Lehrveranstaltungsverbindende Experimentieraufgaben im Physikstudium

Simon Z. Lahme¹, Andreas Müller² und Pascal Klein¹

¹Universität Göttingen, Deutschland; ²Universität Genf, Schweiz

Motivation

- Studieneingangsphase Physik herausfordernd (s. Leistungsanforderungen, theorielastige Massenveranstaltungen, ...), vgl. auch hohe Abbruchquote [1, 2]
- (Zunehmende) Heterogenität der Studienanfänger:innen (Studienfächer, Interessen, fachliche & mathematische Vorkenntnisse, Lernstrategien ...)
- Ausgangslage (in Göttingen): Übungen zur "Experimentalphysik I" (Mechanik) vorwiegend mit rechnerischen (Problemlöse-)Aufgaben und ohne Bezug zur parallelen Veranstaltung "Rechenmethoden der Physik" und dem Praktikum
- → Potenzial inhaltlicher, methodischer und didaktischer Bezüge zwischen Lehrveranstaltungen/-formaten bislang unzureichend ausgeschöpft

Geplanter Lehransatz an der Universität Göttingen

- Implementation semesterbegleitender undergraduate research projects [vgl. 3]
- Verzahnung der Inhalte der beiden Grundlagenvorlesungen bei Beibehaltung der traditionellen Trennung der beiden Vorlesungen & Praktikum → höhere Kohärenz
- Weitgehend selbstständige Projektarbeit in Kleingruppen
- Förderung digitalisierungsbezogener Kompetenzen (Smartphone-Experimente, Python & Origin, ...)
- Förderung affektiver & sozialer Faktoren (u. a. Hervorstel-Ien kommunikativer & kollaborativer Aspekte von Forschung)
- Poster & Reflexionsportfolio als Projektprodukte & Teil der Prüfungsvorleistung

Programm- & Evaluationsdesign des Projektes "Digitalgestütztes vernetztes Lernen in der Studieneingangsphase Physik"

Programmablauf

Selbstständige Projektarbeit in Kleingruppen

Auftakt & Verteilung der Projektaufgaben

Workshop "Kollaboratives Arbeiten & Postergestaltung"

Zwischenberatung je Kleingruppe

Präsentation der Projektergebnisse auf Poster

Verfassen der individuellen Reflexionsportfolios

Klausur mit projektbezogener Aufgabe

November 2022 Dezember 2022 Weihnachten Januar 2023 Februar 2023

Fragebogen, z. B.: Physikbezogenes Selbstkonzept & Interesse [4]; Vorstellungen zur Experimentalphysik [5]; digitalisierungsbezogene Kompetenzen [6]; Einstellung zu digitalen Medien

Fragebogen, z. B.: Wahrnehmung der Aufgaben [7]; physikbezogenes Selbstkonzept, Interesse & Authentizität [4]; Vorstellungen zur Experimentalphysik [5]; digitalisierungsbezogene Kompetenzen [6]; Einstellung zu digitalen Medien

Dokumentenanalyse Poster

Dokumentenanalyse Reflexionsportfolios

Dokumentenanalyse Klausurbearbeitungen

Veranstaltungseva**luationen** ExPhyl & Rechenmethoden

Beobachtungen & Interviews [7] bei einzelnen Kleingruppen

Wahrgenommene Belastung & Workload [8, 9]

Datenquellen & Instrumente

Mixed Methods - Datenanalyse zur Evaluation der

a) Projektaufgaben (Optimierung der Lernmaterialien)

b) Programmwirkung (Evidenzen für Zielerreichung, Lernwirksamkeit, ...)

Konzipierte Projektaufgaben Mathemat. Inhalte Digitale Technologien Physikal. Inhalte Aufgabe Rotation, Reibung Gyroskopsensor, Origin 1a) Slamming DGLs, Daten **Door*** [vgl. 10] modellieren DGLs, Daten Gyroskopsensor, Origin 1b) Slamming Rotation, Reibung Window* modellieren 2a) Schwingender DGLs, Diskrete Beschleunigungssen-Schwingungen, linea-Aufzug* [vgl. 11] re Wellen Fouriertransform. sor, Python-Notebook DGLs, Diskrete Beschleunigungssen-Schwingungen, ... 2b) Mechanische Fouriertransform. sor, Python-Notebook Schwingungen* 3a) Paper **DGLs** Freier Fall, Reibung Smartphonekamera, parachute* Videoanalyse 3b) Stoßprozesse Smartphonekamera, Stöße, Impuls- & Vektoren, Glei-Energieerhaltung chungssysteme Videoanalyse 4a) Smartphone Schiefe Ebene, Träg-Gyroskopsensor, Mehrdimensionale heit, Reibung, Energie Integrale, DGLs Python-Notebook in der Dose [vgl. 12] 4b) Smartphone Rotation, Trägheit, Mehrdimensionale Gyroskopsensor, Python-Notebook Integrale, DGLs in der Luft [vgl. 13] Reibung, Energie Daten modellieren, Beschleunigungs- & 5) Sensoren-Translation & analyse* Gyroskopsensor, Origin Rotation, ... 6) Akustische Fre- Schwingungen, linea-Diskrete Fourier-Mikrofon, Pythonre Wellen, Helmholtztransform., Daten Notebook quenzanalyse* modellieren resonator

* Diese Aufgaben (oder ihre Vorläufer) sind im DigiPhysLab-Projekt [7,14] entstanden.

Aufgabenbeispiele 1a) Modellierung der Reibungseffekte Measured data Open-closed tube model first harmonic einer zuschlagenden Tür [15] 1400 Helmholtz resonator model 6) Modellierung der 된 1000 · Resonanzfrequenz 800 0,30 einer Flasche [16] Models: 0,25 600 Angular - 21,0 DN DSN Normalized time t [s] Volume of air in bottle cavity (m³)

Ausblick

Nach der Datenanalyse:

→ Veröffentlichung sämtlicher, optimierter Aufgabenstellungen als Open Educational Resources (OER) auf twillo

→ Umfangreiche Programmevaluation mit Implikationen für undergraduate research in der Studieneingangsphase Physik

Kontakt:

Simon Z. Lahme

Universität Göttingen, Didaktik der Physik Friedrich-Hund-Platz 1, 37077 Göttingen simon.lahme@uni-goettingen.de

Gefördert durch:

Niedersächsisches Ministerium für Wissenschaft und Kultur

Innovative Lehr- und Lernkonzepte: Innovation plus (04/2022-12/2023)

Literatur:

Forschungsprogramm zur Studieneingangsphase im Physikstudium. PhyDid B Rev. Phys. Educ. Res., 18(1), 010135. - Didaktik der Physik - Beiträge zur DPG Frühjahrstagung - Aachen 2019, 53- [6] Becker, S., Bruckermann, T., Finger, A., Huwer, J., Kremser, E., Meier, M., 60. http://www.phydid.de/index.php/phydid-b/article/download/934/1061 [2] Heublein, U., Richter, J. & Schmelzer, R. (2020). Die Entwicklung der Digitale Kompetenzen für das Lehramt in den Naturwissenschaften -Studienabbruchquoten in Deutschland. DZHW Brief 3|2020. Hannover. DZHW. DiKoLAN. In S. Becker, J. Meßinger-Koppelt, & C. Thyssen (Hg.), Digitale

https://doi.org/10.34878/2020.03.dzhw_brief Science, 331(6022), 1269–1270.

goettingen.de/de/document/download/8f76f0f86ffc48a34292baaaddbaead8.pd f/Dissertation%20KLEIN%20Pascal.pdf

[5] Teichmann, E., Lewandowski, H. J. & Alemani, M. (2022). Investigating [1] Bauer, A., Lahme, S., Woitkowski, D. & Reinhold, P. (2019). PSΦ: students' views of experimental physics in German laboratory classes. Phys.

Thoms, L.-J., Thyssen, C., & Kotzebue, L. v. (2020): Orientierungsrahmen Basiskompetenzen: Orientierungshilfe und Praxisbeispiele für die universitäre [3] Ruiz-Primo, M. A., Briggs, D., Iverson, H., Talbot, R. & Shepard, L. A. Lehramtsausbildung in den Naturwissenschaften (S. 14-43). Hamburg; (2011). Impact of undergraduate science course innovations on learning. Joachim Herz Stiftung. https://www.joachim-herz-stiftung.de/fileadmin/ Redaktion/JHS Digitale Basiskompetenzen web srgb.pdf

[4] Klein, P. (2016). Konzeption und Untersuchung videobasierter Aufgaben im [7] Lahme, S. Z., Klein, P., Lehtinen, A., Müller, A., Pirinen, P., Susac, A., & Rahmen vorlesungsbegleitender Übungen zur Experimentalphysik (Mechanik) Tomrlin, B. (angenommen). DigiPhysLab: Digital Physics Laboratory Work for [Dissertation, Technische Universität Kaiserslautern]. https://www.uni- Distance Learning. PhyDid B - Didaktik der Physik - Beiträge zur DPG- Frühjahrstagung – online 2022.

[8] Fliege, J., Rose, M., Arck, P., Levenstein, S. & Klapp, B. F. (2001). Validierung des "Perceived Stress Questionnaire" (PSQ) an einer deutschen Phys., 89(4), 342–348. Stichprobe. *Diagnostica*, 47(3), 142-152.

[9] Lahme, S. Z., Cirkel, J. O., Hahn, L., Klein, P., Langendorf, R., & Schneider, for Distance Learning. www.jyu.fi/digiphyslab S. (angenommen). Belastungstrajektorie in der Studieneingangsphase Physik.

frictional dynamics of the slamming of a door. Am. J. Phys., 85(1), 30–37. [11] Kuhn, J., Vogt, P. & Müller, A. (2014). Analyzing elevator oscillation with [16] Tomrlin, B., Lahme, S. Z., Pirinen, P., Lehtinen, A., Klein, P., Susac, A. the smartphone acceleration sensors. *Phys. Teach.*, *52*(1), 55–56. [12] Puttharugsa, C., Khemmani, S., Utayarat, P. & Luangtip, W. (2016). Vortrag Investigation of the rolling motion of a hollow cylinder using a smartphone. Eur. J. Phys., 37(5), 55004.

Katsifis, G. (2021). The mobile phone as a free-rotation laboratory. Am. J.

[14] Projekt-Website DigiPhysLab: Developing Digital Physics Laboratory Work

[15] Lahme, S. Z., Pirinen, P., Tomrlin, B., Lehtinen, A., Susac, A., Müller, A. & PhyDid B - Didaktik der Physik – Beiträge zur DPG-Frühjahrstagung – online Klein, P. (2022). DigiPhysLab: Digital Physics Laboratory Work for Distance Learning. Poster auf der DPG-Frühjahrstagung 2022 (online). [10] Klein, P., Müller, A., Gröber, S., Molz, A. & Kuhn, J. (2017). Rotational and https://www.jyu.fi/science/en/physics/studies/digiphyslab/dd36-1_lahme-et- al_digiphyslab_english.pdf

(2022). Development of digital experimental tasks for distance learning. GIREP-Tagung 2022 (Ljubljana). https://www.jyu.fi/science/en/physics/studies/digiphyslab/tomrlin-et-

al_presentation_girep_development-of-digital-experimental-tasks-for-distance-[13] Wheatland, M. S., Murphy, T., Naoumenko, D., van Schijndel, D. & <u>learning 2022.pdf</u>