coOr(y —co) — Eatbetbt — §ambﬁDmbm - EacbcTchc



or, jointly:
1 T L7
—§(Y —CO) (Y —(C0) — 59 D(ay, ctm, )0,

where Y = (ypm 1t =1,....,Tym = 1,..., M) and a4, oy, o, are
the penalty parameters for the corresponding coefficients.

Penalized Spline Smoothing shows interesting links to linear Mixed
Models as generally discussed in Wand (2003). This becomes obvious
if the penalty is comprehended as ”a priori” distribution for the spline
coefficients, that is we assume

bm ~ N(0,06%,D,.), by ~ N(0,02D;), b. ~ N(0,02D_),

with superscript — denotes the generalized inverse here. The smooth-
ing parameter can now be written as variance ratio in the sense
am = 02 /a2, for instance, and the log-likelihood based on the mixed

model results to

Y - Xp)'V-(Y — XB)

2
0¢

21(B3, A, g, e, 02) = —log(a2"|V|) — (4)
with X = X; ® X,,, and covariance matrix V = I, + CD~C7T with
D = diag(0, ay Dy, Dy, e D). The fitted values of Y with pre-
dicted values for the random effects take now the form ¥ = C6 with
0 = (CTC + D)"'CTY. Apparently, log-likelihood (4) invites for
maximization not only with respect to 8 but also with respect to the

smoothing parameters a.

3.2 Spline Smoothing with correlated errors

The penalty parameters o = (o, ayy, ) steer the amount of penal-
ization and therewith the smoothness of the fit. In fact setting o — oo
leads to the low dimensional parametric fit g(t,m) = (X; ® X)0,
since coefficients b,,, b, b. are penalized to zero. If in contrast a — 0
one ends up with an unpenalized high dimensional parametric fit for

g(t,m) = C6, which is highly variable and hence undesirable. In lin-



ear mixed models framework the smoothing parameter « is a ratio of
variances, and thus can be estimated using Maximum Likelihood or
Restricted Maximum Likelihood (REML) (see Harville, 1977). It is
well-known (see Opsomer, Wang & Yang, 2001) that smoothing pa-
rameter selection with any data driven method (cross validation, AIC
or (RE)ML) fails in case of correlated errors and typically leads to
serious undersmoothing, that is overfitting of the data. In the linear
mixed models framework, however, once the correlation structure is
specified, estimation of regression and correlation parameters can be
carried out simultaneously. This routine is implemented in standard
linear mixed models software such as the lme() procedure in Splus.
We extend this idea in the following way. Let Y ~ N(C6,02R)
with correlation matrix R assumed to be known. This yields to
Y* = R~Y2Y as uncorrelated observations and with C* = R~1/2C,
one gets that Y* ~ N(C*#,0%I). Hence, knowing the correlation
structure we can simplify the estimation to uncorrelated residuals.
The idea is now as follows. We will develop a rough estimate for
the correlation structure considering data along calendar time only.
The estimate is then used to derive Y*. Even though the estimated
correlation might not equal the true correlation exactly, it has been
shown in Krivobokova & Kauermann (2004) that the REML estimate
still provides reasonable variance estimates even if the correlation is
moderately misspecified.

The correlation structure of Y is however not standard. We observe
correlation along calendar time ¢, but for given ¢ it is not reason-
able to assume that residuals €;,, along maturity m are correlated.
Figure 2 shows the yield development of a bond with 6 years left to
maturity on the July 1998. The dashed line shows a penalized spline
fit if autocorrelation is ignored, the solid line shows the fit if resid-
uals are assumed to have an AR(1) correlation structure. For the
latter we plot in Figure 2 the autocorrelation structure of the residu-
als. The AR(1) assumption seems plausible. Both fits are univariate

smoothers and are calculated using the standard linear mixed models
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Figure 2: Yield development of a 6 years bond, smoothed with (solid
line) and without (dashed line) accounting for correlation, with the
corresponding partial autocorrelation function of residuals.

software, as described above without any modification. To account
for correlation in the two dimensional fit (3), we now employ the idea
of standardising the response variable in the following way. As visible
in Figure 1 our data are observed in time series Y; ,,, _(;—¢,) where m.
is the maturity at £y in July 1998. All together there are 107 series,
one of which is shown in Figure 2. Fitting these series in the same
line as that in Figure 2 provides autocorrelation estimates ranging
from about 0.8 to 0.9. We therefore use an autocorrelation of 0.85
and let R,,, denote the corresponding correlation matrix. Rearrang-
ing Y as (Y2 . 7 ) with ¢ taking all observed

t,m1—(t—to)’ » S t,mior—(t—to)

11



time points allows to get Y* = R~Y2Y with R as block diagonal
matrix built from the 107 matrices R,,,. Accordingly we get after
rearrangement our matrix C*.

It remains to fit a linear mixed model for independent errors Y* ~
N(C’*H,a?t’mln), by ~ N(O,ongfnl), by ~ N(O,ogtDt_l) and b, ~
N(0, achc_ ). Even though the dimension is large, due to indepen-
dence and the lush but finite dimension of 6 linear mixed models
software can be applied to obtain the estimates = (B, bon, bt l;C)T
and the resulting fitted response Y = C. This is a numerically
handy version to cope with the complex correlation structure in the
data. Based on this fit we also analyzed the residuals of the 107 se-
ries but did not find obvious violations from the model. There was

a slight indication of heteroskedasticity which however was not too

evident and for simplicity is ignored.

4 Empirical Results

In Figure 3 we show the bivariate fit of the term structure. The
fit is performed using matrix C' constructed from truncated squared
bases with equidistant knots. The dimensions are thereby chosen as
|Zi| = 40, |Zy| = 10 and |Z;] = 10 x 10. There are two things
visible from the plot. First, the functional complexity over time is
clearly more exposed than the functional complexity over maturity.
Secondly, time and maturity have an interactive effect on the bond
price, that is b. can not be penalized to zero. To better understand
the interactive effect we consider a number of plots by slicing the
bivariate fit in Figure 3 time-wise and maturity-wise.

Figure 4 shows the estimated term structure for different time points.
Beside the fit we have included prediction intervals based on +26.
Prediction intervals are more useful than confidence intervals in this
setting, since the latter are due to the large number of observations
so small that they are visually indistinguishable from the fitted curve.
From the plots there is a clear dynamics visible over time. The term

structure during July 1998 shows as a typical “flat” yield curve, that
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Figure 3: Bivariate fit of the term structure

is the case when the interest rates are about on the same level for
different types of bonds. Two years later, in July 2000, after the
stock market crash in USA (March 2000) the fitted term structure
demonstrates a fully “flat” shape on a high level of about 0.06. Sub-
sequently, the term structure gets curved again, showing a “normal”
shape with higher yield for a longer lending time and with more ex-
pressed differences between shorter and longer term yields in the most
recent years. It is also obvious that long term bonds remain on an
interest rate of about 0.06 while yield of short term bonds decreases
with time.

Next, we consider the yield development for a given maturity over
time. This is shown in Figure 5. The figures visualize the stock mar-
ket crash in 2000 in that yields for all maturities increase until about
spring 2000 and decrease afterwards. In this respect we see that the

yield for short maturity bonds is decreasing more rapidly than that
for long term bonds.
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Figure 4: Estimated term structure with prediction intervals

5 Discussion

In the paper we pursued the exercise of fitting zero bonds yield as
a bivariate function over time and maturity. We demonstrated the
numerical efficiency of penalized spline smoothing as smoothing tech-
nique. The modelling exercise allowed to look in the term structure
function and to study the dynamic effects. The approach exposed an
interesting pattern in the term structure during the stock exchange
crash. The empirical and exploratory approach can confirm theoret-

ical investigations and stimulate new insights.
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