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Abstract

This note investigates the behavior of data driven smoothing parameters for

penalized spline regression in the presence of correlated data. It has been

shown for other smoothing methods before, that mean squared error minimiz-

ers, such as (generalized) cross validation or Akaike criterion, are extremely

sensitive to misspecifications of the correlation structure over or (under) fit-

ting the data. In contrast to this, we show that a maximum likelihood based

choice of the smoothing parameter is more robust and for moderately mis-

specified correlation structure over or (under) fitting does not occur. This

is demonstrated in simulations, data examples and supported by theoretical

investigations.
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1 INTRODUCTION

Smooth nonparametric regression has achieved a considerable standard over the last

two decades. In its simplest form the objective is to estimate the mean response

E(y|x) = µ(x) where x is a univariate continuous covariate and function µ(x) is

assumed to be smooth but otherwise unspecified. The toolbox for estimating µ(x)

based on data pairs (xi, yi), i = 1, . . . , n is large including for instance local ap-

proaches (see Fan & Gijbels, 1996) or spline methods (see Wahba, 1990 or Eubank,

1999). In the mid nineties Eilers & Marx (1996) introduced smoothing with pe-

nalized splines (P-splines), extending an original idea of O’Sullivan (1986). This

powerful and applicable technique has been explored and exploited further in a re-

cent book by Ruppert, Wand & Carroll (2003). Regardless of the method used,

a bandwidth or smoothing parameter has to be chosen to compromise goodness

of fit with complexity of the estimated function. This can be done by minimizing

the mean squared error (MSE) where in practice an empirical version is employed.

Unfortunately, in the presence of correlated errors, that is if εi = yi − µ(xi) and

εj for i 6= j are (positively) correlated, standard smoothing parameter selectors fail

to work and overfit the data. This has been nicely espoused in Opsomer, Wang

& Yang (2001) for a number of smoothing techniques. Hart & Lee (2005) show

that overfitting is less dominant if one-sided instead of standard (two-sided) cross

validation is used. Overfitting can be generally avoided by taking the correlation

structure explicitly into account for smoothing parameter selection. This has been

demonstrated among others in Wang (1998) for spline smoothing and in Altman

(1990), Hart (1991), Beran & Feng (2001) or Ray & Tsay (1997) for local smooth-

ing. For penalized spline fitting Currie & Durban (2002) and Durban & Currie
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(2003) present a strategy for smoothing with correlated errors and selecting the cor-

relation structure based on the likelihood. A Bayesian approach for fitting models

with correlated errors is found, for instance, in Smith, Wong & Kohn (1998).

In general, the correlation structure is unknown in advance and estimation of the

correlation structure requires a sufficiently good fit of the mean function. Hence, one

is faced with a dilemma in practice. In fact, even smallest misspecifications of the

correlation structure can result in serious over (or under) fitting as demonstrated in

Opsomer, Wang & Yang (2001). This exhibits an undesirable sensitivity of MSE-

based smoothing parameter selectors. The problem of smoothing with correlated

errors is most prominent in a time series setting where x = t gives the time and

adjacent observations yt and yt+1 are correlated. Typical examples are macroeco-

nomic time series like inflation or price indices. In this case µ(t) gives the (long term)

trend which has to be estimated in the presence of correlated residuals. An overview

about common trend estimates is provided, for instance, in Fan & Yao (2003). A

traditional method for long term trend estimation in time series is the Hodrick &

Prescott (1997) (HP) filter, which also makes use of a penalized approach. To our

knowledge, however, no data driven routine for choosing the penalty parameter in

the HP filter has been suggested yet and instead the choice “λ = 1600” as heuristi-

cally suggested by Hodrick & Prescott (1997) is usually used.

In this paper we investigate penalized spline smoothing using two different smooth-

ing parameter selectors. First, a classical MSE minimizer, based on the Akaike

criterion is used. Secondly, a restricted maximum likelihood (REML) smoothing

parameter estimate is used by considering the smoothing model as a linear mixed

model with random spline coefficient (see for instance Wand, 2003 or Kauermann,

2005). It is shown in theory and simulations that the latter approach is more recom-
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mendable, since REML based smoothing parameter selection is less sensitive towards

misspecifications of the correlation structure compared to MSE based choices. This

means, for instance, if data have been mistakenly considered as independent while

they are (not too strongly) positively correlated, this shows in a inevitable overfit

using a MSE smoothing parameter selector, while the REML estimate is robust and

features a satisfactory behavior. This performance is demonstrated for simulated

data in Figure 1, where both smoothing parameter selectors are applied to auto-

correlated errors while mistakenly assuming uncorrelated errors for the fitting. Of

course, any fit using a misspecified correlation structure is inferior to one which con-

siders the true correlation, regardless of the smoothing parameter selection being

used. However, the true correlation is typically unknown (unless in simulations)

so that the reported superiority of the REML provides a practical advantage when

the correlation is not known. Additionally the REML based fit is available using

standard software for fitting mixed models, e.g. the lme(.) routine in R or Splus

(see Pinheiro & Bates, 2002), as demonstrated in the Appendix A.2.

The paper is organized as follows. In Section 2 we explore the beneficial behav-

ior of the REML based smoothing parameter in theory and application. Section 3

gives some examples and extensions. Section 4 provides a discussion, while technical

details and guidelines for the numerical realization are collected in the Appendix.

2 SMOOTHING PARAMETER SELECTION

2.1 Akaike and REML

We consider the smoothing model

Y ∼ N(µ(x), σ2
εR), (1)
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with Y = (y1, . . . , yn) and µ(x) = (µ(x1), . . . , µ(xn)), where µ(.) is a smooth but

unknown function. The correlation matrix R is, like σ2
ε , unknown. Estimation

of µ(x) can be carried out by penalized spline smoothing, that is replacing µ(x)

in model (1) by some high dimensional parametric structure µ(x) = Xβ + Zu.

Here X is a low dimensional basis, e.g. with rows XT
i = (1, xi), while Z is high

dimensional, e.g. truncated lines with rows Zi = [(xi − τ1)+, . . . , (xi − τK)+], where

τj are fixed knots, j = 1, . . . , K and (x)+ = max{x, 0}. Alternatively, one can work

with B-splines (de Boor, 1978) as suggested in Eilers & Marx (1996). For theoretical

investigation the use of truncated polynomials proves, however, to be simpler and is

therefore preferred here. With respect to the dimension K we follow Ruppert (2002)

who has shown, that the actual choice of K and the location of knots have little

influence on the resulting penalized fit as long as K is large, e.g. K = min(n/4, 40).

A more theoretical exercise is to let the number of knots grow with the sample

size. Some first results are found in Cardot (2002) and Hall & Opsomer (2005).

Regardless of these new theoretical development the practical implication is that K

is far less than n.

Coefficients β and u are estimated from the penalized log likelihood function

lp(β,u; σ2
ε ,R, λ) = −

1

2

{
n log(σ2

ε) + log |R| + (Y − Cθ)TR−1(Y −Cθ)/σ2
ε

}

−
λ

2σ2
ε

uT D̃u, (2)

where C = (X,Z), coefficient θ = (βT ,uT )T and D̃ is an appropriately chosen

penalty matrix. A conventional choice for truncated polynomial basis is the identity

matrix, i.e. D̃ = IK . Other choices related to B-splines are suggested in Eilers &

Marx (1996). The penalty term λuT D̃u works as a ridge or shrinkage effect and
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penalizes the coefficients of basis Z only. Note, that the estimate µ̂(x) results as

µ̂λ(x) = Cθ̂ = C (CTR−1C + λD)−1 CTR−1Y =: SR,λY, (3)

with D as a block diagonal matrix built from 0 and D̃ with matching dimensions.

With SR,λ we denote the resulting smoothing matrix. The penalty parameter λ

thereby steers the amount of smoothness. A data driven choice for λ is available by

minimizing the Akaike criterion

AIC(R, λ) = n log {RSS(R, λ)}+ 2df(R, λ), (4)

where RSS(R, λ) = {Y − µ̂λ(x)}T R−1 {Y − µ̂λ(x)} and df(R, λ) = tr(SR,λ),

with tr(.) as trace of the matrix. Alternatively, a modified version of the criterion

suggested by Simonoff & Tsay (1999) can be used.

The penalized fit can also be motivated by treating u as random coefficient leading

to the linear mixed model

Y|u ∼ N(Xβ + Zu, σ2
εR), u ∼ N(0, σ2

uD̃
−), (5)

where D̃− is the (generalized) inverse of D̃. In this case, µ̂λ(x) as given in (3) results

as posterior Bayes estimate or Best Linear Unbiased Predictor (BLUP) (see Searle,

Casella, & McCulloch, 1992) with λ = σ2
ε/σ

2
u. Model (5) affords an estimate of the

smoothing parameter λ by maximizing the likelihood resulting from the linear mixed

model. In practice, an adjusted restricted maximum likelihood (REML, see Harville,

1977) shows advantages. In this case λ is chosen by minimizing the negative REML

function.

− 2 REML(R, λ) = (n − p) log(σ̂2
ε,MM) + log |VR,λ| + log |XT V−1

R,λ X|, (6)
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with p as dimension of β, σ̂2
ε,MM = (Y −Xβ̂)T V−1

R,λ (Y −Xβ̂)/(n − p) as variance

estimate in the mixed model (5) and VR,λ = R + ZD̃−ZT /λ.

2.2 Smoothing with misspecified correlation

The true correlation structure of the data is typically unknown and for estimation

some “working correlation” R̃, which is supposed to be close to R, has to be used in

the smoothing parameter selection step. Our objective is to explore which of the two

above smoothing parameter selectors is more sensitive with respect to misspecifica-

tions of such working correlation. Without loss of generality we explore this point

using working zero correlation, that is R̃ = In, with In as identity matrix. Note that

if a different working correlation R̃ is used, then observations Y∗ = R̃−1/2Y show

working zero correlation with mean function µ∗
λ(x) = R̃−1/2µλ(x). This implies that

the results derived for the zero working correlation can be directly transferred to

more general settings. For our further investigation we make the following assump-

tions:

(A1) The values of xi, i = 1, ..., n are ordered and equidistant with xi ∈ [0, 1], for

simplicity.

(A2) We denote with R the true (unknown) correlation of the residuals and assume

that Rij = r(|i − j|) with r as some stationary positive correlation function,

descending to zero for |i−j| growing. Note that this implies that the correlation

between two fixed points in [0, 1] is decreasing as n → ∞. We parameterize

R = R(̺) with some vector ̺ = (̺1, ..., ̺n−1), so that ̺i = r(i), i = 1, ..., n−1

and R(̺ = 0) = In.
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(A3) For the mixed model (5) we assume σ2
u > 0.

(A3
′

) In model (1) we assume µ(x) = Xβ + Zu and in particular ‖u‖ > 0.

Note that assumptions (A3) and (A3
′

) guarantee that the corresponding model does

not collapse to a simple parametric model. We will now explore the performance of

the smoothing parameters by making use of the following notation:

• sREML(λ) := −2λ σ̂2
ε,MM ∂REML(λ)/∂λ is the estimating equation for the

REML based smoothing parameter defined in the model (5) with R = In.

• sAIC(λ) := λ/2 σ̂2
ε ∂AIC(λ)/∂λ is the estimating equation for the AIC based

smoothing parameter defined in the model (1) with R = In.

• λ0
REML and λ0

AIC denote the “true” values of the smoothing parameters under

the according models with independent residuals, implicitly defined through

EY,u {sREML(λ0
REML)|R = In} = 0 and EY |u {sAIC(λ0

AIC)|R = In} = 0, respec-

tively. Note that with assumptions (A3) and (A3
′

) we have that λ0
REML > 0

and λ0
AIC > 0.

• λ̺
REML and λ̺

AIC are the “true” smoothing parameters under the misspecified

correlation model, i.e. they satisfy the equations EY,u {sREML(λ̺
REML)|R} = 0

and EY |u {sAIC(λ̺
AIC)|R} = 0, respectively.

Note that the smoothing parameter estimates are implicitly defined through sAIC(λ̂AIC) =

0 and sREML(λ̂REML) = 0, respectively. To this end it is important to reflect that

both smoothing parameters are defined in different stochastic frameworks. While

we take expectation with respect to Y and u for the REML estimate, for the Akaike

based smoothing parameter coefficient vector u is treated as given. This is also
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indicated with subscripts at the expectation symbols above. For our theoretical

investigation we now have to assume one of the two models. It has been shown in

Kauermann (2005) that the MSE based smoothing parameter does not equal the

smoothing parameter based on REML for fixed u and no general theoretical finite

sample comparison is possible since the behavior depends primarily on the unknown

function µ(x). In contrast assuming the mixed model (5) we can compare the two

approaches on a theoretical ground. We pursue both frameworks here. First, we

assume model (5) and show why the REML smoothing parameter choice is less

sensitive towards correlation misspecification. Second, we exemplify the theoretical

findings for particular functions µ(x) using model (1) and a finite sample situation.

The second part is for reasons noted above more heuristic but concludes with the

same superiority of the REML based choice.

We start by defining λ̄0
AIC := Eu(λ

0
AIC) as mean value of λ0

AIC taking u as random.

As shown in the Appendix we obtain λ̄0
AIC = λ0

REML. The objective is now to

investigate the performance of λ̺
REML and λ̺̄

AIC := Eu(λ
̺
AIC).

Theorem. Under assumptions (A1) to (A3) we find

λ̺
REML − λ̺̄

AIC (7)

= 2λ

n−1∑

i=1

̺i

[
tr {AiSλ(In − Sλ)

2}

tr{S2
λ(In − Sλ)}

−
tr {AiSλ(In − Sλ)}

tr(S2
λ) − p

]

+ O(̺T ̺ + n−1),

with λ = λ̄0
AIC = λ0

REML, Sλ = SR=I,λ and Ai as a lower shift matrix with

ones on i-th sub-diagonal.

The proof is provided in the Appendix. Formula (7) shows how the difference be-

tween the smoothing parameters changes with the misspecified correlation ̺, which

we now want to explore further. It seems hardly possible to do this for any general
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correlation structure, so that we restrict the investigation to correlation matrices R

of the following special structure.

(A2
′

) Additional to assumption (A2) we postulate that ̺i = r(i) = O(δi), i =

1, ..., n − 1 for some 0 < δ < 1.

Assumption (A2
′

) is apparently not too restrictive. It holds for instance, for sta-

tionary Markov processes as can be seen as follows. Consider a stationary process

of order d, say, so that εi given (εi−1, ...εi−d) is independent of (εi−d−1, εi−d−2, ...).

In this case R−1 is of block band diagonal structure with bandwidth d. Let M be

the maximum element of the diagonal of R. Assuming that M does not depend on

n and ‖R/M‖ ≤ 1 for some matrix norm we find with the results in Demko (1977)

that ̺i ≤ c δi, with 0 < δ < 1 and the constant c depending on M and d only.

We are particularly interested in small misspecifications, which is mirrored in small

values of δ, and with δ → 0 we get R → In. This allows us to formulate the following

Corollary.

Corollary. Assuming (A1), (A2
′

) and (A3) we find

λ̺
REML = λ + ∆REML ̺1 + O(δ2 + n−1)

λ̺̄
AIC = λ + ∆AIC ̺1 + O(δ2 + n−1),

with λ = λ̄0
AIC = λ0

REML, ∆REML = ∂λ̺
REML/∂̺1|̺1=0, ∆AIC = ∂λ̺̄

AIC/∂̺1|̺1=0

and it holds

∆ := |∆AIC| − |∆REML| = 2λ

∑K
j=1

∑

j<l≤K bjbl(bl − bj)
2

∑K
j=1

∑K
l=1 b2

jb
2
l (1 − bj)

{
1 − O(n−1)

}
> 0, (8)

with bj = (1 + λej)
−1 where ej ≥ 0 are the eigenvalues of the singular value

decomposition BTDB−1 = Udiag(ej)U
T for a square and invertible matrix B

obtained from a Cholesky decomposition BTB = CTC.
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The proof is provided in the Appendix. Note also the following remarks, which

relate to the above results.

1. Since ∆REML and ∆AIC measure changes in the corresponding smoothing

parameters if the correlation parameter changes, the positive value of ∆ as

obtained in (8) reflects the stronger sensitivity of the AIC based smoothing

parameter towards misspecified correlation.

2. Assuming ̺1 to be small, λ̺
REML as well as λ̺̄

AIC are nearly linear functions of

̺1 which is also visualized in simulations in the next section. Moreover,

λ̺
REML − λ̺̄

AIC = ∆̺1 + O(δ2 + n−1).

3. The result can be extended to different empirical MSE minimizer like the

modified Akaike criterion suggested by Simonoff & Tsay (1999) or generalized

cross validation. Details are found in the supplementary material to this paper

provided under www.amstat.org/publications/jasa/supplemental materials.

Before demonstrating the above results in simulations we want to visualize the dif-

ferent performance of both smoothing parameters using the theoretical grounds from

above. For some fixed λ0 = σ2
ε/σ

2
u we take the mixed model (5) and calculate the

expected estimating function EY,u {sREML(λ)|R} for different values of λ. The shape

of the function is shown in Figure 2 (top plot) as solid line, where it is calculated also

under the misspecified models, an AR(1) model with first order correlation ̺ = 0.1

and ̺ = 0.2. We thereby used truncated basis of order two based on 40 knots. For

̺ = 0 we see the expected estimated score function which cuts the x axis at the true

parameter value λ0. Small changes of the correlation have only a minor impact on the

root of the function. This is in contrast to the course of EY,u {sAIC(λ)|R} also shown
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in Figure 2 top plot as dashed line, again for correlations ̺ = 0, ̺ = 0.1 and ̺ = 0.2.

Here the root of the function depends quite strongly on the misspecified correlation

which mirrors in apparent overfitting of the smooth estimate. We can visualize the

same mean estimating functions by considering u as fixed, i.e. EY |u {sREML(λ)|R}

and EY |u {sAIC(λ)|R}. This means we use the smoothing model (1) with a penal-

ized estimate instead of the mixed model (5) for the calculation of the mean. As

true function µ(x) we use the sine curve as already seen in Figure 1. In this case

we obtain the graphs of two functions shown in Figure 2 bottom plot. In this sine

curve example the two plots in Figure 2 look much alike, that is whether we condi-

tion on coefficients u or consider them as random makes no difference on the shape

of the estimating functions. Fixing u at different values, that is taking different

mean functions µ(x), can impose differences between the two curves. The overall

performance based on the numerous functional examples we investigated remains

however the same, i.e. the root of the estimating equation changes more severely for

sAIC(λ) than for sREML(λ). We refer to the supplementary material provided with

this paper under www.amstat.org/publications/jasa/supplemental materials.

2.3 Simulation

To illustrate the theoretical findings we ran a number of simulation studies some of

which are reported here. Following Wang (1998) and Currie & Durban (2002), we

generate n = 300 data points with yi = sin(2πi/n) + 0.3εi, where εi, i = 1, ..., n

are drawn from a first-order autoregressive process with mean zero, standard de-

viation one and first-order autocorrelation equal to 0.4. Figure 1 shows exemplary

one simulation. The smooth fit is based on a quadratic truncated polynomial basis

with K = 40 knots placed equidistantly over the observed x values. The smoothing
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parameters are selected assuming independence. Clearly, the AIC based choice fails

to estimate the function properly while the REML estimated smoothing parameter

behaves well.

We rerun the simulation with different values for the autocorrelation, ranging from

0 to 0.4 with step size 0.05. The top plot in Figure 3 shows the average of the

simulated smoothing parameters λ̂AIC and λ̂REML on a log scale based on 100 simu-

lations. The vertical lines correspond to the interquartile range (note that the REML

estimate clearly exhibits less variability, which is however not further discussed in

this paper, see also Kauermann, 2005). It appears that λ̂AIC reacts stronger on

the misspecified correlation structure. In contrast the REML based smoothing pa-

rameter behaves clearly more inertially. Note that the behavior of both smoothing

parameter estimates is almost linear in the correlation parameter, reproducing our

theoretical findings. Even though our focus is on the behavior of the smoothing

parameters λAIC and λREML, from a practical viewpoint there is greater interest in

the effect on the Mean Squared Error of the resulting estimates. This is visualized

for the above simulations in the bottom plot of Figure 3, where we show the term

∑n
i=1{µ̂(xi)−µ(xi)}

2/n for the different smoothing parameters. Clearly, even small

omitted correlations among the residuals have an impact on the Mean Squared Error

of the AIC based fit, while the REML based choice performs more stable.

We ran a number of other simulations with (i) different numbers of knots, (ii) dif-

ferent functional forms, (iii) different residual variability (i.e signal to noise ratio),

(iv) different basis functions (e.g. B-splines) and (v) different MSE-based smoothing

parameter selectors (e.g. GCV and modified AIC, suggested by Simonoff & Tsay,

1999). The findings were the same as those reported here and these factors did

hardly change the general behavior. The superiority of the REML approach is always
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clearly seen. The interested reader may consult our supplementary material to this

paper provided under www.amstat.org/publications/jasa/supplemental materials.

The behavior of the REML estimate is also superior in more complex correlation

scenarios. To demonstrate this we simulated data from an AR(2) process with first

and second order autocorrelation 0.4 and 0.3, respectively. For fitting we employed a

(misspecified) AR(1) correlation structure with first order autocorrelation estimated

from the data. Note, that this is easily accommodated in the linear mixed model

framework and implemented for instance in the Splus or R lme(.) function (see

Appendix A.2 and Pinheiro & Bates, 2002). The resulting fit is shown in Figure 4,

top row plots. The data clearly exhibit an AR(2) process in the correlation struc-

ture. If this is however not correctly specified, the AIC smoothing parameter choice

suffers from overfitting. This is in contrast to the REML selected λ which works

fine even for misspecified correlation. We rerun the simulation for different values

of the second order autocorrelation, ranging from 0 (which equals AR(1)) to 0.4.

The plots of Figure 5 show the resulting smoothing parameter estimates and Mean

Squared Errors, respectively, if the data are in fact fitted with a misspecified AR(1)

structure. The weak dependence of the REML estimate on the correlation structure

is again visible and confirms our theoretical findings.

3 EXAMPLES AND EXTENSIONS

3.1 Examples

To demonstrate the applicability of the described property of the REML estimator

for smoothing parameter selection we first analyze some data obtained from the In-

ternational Statistical Yearbook. Average monthly data on electricity consumption
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in Italy in the period January 1986 to May 2003 are presented in Figure 6. Esti-

mating the data assuming independent residuals yields the overfitting AIC based

estimate (left hand side) and the satisfactory REML fit (right hand side), both seen

as solid lines. Examination of the partial autocorrelation function of the residuals

corresponding to the REML fit suggests that the data are AR(1) correlated with the

first order correlation about 0.4. Refitting the data taking an AR(1) structure into

account leads to the dashed line fits shown in Figure 6. Note that for the REML

based fit both estimates (without and with accounting for correlation) are nearly

indistinguishable, although the correlation structure is wrongly specified in the first

case.

In our second example we consider data obtained from International Financial Statis-

tics (IFS) - service of the International Monetary Fund. We analyze 184 average

monthly observations of import prices in Germany in the period January 1990 to

April 2005 (basis year 2000), see Figure 7. The data clearly exhibit correlation and

we start fitting the data by using a REML based smoothing parameter (upper right

plot) assuming an AR(1) correlation structure for the residuals (solid line). The plot

of the partial autocorrelation functions (bottom right plot) provides evidence that

in fact an AR(2) structure looks more suitable. We refitted the model with a REML

based smoothing parameter but now assuming an AR(2) structure. The resulting fit

is shown in the top right plot of Figure 7 as dashed line. It looks more appropriate

and does not change the autocorrelation function in a notable amount. In contrast

to the REML estimate the AIC based fit with an AR(1) correlation structure on

the left hand side plots is clearly not appropriate and does not even help to discover

the underline correlation structure as can be seen from the autocorrelation function

shown in the bottom row.
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These examples suggest a simple strategy for the mean estimation of correlated

data. First, fit the model with a mixed model software, assuming the most probable

correlation structure and inspect whether the residuals behave in accordance with

this assumption. If the correlation structure is only moderately misspecified, the

mean estimate with the REML based smoothing parameter will still be appropriate

and examination of the (partial) autocorrelation functions could help to determine

the true correlation structure of the data.

For further application we also refer to Krivobokova, Kauermann & Archontakis

(2006), where a two dimensional fit of the term structure of interest rates with

non-standard correlation structure was performed. Again, it was the REML based

smoothing parameter which made the fit possible.

3.2 Extensions

The advantages of REML based estimates of smoothing parameters extend to addi-

tive and generalized response models. We sketch the ideas for the latter here. We

assume that g {E(yi|xi)} = g {µ(xi)} = η(xi) with g(.) as known link function and

y given x distributed according to an exponential family distribution. We replace

η(x) = (η(x1), ..., η(xn)) like above with Cθ and impose a penalty on coefficient vec-

tor u. Formulating the latter as a priori normal distribution leads to the Generalized

Linear Mixed Models (GLMM)

g {E(Y|x,u)} = Cθ, u ∼ N(0, σ2
uD̃

−). (9)

Estimation in (9) can be carried out using a Laplace approximation to achieve

the marginal likelihood. This approach is better known under the phrase penal-

ized quasi likelihood (PQL) and is extensively discussed in Breslow & Clayton
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(1993). The Laplace approach is asymptotically justifiable if we assume the num-

ber of basis functions K to be bounded for growing sample size. Practically this

means that K ≪ n. Particularly, this setting circumvents the problems listed

for instance in Breslow & Lin (1995) or more generally in Shun & McCullagh

(1995). In particular, the PQL approach provides a REML based estimation for

σ2
u which proves to behave satisfactory if the data are in fact correlated. An illus-

tration of the procedure is provided with the supplementary material to the paper

(www.amstat.org/publications/jasa/supplemental materials).

4 DISCUSSION

We investigated the sensitivity to misspecified correlation of two data-driven smooth-

ing parameter selectors for penalized spline smoothing - Akaike and REML. It has

been shown that the AIC based smoothing parameter is (on average) more affected

by the presence of correlated errors than the REML based smoothing parameter.

The difference of both smoothing parameters obtained under misspecified correlation

was evaluated and the stronger dependence of the AIC based smoothing parameter

on the misspecified correlation was quantified. The findings were supplemented by

real data examples.
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A APPENDIX

A.1 Technical details

In the subsequent proofs we make use of the following relationships:

∂(log |XTV−1
R,λX|)

∂λ
=

1

λ
tr{Z(ZT R−1Z + λD)−1ZT R−1X(XTV−1

R,λX)−1XTV−1
R,λ},

∂(log |VR,λ|)

∂λ
= −

1

λ
tr{Z(ZT R−1Z + λD)−1ZTR−1},

∂tr(SR,λ)

∂λ
= −

1

λ
tr(SR,λ − SR,λSR,λ),

θ̂
T
Dθ̂ =

1

λ
YT (SR,λ − SR,λSR,λ)Y,

θ̂
T
D(IK+p − S̃R,λ)θ̂ =

1

λ
YT (In − SR,λ)SR,λ(In − SR,λ)Y,

σ̂2
ε,MM =

YT (In − SR,λ)Y

n − p
,

where S̃R,λ = (CTR−1C + λD)−1CTR−1C.

Proof of Theorem.

Differentiation of (6) results in the score equation

− 2
∂REML(λ)

∂λ
=

θ̂
T
Dθ̂

σ̂2
ε,MM

−
1

λ
{tr(SR,λ) − p} = 0. (10)

Accordingly, differentiating (4) we obtain the estimating equation

∂AIC(λ)

∂λ
=

2θ̂
T
D(IK+p − S̃R,λ)θ̂

σ̂2
ε

−
2

λ
tr{SR,λ(In − SR,λ)} = 0, (11)

with σ̂2
ε = RSS(R, λ)/{n − tr(SR,λ)}. Setting in (10) and (11) R = In we find

the corresponding estimating functions sREML(λ) = λ θ̂Dθ̂ − σ̂2
ε,MM{tr(Sλ) − p}

and sAIC(λ) = λ θ̂D(IK+p − S̃λ)θ̂ − σ̂2
εtr{Sλ(In − Sλ)}. Under the mixed model

(5) the data are distributed according to Y|R ∼ N(Xβ, σ2
εR + σ2

εZD̃−ZT /λ) with
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λ = λ̄0
AIC = λ0

REML. Simple calculations now yield the implicit definition of λ̺
REML

through

0 = EY,u {sREML(λ̺
REML)|R}

= σ2
ε

[

tr{(R− In)Sλ̺
REML

(In − Sλ̺
REML

)} −
λ − λ̺

REML

λ
{tr(S2

λ̺
REML

) − p}

]

+ σ2
ε {tr(Sλ̺

REML
) − p}

tr(RSλ̺
REML

) − p − λ̺
REML/λ{tr(Sλ̺

REML
) − p}

n − p
. (12)

Accordingly, λ̺̄
AIC is defined through

0 = EY,u

{
sAIC(λ̺̄

AIC)|R
}

= σ2
ε

[

tr{(R − In)Sλ̺̄
AIC

(In − Sλ̺̄
AIC

)2} −
λ − λ̺̄

AIC

λ
tr{S2

λ̺̄
AIC

(In − Sλ̺̄
AIC

)}

]

+ σ2
ε tr{Sλ̺̄

AIC
(In − Sλ̺̄

AIC
)}

·
tr{Sλ̺̄

AIC
(2R− RSλ̺̄

AIC
− In)} − λ̺̄

AIC/λ tr{Sλ̺̄
AIC

(In − Sλ̺̄
AIC

)}

n − tr(Sλ̺̄
AIC

)
. (13)

The idea of our proof is now to expand λ̺
REML and λ̺̄

AIC around R = In, that is

λ̺ = λ +
∂λ̺

∂̺

∣
∣
∣
∣
̺=0

̺ +
1

2
̺T ∂2λ̺

∂̺∂̺T

∣
∣
∣
∣
̺=0

̺ + . . .

Using the derivative rule for implicit functions we easily find

λ̺
REML = λ

[

1 −
tr{∂R

∂̺
|̺=0Sλ(In − Sλ)}̺

tr(S2
λ) − p

]

+ O(̺T ̺ + n−1), (14)

λ̺̄
AIC = λ

[

1 −
tr{∂R

∂̺
|̺=0Sλ(In − Sλ)

2}̺

tr{S2
λ(In − Sλ)}

]

+ O(̺T ̺ + n−1). (15)

Note that the last components in (12) and (13) are of order O(n−1) and so are their

derivatives. Based on the assumed parametrization of R its derivative becomes

∂R/∂̺i = Ai + AT
i and we immediately obtain equation (7). We stop our Taylor

expansion at the first order already, since we are interested in the moderate corre-

lation misspecification that is for small ̺, so that O(̺T ̺) is of negligible order.
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Relation of λ0
REML and λ0

AIC

Setting in (13) R = In one gets that EY,u{sAIC(λ̄0
AIC)|R = In} = 0 only if λ̄0

AIC =

λ = λ0
REML.

Proof of Corollary

Note that using a Demmler-Reinsch decomposition (see e.g. Green & Silverman,

1994 or Ruppert, Wand & Carroll, 2003) we can rewrite (14) and (15) in terms of

eigenvalues of the smoothing matrix. Namely, writing CTC = BTB, where B is a

square and invertible matrix obtained by a Cholesky decomposition and applying

a singular value decomposition B−TDB−1 = Udiag(ej)U
T , with U as a matrix of

eigenvectors and ej as corresponding eigenvalues, allows to represent the smooth-

ing matrix as Sλ = Ldiag(bj)L
T , with bj = 1/(1 + λej) and L = CB−1U, so that

LTL = IK+p. In this notations we get from (14) and (15) together with assumption

(A2
′

)

λ̺
REML = λ + (−2)λ

∑K+p
l=1 a1

l bl(1 − bl)
∑K+p

l=1 b2
l − p

︸ ︷︷ ︸

∆REML

̺1 + O(δ2 + n−1), (16)

λ̺̄
AIC = λ + (−2)λ

∑K+p
j=1 a1

jbj(1 − bj)
2

∑K+p
j=1 b2

j (1 − bj)
︸ ︷︷ ︸

∆AIC

̺1 + O(δ2 + n−1), (17)

where p is the dimension of β and a1
j = (LT A1L)jj. The terms ∆REML and ∆AIC

give the changes in the smoothing parameter if correlation increases, that is the
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slope at ̺ = 0, if we consider λ̺
REML and λ̺̄

AIC as functions of ̺. We can now find

|∆AIC| − |∆REML|

= 2λ

{∑K+p
j=1 a1

jbj(1 − bj)
2

∑K+p
j=1 b2

j (1 − bj)
−

∑K+p
l=1 a1

l bl(1 − bl)
∑K+p

l=1 b2
l − p

}

̺1 (18)

= 2λ

∑K
j=1

∑

j<l≤K bjbl(bl − bj){a
1
jbl(1 − bj) − a1

l bj(1 − bl)}
∑K

j=1

∑K
l=1 b2

jb
2
l (1 − bj)

̺1. (19)

To get from (18) to (19) we used the fact that due to the structure of D the last

p eigenvalues eK+1 = ... = eK+p = 0, implying bK+1 = ... = bK+p = 1. We now

represent a1
j =

∑n−1
i=1 LijL(i+1)j for all j = 1, ..., K. Based on the orthogonality of

matrix L we get that
∑n

i=1 L2
ij = 1, implying L2

ij = O(n−1) and Lij = O(n−1/2).

Note that elements Lij can be negative or positive. However, it is known that

due to the oscillation property of matrix L (see Demmler & Reinsch, 1975 and

Gantmacher, 1960) in each column j of matrix L there are exactly (K + p− j) sign

changes, providing that LijL(i+1)j has negative sign only for (K + p − j) indices i.

Moreover,
∑n

i=1 Lij = 0. Thus, a1
j =

∑n−1
i=1 Lij{Lij+O(n−1/2)}−(K+p−j)O(n−1) =

1 − (K + p − j)O(n−1). Since we assumed K to be fixed and far less compared to

n we obtain a1
j = 1 − O(n−1) for j = 1, ..., K, which together with (19) implies (8).

A.2 Computational Issues

To demonstrate the simplicity and numerical feasibility of the REML estimate we

present the implementation in R (www.r-project.org, R Development Core Team,

2005) using the example of the German import prices data. We take advantage of

the lme function of package nlme (see also Pinheiro & Bates, 2002 or Ngo & Wand,

2004 for more details in smoothing using lme(.)). The dataset has 184 observations

for time and price. First we define our model matrices for k=90 knots. We use

truncated lines here.
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> step <- 183/(k+1)

> knots <- seq(min(time)+step,max(time)-step,by=step)

> Z <- outer(time,knots,"-")

> Z <- Z*(Z>0)

With this spline matrix we can call the lme function, using

> library(nlme)

> all <- rep(1,184)

> price.fit <- fitted(lme(price~time,random=list(all=pdIdent(~Z-1)),

correlation=corAR1()))

> plot(time,price)

> lines(time,price.fit)

Here we allow for an AR(1) process in the residuals. The plot of the partial autocor-

relation function in Figure 7 suggests refitting the model with an AR(2) correlation

structure as follows

> price.fit1 <- fitted(lme(price~time,random=list(all=pdIdent(~Z-1)),

correlation=corARMA(p=2)))

The confidence bands can be obtained according to e.g. Ruppert, Wand & Carroll

(2003) from Var{µ̂λ(x)} = σ̂2
εdiag{C(CTR−1C + λD̃)−1CT}, with R as estimated

correlation matrix.

For an efficient algorithm for the penalized smoothing using MSE based criteria we

refer to Ruppert, Wand & Carroll (2003), Appendix A.2.
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Figure 1: Estimated curves with REML (bold) and AIC (dashed) based smoothing
parameter choice obtained under the assumption of independent residuals. The
errors are simulated from an AR(1) process with first-order correlation 0.4.
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Figure 2: REML (solid) and AIC (dashed) expected estimating equations under the
appropriate and misspecified models.
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Figure 3: Average log-transformed smoothing parameters log10(λ̂REML) (solid) and
log10(λ̂AIC) (dashed) in 100 simulations (upper plot) and corresponding average
squared error of the fit (lower plot). Simulations are drawn from an AR(1) process
with different autocorrelations ranging from 0 (independence) to 0.4. The estimates
are obtained under the assumption of independent residuals. The vertical lines
correspond to the interquartile range.
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Figure 4: Estimated curves with REML (bold) and AIC (dashed) based smoothing
parameter choice obtained under the assumption of an AR(1) correlation structure
of the residuals. The errors are simulated from an AR(2) process with first and
second order correlation 0.4 and 0.3, respectively.
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Figure 5: Average log-transformed smoothing parameters log10(λ̂REML) (solid) and
log10(λ̂AIC) (dashed) in 100 simulations (upper plot) and corresponding average
squared error of the fit (lower plot). Simulations are drawn from an AR(2) process
with first order autocorrelation equal 0.4 and different second order autocorrelations
ranging from 0 (independence) to 0.4. The estimates are obtained under the assump-
tion of AR(1) correlated residuals. The vertical lines correspond to the interquartile
range.
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Figure 6: Top: Estimated curves with AIC (left) and REML (right) based smoothing
parameter choice. Dashed lines show fits with an AR(1) correlation structure taken
into account, while solid lines are fits with independent residuals assumed. Bottom:
Partial autocorrelation function corresponding to the AIC (left) and REML (right)
estimates obtained under the assumption of independent residuals.
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Figure 7: Top: Estimated curves with AIC (left) and REML (right) based smooth-
ing parameter choice. Dashed lines show fits with an AR(2) correlation structure
taken into account, while solid lines are fits with an AR(1) structure. Bottom:
Partial autocorrelation function corresponding to the AIC (left) and REML (right)
estimates with an AR(1) correlation structure taken into account.
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