Electrodynamics of Fluorescence Jorg Enderlein, 2003

1. Introduction: Maxwell's Equations and Plane Waves

In what follows, we will consider the electrodynamic interaction of fluorescing mole-
cules with an inhomogeneous environment. Although the absorption and emission of
light is a thoroughly quantum-mechanical process, many aspects of this interaction can
be studied within the so called semi-classical framework, which is based on Maxwell’s
electrodynamics. The core idea of this semi-classical approach isto handle the mole-
cule asaclassical oscillating eectric dipole, which is an excellent approximation for
most molecules of practical interest (corresponding to the fact the most electronic
transitions involved in fluorescence are dipole transitions). All calculations of light ab-
sorption and emission are calculated by solving Maxwell’ s equations for the el ectro-
magnetic field in the presence of such adipole. The term “semi” refers to the fact that
the results of these calculations are then interpreted from a quantum-mechanical point

of view.

Thus, from atechnical point of view, what we have do deal with are Maxwell’ s equa-

tions, which read (in cgs units, which will be used throughout this tutorial)
div (eE) = 4pr
divB=0

rotE =- 118

c

mg c 1t c
where E and B are the electric and magnetic field, r and j are the electric charge and

current density, e and mare the dielectric susceptibility and magnetic permeability of
the medium, and ¢ is the speed of light. For asingular dipole at the center of the co-

ordinate system r =0 and oscillating with frequency w, one has
r =0 and j=-iwpd(r)exp(- iwr),

with d(r) Dirac’s delta function in three dimensions, and p the dipole amplitude vec-

tor. However, before we consider in detail the solution of Maxwell’s equations for the

dipole, we first consider their solutions for a source-free medium (no free charges and
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currents), which are plane electromagnetic waves, and study the interaction of these
plane waves with a planar discontinuity of the dielectric susceptibility of the medium.
With other words, we study the interaction of plane electromagnetic waves with an
interface. The results of these studies will be of fundamental importance for the subse-

guent considerations of the oscillating dipole and its interaction with such an interface.

We seek the solution for the el ectromagnetic field within a source-free medium in the

form of plane waves, E,B [ exp(ik x - iwt), where k and w are the wave vector and

oscillation frequency of the waves. For simplicity, we will always consider media with
unity magnetic permeability, m=1, which isin excellent approximation for most mate-
rials of practical interest. By direct insertion into Maxwell’ s equations a presented

above, we find the relations

diveE =iek X =0

divB =k B
rotE=ik’ E=- - 1B _Wg
ct ¢
rotB:[k' B:EE:_ ENE
c It c

These relations show, first at al, that E, B, and k are mutually orthogonal one to
another. Next, applying the rotor a second time to the third equation and using the first
and last equation leads to

. W ew?
rotrotE=-k* (k" E)=k’E="rotB=—FE
C C

thus defining the amplitude of the wave vector as [K|© & =+/ew/c® nw/c (whichis
also called the dispersion relation), and relating the amplitude of the electric and mag-

netic field |B| = n|E|. Here, the so called index of refraction n = Je wasintroduced.

Thus, plane waves are indeed solutions of Maxwell’ s equations, as long as the relations

E~"B,E*k, BNk, [B|=nE| and k =nw/c hold. Asfree variables we still have

the electric field amplitude, E, the oscillation frequency w, and the propagation direc-
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tion given by the unit vector k =k/|k| (throughout the tutorial, we will use a hat for

symbolizing unit vectors).

An important point is that the found plane wave solutions form a complete set of solu-
tions: any solution of the electromagnetic field within a source-free homogeneous
(e=const.) medium can be represented by a superposition of these plane waves. In
subsequent chapters, we will learn of aternative complete systems of solutions that are
more adapted to problems with cylindrical or spherical symmetry. The plane wave so-
[utions, however, are perfect when studying problems involving only planar parallel
interfaces, and the simplest problem that we will consider next is the interaction of a

plane wave with a planar interface.
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2. Plane Waves and Planar Boundaries: Fresnel’s Relations

Let us consider the most general case of such plane waves at a planar interface dividing

two mediawith index of refraction », and n,,,. There are up to four interconnected

plane waves (see figure below), denoted by E’ and EZ,,, where the subscript refers to

the medium, and the * -sign to whether the wave travels into a positive direction (from
medium ;j towards medium j+1) or into a negative direction (from j+1 towards ). If the
electric field vectors are within the plane of the directions of wave propagation, the

wave is caled transversal electric (TE) or p-wave; if the eectric field vectors are paral-

lel to the boundary, the wave is called transversal magnetic (TM) or s-wave.

To get a connection between these four plane waves, we have to consider the bound-
ary conditions. First of all, the plane waves represent periodic structures of the electric
field in space. Along the boundary, the periodicity of the electric field on both sides of

the boundary has to be the same. The periodicity is given by the projections of the

wave vectors k., onto the boundary. Let us denote these components of the k7 .,
as q, and the modulus of the component perpendicular to the boundary as w; ., (see
figure below). Pay attention to the fact that q is atwo-dimensional vector within the
plane of the boundary, and it is the same for al four plane waves, whereas w, .., has

J

the same value on the same side of the boundary, but is different on different sides.
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As we have seen in the preceding section, the lengths of the wave vectors are propor-

tional to the index of refraction, »; ,,. Setting for convenience the length of the wave

vector in vacuum to unity, we thus have the general relation

nj,j+l k] ]+l \/ q + W] j+l

Furthermore, the angle of incidence of the plane wavesis given by
S-nqj,jﬂ :q/nj,j+1 !
which yields directly Snell’ s law of refraction because g isthe samein al media

Next, we take into account the boundary conditions for the electric field: The electric

field components parallel to the boundary, as well as the products of the diglectric con-

stant (e, =n f) with the components perpendicular to the boundary, have to be the

same on both sides of the boundary.

Let usfirst consider the p-wave case. Simple geometry gives the components of the

electric field parallel and perpendicular to the interface as +w; /n; E; ; and g/n  E, ;,

respectively (the same holds for j+1). Thus, the boundary conditions can be written in

a compact matrix form as:

wj/nj B J/J PJ—: J+1/n1+1 B J+1/nJ+1CE£pJ+1
é nj éEp]ﬂ nj+1 nj+1 E ]+1g

where ¢ was cancelled out. The inverse of the matrix on thel.h.s. is given by:

1 N
gvk/nk 'Wk/”kQ :ignk Wk/"kQ

1 n g 2w e n wy/n, 98

Thus, the connection between the electric field componentsis explicitly given by:
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PJ 2: 1een, /W ]/ J J+1/nj+1 ) J+1/n1+1 ﬁp J+1
éEP J a zg J /W ]/n g 4+ nj”— Ep ]+lﬂ
_leew/n+tn - wn+nEE,

- p.j+l
2%— win+n w/n+n éEp,]*-la

where the short-hand notation w® w,, /w, and n° n,,, /n, isintroduced.

Consider the specid case of a plane wave incident from the j-side. Then, there will be

no E;,, component, but areflected E; and atransmitted £7,, component. We thus
find

pjgzlaaw/n+n -w/n+n(ﬁp]+1
éEp]g -w/n+n w/n+n & 0 p

and for the electric field amplitudein ; +1:

2E" . 2n.n. . w.E"

+ pJ —AF Jjtl J P.J

o>
+

) ) e .
p.jtl p.Jj+l p.Jj+l
w/n+n W, tn,  w

j+1q - qZ
n

with & aunit vector along E?

» i+, Where q,z denote unit vectors

2 ]+1
j+l

along q and perpendicular to the boundary, respectively. Finally, the spatial field

dependence is given by the exponentia term exp(z'q i+ iw j+1z) where z isthe coordi-

nate perpendicular to the boundary, and r the two-dimensional coordinate vector

within the boundary plane. An important special caseiswhen w,,, becomesimaginary,

leading toe an evanescent wave on the j+1-side. This happens if
2 _ .2 2 _ 2 ( 2 2)< 0
Win=H~-q —Nin-\n; - W, J
which shows that a condition for the emergence of an evanescent waveis n,,, <n;.
The angle of incidence for which w; = /n] is called the critical angle, where

total reflection starts and evanescent waves emerge.

The reflection and transmission coefficients are defined as
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E E' .
R=—2L and T =2
E* E’
P pPiJ
S0 that we obtain:
2
- 2
R=""Tadr=—""—.
n-+w n-+w

Animportant peculiarity of total internal reflection isthe occurrence of a phase jump

between incident and reflected wave, which can be seen by writing the electric field

components £, . as (see matrix equation for the boundary conditions above)

laav O
+ Jr+
Ep] ——(‘:—+nTEpJ+1

2én 17
) leew 0
Ep,j :EQ- —+n Ep Jj+l
e n (%]

If w,,, ispurely imaginary, the factor in the brackets adds an additional phase f* to

the £ . components, with

+

exp(z'f -)u + ¥y

n
or
Img_w+n9 £lm
tanf * = " ',Z,' — ZW,
REE el "
e n g
so that
. Imw g mw m
Df =f - f* =arctangz — -2 & 9—-2arctan8é vo
@ én’ g n? g

Very similar considerations hold for s-waves. Because all electric field vectors are now
paralld to the interfaces, one uses a second boundary condition involving the continu-

ity of the parallel component of the magnetic field across boundaries. For a plane wave
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with electric field vector E, ; paralel to the boundary, the parallel component of the

magnetic field isgiven by q x(ﬁj ’ Ew,): w;E . Thus, the boundary conditions read:

S == s ]+1
J - W éESJ ﬂ WJ+1 B WJ+1gEs ]+1g

so that, with

onefinds

:nglé ]/W %1 1 w:JHG
éESJﬂ ]/W gwﬁl B W]+1éES,]+1ﬂ

1ad+w 1- wo“aeE”+1
2§1-w 1+ wgE:

s]+lﬂ

The reflection and transmission coefficients at asingle interface (;, j +1) now are

- 2
R=1 WandT:—,
1+w 1+w

and the phase jump under total reflection is Df = - 2arctan(Imw) , and we again em-

ployed the short-hand notation w° w.,,/w, and n° n,, /n, .
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3. Oscillating electric dipole in a homogeneous environment

After our exceeding review of plane electromagnetic waves and their interaction with
planar interfaces, let us now return to the electromagnetic field of a free electric dipole

within a homogeneous environment.

Starting point of our considerations is the fourth of Maxwell’ s equations for a oscillat-

ing electric dipole at the coordinate system’s origin, r =(0,0,0), thus

iwe
rotB=- "—E+ " j=- "%
C C C C

dp._ ine 4piwp d(r).

Together with the third of Maxwell’s equations, rot E = (iw/c)B, this can be rewritten

to
2
rotrot E - —E = 4pW2 d(r).
C C
Passing to Fourier space yields
-k’ (k" E)- ek2E=(k*- ek )E - k(k=E)=4pk2p,

where the definition k, =w/c was used. Multiplying both sidesby k gives a expres-

sion for k>XE :
k@_-@km

so that

E(—)[ekop k k>p]

when switching back from Fourier to direct space, E isgiven by

3
E(r) 4p d’k expzk>1~

2p) ek [ekop kk>p)]

Representing k in appropriately oriented spherical coordinates (k,h,y ) so that

k x = krcosy , thisresult can be rewritten as
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Ele)= 2 ot vy PO etz )

0

¥ p .
=L (ot + graddiv )p gk yly siny PR C0SY )
ep 0 0 k* - eko

where the integration over h yielded afactor 2p. Let us next consider the integrals
only. Theintegral over y can be taken directly, giving

p

¥ . .
2 i, €Xp(ikrcosy ) explikr)- exp(- ikr) _ 1" - explikr)
OGSy = T Oikk K7 - ekl i O e

0

The integration over £ can be done in the complex i-plane, where the integration is
closed in the upper half plane at infinity, and the integration is deformed in such away
asto exclude the pole k =- \/Eko , taking into account that only outgoing waves with
k = +nk, are physicaly reasonable. Thus, the integral is taken over the following
closed path

Im k&

= <7 : > Rek
- nk +nk

Applying Cauchy’ s residue theorem we thus obtain

p(lkr) _ (zkr) _ exp(inkor)
gkk kZ d{z ir ?Zkkkz d{z p B ’
or
s explinkyr)i

E(r) :—i(ekg +graddiv)§) —]

Without restriction of generality, let us calculate the action of the differential operators
in aspherical co-ordinate system (r,q,f ) with its polar axis q=0 oriented along p.

The we have (using in the following the abbreviation k = nk,)

10
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graddivy exp(ikr)g: gradgC— - izg(p ﬁ)exp(zkr)g
PR &r r’g v
2 = , i
= 2 2k T (¢ p)E - Sexoli)
roorr o ] r r a0

or finaly

3

e 3 O.. . & i 1 0 Yexp(ikr)
E = 2 - 1- e : 1 I : | .
R T

:PU
kr)2 épg kr

This result describes the field of electromagnetic waves propagating away from the
dipol€’ s position (always remember that there is the factor exp(- th) present which
we have al the time omitted). The next figure shows the contours of constant field

amplitude [E(r) for avertical dipole orientation.

An interesting question is the angular distribution of energy radiation away from the
dipole. The energy flux is given by the Poynting vector, S =(c/4p)E” B, or when us-
ing the complex-valued temporal Fourier amplitudes (as throughout this tutorial) and
averaging over one oscillation period, by S = (c/8p)Re(E” B") (star always denotes
complex conjugation). We can further ssmplify our considerations when taking into

account that only componentsin S that fall of with " will contribute to energy trans-

port towards infinity: anything that falls off faster cannot carry energy away, because

11
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the area of dipole-enclosing spheres with radius r increases proportionally to »2. Thus,
we have to consider only components proportional to »* in E and B, or
21 afa oy explikr)
E(r)~ kik[p- £(Fp)] =~

kr
and

B(r)= %“’t E(r)= %rot é(k 4 graddiV)gp eprik”)g
0 0
=gt gp eplir)y. Jok (" p)explikr)
! r H r

so that for the far-field Poynting vector we obtain

4
cnk,

SR\ Y ky - .
oelo- ol (¢ p)=go sl EoF]

S ~

Thus, the radiation points away from the dipole’ s position, and has the angular distri-
bution

2 4 2
- d-S :cnkop snq.
snqdqdf 8p

The total power of emission is obtained by integrating over al angular directions,

ckyp°®

8pn

p 2p
S, = (ylasinq ¢yf sinzq:%cnkg‘pz.

0 0
What do we learn from these results? The angular distribution of radiation of a dipole

follows asimple sin? g-dependence, where q is the angle between dipole orientation
and radiation direction. This distribution is shown in the net figure.
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Thus, thereis no far-field energy transport along the direction of the dipole axis. The
total emitted power is proportional to k; ~1*, thusinversely proportional to the

fourth power of the wavelength. Because the electrodynamics of light scattering on
dipoles follows a similar mathematics as developed here, we have recovered the well-
known result that scattering intensity (scattering cross section) increases inversely pro-
portional to the fourth power of the wavelength. Finaly, we have the interesting result
that the total power of emission depends aso on the refractive index » of the embed-
ding medium: Thisisthe first encounter of the phenomenon that the dielectric proper-
ties of the environment can have a direct impact on the emission properties of adipole

(and thus on those of afluorescing molecule).

Until now, we were only interested in the purely mathematical derivation of the elec-
tromagnetic field of an oscillating electric dipole. Now, it istime to stop and to con-
sider the connection of the found results with the emission of a fluorescing molecule.
Nearly al fluorescing molecules of practical interest are electric dipole emitters. Of
course they are also quantum-mechanical entitiesin the sense that they are not emitting
a continuous train of energy but emit their energy in quantized units, photons. These
photons are characterized by their energy (which isdirectly connected with the oscilla-
tion frequency wby E =#w) and polarization (corresponding to the electric field vec-
tor orientation in our consideration). However, what does, for example, the angular
distribution and total power of emission as derived above tell us about the single mole-
cule' s fluorescence? The angular distribution of emission, as derived above within the
framework of Maxwell’s electrodynamics for an oscillating dipole, corresponds to an
angular probability distribution of photon emission: By repeatedly exciting a molecule
and measuring the direction of subsequent photon emission, one obtains the same an-
gular distribution as that calculated above. The total power of emission has asimilar
guantum-mechanical interpretation: The larger that value, the faster the energy is emit-
ted away from the molecule, which means the shorter is the (average) lifetime of the
excited state (fluorescence decay time). This correspondence between classical quanti-
ties such as angular distribution of radiation or total emission power, and quantum-
mechanical quantities such as angular distribution of photon emission or lifetime of the
excited state is the content of the so-called semi-classical approach to single molecule

fluorescence, and isthe basis of all further developments of this tutorial.

13
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4. Forster Resonance Energy Transfer

In the conclusion of the preceding section, we considered the far-field emission of the
dipole, neglecting the so called near-field components of the electric (and magnetic)
field that fall off faster than »**. Here, we will concentrate on these near-field compo-
nents, and we will study the action of an oscillating dipole onto another electric dipole
causing the hopping of the energy from an optically excited molecule to an excitable

molecule in its ground state (Forster Resonance Energy Transfer, or FRET).

Starting point isthe » *-near-field part of eectric field of the oscillating electric dipole

(cf. with results of previous section):

~(n explikr
£, ()3, )- p,]200)
nr
Here, the subscript d indicates that the quantities refer to a so-called donor molecule,
which will act by its electromagnetic near-field on a suitable acceptor molecule, if there
is so-called spectral overlap between the donor’s frequency of emission and the accep-

tor’ s frequency of optical absorption.

The excitation rate of a potential acceptor molecule is given by the product of its
absorption cross section and the number of (virtual) photons per area per second

coming from the donor. This photon flux is calculated as the Poynting energy flux,
proportional to (nc/8p)xE? divided by the energy per photon | /Ac . Taking
furthermore into account that the acceptor dipole excitation is proportional to the
scalar product of acceptor dipole (p,,) orientation and exciting electric field (E )
orientation, and that the macroscopically measured absorption cross section s is
averaged over al possible dipole orientations (and thus only 1/3 of its maximum

value), one finds for the acceptor excitation rate «, :

f)a >Q:d|2f d"
C

where f , isthe donor’s fluorescence quantum yield (the probability that the donor’s

energy is given away eectromagnetically and not by e.g. molecular collisions). Insert-

ing the explicit expression for E, yields

14
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_3000 e Yers )- (6 6 2:_3S|p5f_dk2
ka 8ph n3r6|3(r>pa)(r>pd) (pa mdx 8ph n3r6 '
which defines the so called orientation factor k as
k? =[3(Fp, 6. )- (b, 8.)°
=[3cosq, cosq, - cosf |

=[2cosq, cosq, - cosf sing, sing, |’

Here, q, and q, are the angles between the donor and acceptor dipoles and the

connecting vector r, f isthe angle between the two dipoles, and f the angle between

the planes formed by the donor dipole and r and the acceptor dipole and r, seefigure.

In the above equation for &, , one has still the a priori unknown quantity p, . It can be

found by looking at the total energy emission of the free donor. From a quantum me-
chanical point of view, its energy isthat of one photon, ¢/l . From an classica elec-
tromagnetic point of view, it is given by the emission rate of a dipole with amplitude

p, timesthe average lifetime of the donor’s excited state, t ,. Equaling both values
yields:
he 1
T = 3 pakgent
where k, is again the wave vector in vacuum. Thus, one finds

15
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) 3h _ 3k
Pa 2pkont,,  2pkant,

and

kaZBSI 33h 46k2fd:49—s46k2f
8ph 2pkyt ;n"r 8pkyt n'r

Until now, donor emission and acceptor excitation was assumed to happen at exactly
one wavelength. The complete acceptor excitation rate has to be integrated over all
wavelengths, leading to

o . oNElsl)

k =
" gplep)t,att T FIE()

where F, (1 )/ ¢y F, (1) isthe normalized emission spectrum of the donor. The o

called Forster radiusis given by

- 220205
° 8plep)'nt o FIE()

S0 that

|

.6

k =

a,tot

e

—
Q IO

d

Taking into account the relation between absorption cross section (in cn?) and molar

extinction e (in I/cm/moal),

10°In10e 2303
s = » e
N, N,

one finds the usual textbook expression for &

a,tot

_ 90004n10 kf, OA £, (1 )e, ()
"N 128p°n" trt F(I)

In practice, FRET can be measured by either intensity or lifetime measurements. The

fluorescence intensity of the donor is given by theratio

16
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I Wi
“ kf +knr +ka ’

where k, and k,, aretheradiative (fluorescent) and non-radiative (e.g. molecular col-

lision induced) transition rates of the free donor molecule from its excited to its ground
state. The subscript da refers to the donor intensity in presence of the acceptor. The

intensity of the acceptor is given directly by 7, ~f k,, where f  isthe acceptor’s

aa’

fluorescence quantum yield. Thus, we find the relations

1,-1, k r®

a

I,k +k,+k, R&+r®

where [, isthe donor intensity at equal excitation and detection conditions, but in ab-
sence of the acceptor. If R, isknown a priori, thisrelation can be used to infer the
value of » from intensity measurements.

An dternative is to use lifetime measurements. As already mentioned, the fluorescence

lifetime or lifetime of the exited state is the inverse of the total transition rate from the

excited to the ground state. Thus, for the lifetimes t ,, and t, of the donor in presence

and in absence of the acceptor we find the relation

t,-t, k r®

a

t,  k +k,+k, RS+r°

which can again be used for determining r.

17
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5. Fluorescing molecules on dielectric planar substrates

Until now, we have considered only an emitting molecule within a homogeneous envi-
ronment or close to another absorbing molecule. Nonetheless, we have aready seen
that the properties of the molecul€e' s environment, ether represented by the refractive
index of the embedding medium either by the optical-absorption capability of a nearby
molecule, change the fundamental emission properties such as the excited state life-
time. Here, we will look closer onto this phenomenon, and more specifically, we will
study the impact of the presence of a planar substrate on the molecul€e' s emission

properties.
When considering an oscillating dipole at position r, over asurface, it is useful to go

back to the integral representation of the free dipole as given in Section 3:

3
E(l‘):@ d’k exp lk>R

2p) K- e k2 [e kp- k(k>‘p)]

where R =r - r,,, and the index m refers always to characteristics of the medium

where the dipole is located. We will employ cylindrical coordinates with their z-axis
perpendicular to the interface and pointing from the dipole towards the interface. The

general geometry and several vectors used are shown in the following scheme.

dipole position

¢ mp

e.s'/ \\

DA’ o

Performing the integration along the wave vector component that is vertical to the in-

terface, along a closed contour in the complex plane similar to that employed in Sec-

tion 3, Cauchy’s theorem yields

18
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E_Zpie 5 q[kmp Kk (i op Jexplia (i - ) +iw,

)

where we have introduced cylindrical co-ordinates R = (ii- fi,,z - z,) and

k* =(q,+w, ), and the abbreviations w, =+/k? - ¢> and k, = /e, k, areused (w,
being value of the vertical k-component at the pole of the integrand’ s denominator).
The +-superscript in k. in accordance whether the target point r is below or above
the dipole’ s position, and the value of w,, has always non-negative imaginary part,
corresponding to the fact that we admit only waves propagating away from the dipole,
see aso figure above. The found representation is the so called Weyl representation of
the electric field of an oscillating dipole. This representation is perfectly suited to study
the interaction of the dipole with a planar substrate at z = 0. Upon interaction, every
plane wave in the Weyl representation is refracted and diffracted at the interface ac-

cording to the formulas derived in Section 2.

Let us consider the case of asimple interface dividing the upper medium (z < 0) with
dielectric constant e, from alower medium (z > 0) with dielectric constant e. Firstly,
we separate the p- and s-waves within the Weyl representation above. Let us introduce

two unit vectors e, , and e, that are perpendicular to each other and to the wave vec-

tor k,, , and with e, being parallel to the interface (cf. figure above). These unit vec-

m

tors correspond to the polarizations of the p- and s-components of the plane wave

propagating along k,, and alow the recasting of the Weyl representation into the form

I

The unit vectors themselves have the explicit forms (in Cartesian co-ordinates, as

£= 20 grtle et w)ee e el - a,) e,

shown in above figure)

e, =(w,cosy,w,sny,- ¢)/k, =(cosy cosh,,sny cosh,,- snh,),

m?

e, =k, e, [k, =k,

m m p

“e,, [k, =(- sny,cosy ,0).

m

19
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Secondly, every plane wave in the above representation is reflected and transmitted at

the interface, with reflection and transmission coefficients R, . and 7, for plane p-

and s-waves that are given by (see Section 2)

w,e- we w,-w
Rp = m m ’RS = m
w,et+twe

wm+w’
and

7= 2n, nw, 7= 2w,
P 17 )
w,etwe w, tw

Now, it is straightforward to write down expressions for the electric fields transmitted

through and reflected at the surface:

zkg “dq [e ( )+e T e m]exp[l(p(n n0)+zw |zo|+zwz]

.7 2
E, :%@‘)i_q[e;wlep (e;,, "P)"‘esRs (e, >p)]exp[iq i~ fip) +iw,|zo|- iwz]

where the additional unit vectors
e,, =(- w, cosy,- w,siny,- q)/k, =(- cosy cosh,,,- siny cosh,,,- sinh,,),
e, =(wcosy ,wsiny,- ¢)/k =(cosy cosh,siny cosh,- sinh)
are defined. Please notice the negative sign in front of the exponentia term iwz in the

expression for the reflected field, showing that the reflected waves move away from

the interface.

The next important quantity, after having obtained expressions for the electric field, is
the angular distribution of radiation in both half spaces. For a propagating plane

wave, E, exp(ik x), propagating within a medium of refractive index n, the intensity
of electromagnetic radiation into the direction k isgivenby S = (cn/8p)E,|”. Thus,

the intensity of the dipole radiation emitted into the upper haf-space (z < 0) into a
solid angle element dW? =(q/w, k, )dqdf aong direction (q,w) is proportional to
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2
i;/i;* W, ki’;m [é;np (é' p)+é, (6 >p] [ ” p( p)+é.R (6. >1;>)]exp(2iwm|z0|l2
2
U, ki’;’” ﬂ[é;np +RE, exp(2iwm|zo|)]>1;)|2 +|[1+ R, exp(2iwm|zo|)](és m]z}.

The still unknown proportionality factor can be found by considering the limiting case
that the upper and lower half space have the same refractive index, for which one has
to recover the angular distribution of radiation of afree dipole (Section 3). Then,

R, =R, ° 0, and the above expression smplifies to

a2, |k,
g,

4
which should be identical to %[pz - (F >p)2] , S0 that the missing proportionality

2
=nm°2—p’” [pz- (f*p)z]

factor is cp/2k?2 , or

dS cnk
AW 8p

By applying asimilar line of reasoning for the angular distribution of radiation into the

fe. 1,52 el e 5, ool e v

solid angle element W2 = (¢ / wk )dqdf inlower half space, we obtain

d2s, _ enk| w W

AT 2}exp[— 2|m(wm]zo|].

e 2
Tp mp>p| + s

Notice the exponentia term in the last expression: Even plane wave components with
Im(wm ) >0, that are non-propagating and quickly decaying in upper half space (eva-
nescent modes), can contribute to the far-field radiation in lower half-space. What is
happening from a quantum-mechanical point of view is that virtual photons that are
non-propagating in upper half-space tunnel through the gap between dipole and inter-
face into the lower-half space where they are allowed to propagate. This can, of
course, only happen if the refractive index of the lower half-space is larger than that of

he upper half-space, so that there exist values of ¢ where simultaneously Im(w)=0

and Im(wm)>0.
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Let us next consider two limiting cases of dipole orientation: dipole orientation verti-
cal, and dipole orientation paralld to the interface. In case of avertical orientation we
have p = pz, so that

2
d*S, _ cn,kq|ap|
M 8p |k,

‘1+ R, exp(2iwm|zo|x2

and

2
szT _ cnk§| qwp |
daw  8p ‘kmwm‘

The resulting angular distribution of radiation for a vertica dipole directly on awa-

‘TP‘Z expl- 21m(w, )z, ].

ter/glass interface (n,, = 1.33, n = 1.5) is shown in the next figure.

n=133

For the parallel dipole (along the direction f = 0) we have p = (p,0,0) , and thus obtain

| ‘1— R, exp(2iwm|zo|rcoszf +‘1+RS exp(2iwm|zo|rs’n2fy

dZSR _ cnmk(‘)‘pzi'|wm|2
AW 8p Hkm

and

|2

‘TP‘Zcoszf +|TS|Zsin2fyexp[- 21m(w, )z, ]
The corresponding emission pattern is shown in the next figure.

n=1.33
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When integrating the derived angular distributions of radiation over all anglesin both

half-spaces, i.e.

kOnm 2p 2 kon 2p 2
Jdgqg L, d°S dgq . . d°S
S = f—X+ f—~L,
o= 0 O e T 0% O

one calculates the total power of emission, S, , . The ratio of that power to the total
power of radiation of the free dipole in homogeneous medium with refractive index n,,
then gives the inverse ratio of the fluorescence decay timesin both cases.

The next figure shows the thus calcul ated dependence of the fluorescence lifetime for a

dipole at a water/glass interface in dependence on its distance from silver surface inter-

face.

095 |

09 |

Lifetime [7q]

08 |

o754
0 02 04 0.6 08 1

Distance [A]

Thered line refers to adipole oriented parallel, the blue line to a dipole oriented verti-

caly to the surface.
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6. Fluorescing molecules near planar metallic substrates

In the last Section, we considered the interaction of an emitting molecule with adielec-
tric substrate. In that case, no optical absorption of the emitted light took place. Thus,
by integrating the far-field angular distribution of radiation over the whole solid angle
of 4p, we were able to obtain the total power of emission of the dipole, whichisin-
versely related to the fluorescence decay time. When considering the interaction with a
meta (metd film or metalic haf-space), the situation becomes more complicated.
Metals have dielectric constants with non-zero imaginary part, leading to absorption of
electromagnetic radiation within metallic bodies. Thus, the integral over the complete
far-field radiation does no longer equal the total emission power of the dipole, because
thereis additional energy absorption within the metal. To obtain this total emission,
one has to integrate the Poynting vector over a closed surface enclosing the dipole but
no other absorbing material. In case of a dipole over a planar, possibly metallic sub-
strate, one has thus to find the total energy emission into the lower half-space viathe
integral
s =S RegaAE B).

8 .5

Theelectricfield at z =0 isgiven by either

E, ﬁ“dq[
= @

ez, )+ e,T (e, op)|expliq @ - i)+ iw,

or

E, = 5; ~dq [( +e, R, fe,, >‘P)+es(1+Rs )(es >p)]exp[iq >(ﬁ- ﬁ0)+l'wm |]

Both expressions will lead to the same result for the energy flux through the interface.
The corresponding magnetic fields are obtained by acting with the operator k,'rot on
the electric field expressions:

zk n dq [
2p

B (mp >p) e, T e, >p]exp[zq>(n n0)+zw

T

05 8 i e e ke e
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Thus, we obtain two alternative expressions for the total energy flux through the inter-

face:
ks . .d’q.d°qt. ,
S = ppr R0 "0, ¢ 0/ W [ulr,es, wres, »)
+we(Te, m)(ﬂ@ﬁtm)]exp[i (a- a9~ fio)- Im(w, +we)z,]
_ ck(‘)l \dzq n & . 2 2 i
% Reqwi| P gMTP (emp m} T (e, p) gexp[ 21m(w,, )|zo|]
and

ckd  d%q .d%qC,
S = Re
T 32p° 0w 0 wé n k,

@+ R - REYe, p)etp) Jexplila - ada- ao)- 1ml, +we)z]

ke s d?
;;R ?Zew(lR)(lR} o9+

“fo - Yo g Ner, wles, ) +

#u, @ R ) R e, espl- 2m(, )]
In the above expressions, al primed variables refer to the integration variable q¢, and

we used he well-known identity for Dirac’s d-function

oy “aexplini{q - q9]=(2p)’d*(q- q9.

Both expressions obtained for S lead to exactly the same values, although that is not

obvious when comparing them by sight.

Again, we consider the two limiting dipole orientations, vertically and parallél to the
surface. We will present final results using the expression for S on the dipole side
(involving reflection coefficients). Thisis especialy advantageous if one considers mul-
tilayered substrates: all results remain valid, one has only to use the generalized reflec-
tion coefficients for the multilayer structure. Thus, for the vertical dipole, we obtain
ckop® pon dag’n,w,

. ka Wk (1- Rp)(1+R;)exp[- 2Im(wm]zo|].

S_:

Similarly, we find for the parallel dipole the result:
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g :ckgp2 Re gyl qn,
' wolk,
2 N
::Z|wm (- R i+ R )+ w1+ R )i- & )ul:Jexp[- 21m(w, )z}
m H

The usefulness of these resultsis that they allow for calculating the total emission
power of the molecule into the substrate, and together with the total emission into the
upper half-space as derived in the previous section, the yield information about the
fluorescence lifetime of the molecule. Moreover, for a substrate with thin absorbing
layers allowing light to tunnel through and radiate into the lower half-space, we have
already derived the angular distribution of radiation into that half-space: The found ex-
pressions of the last Section remain valid as long as one uses the correct transmission
coefficients for the absorbing substrate. These coefficients can be calculated exactly in
the same way as for dielectric substrates, as was detailed in Section 2.

As an example let us consider the emission of a dipole near a water/glass interface that
is covered by athin (5 nm) film of slver (n = 0.163 + i 4.07). The next figure shows
the calculated angular distribution of radiation both within the glass and the water for a
vertically oriented dipole.

Angular Distribution of
Radiation for Vertical Dipole

Water

Glass

The dependence of the fluorescence decay time and the amount of energy absorbed by
the metal for the same configuration shows the next figure. The energy absorption is
calculated in the following way: firstly, one calculates the complete far-field emission
viaintegrating the angular distribution of radiation over al directions; secondly, on
calculates the total emission power of the dipole as the sum of the far-field radiation
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into the upper half-space (water) plus the energy flux through the water/metal inter-
face, using the expressions found above. The energy absorption is then given asthe
ratio of complete far-field radiation divided by total emission power. In the figure, the

reference lifetime to isthat of the free dipole in water.

Lifetime[t ]
S (=)
a >

Energy Absorption [Z]
(=
=

S
N

=

20 40 60 80 100

Molecule Distance from Surface [nm]
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7. Fluorescing molecules in beads and spherical cavities

Until now, we have studied only the interaction of fluorescing molecules with planar
substrates. In this Section, we will extend our studies to problems with spherical sym-
metry, i.e. the interaction of dipole emitters with spherical beads and cavities. In Sec-
tion 3, we have found a representation of the electric field (and thus indirectly also for
the magnetic field) of the oscillating electric dipole in plane waves, which proved to be
the corner-stone for handling all subsequent problems of dipole interactions with planar
substrates. The same philosophy applies for other than planar geometries: For any
given geometry, find a representation of the dipole field in an orthogonal function sys-
tem corresponding to the given geometry. Unfortunately, there exist separable, com-
plete, and orthogonal function systems only for alimited number of special co-ordinate
systems, among the Cartesian, cylinder, spherical and ellipsoidal co-ordinates. In
spherical co-ordinates, a complete orthonormal vector-valued function system is pro-
vided by the so-called vector spherical harmonics, which are defined in spherical co-
ordinates (r,q,f) by

2n+1l(n- m m L _(pr= m
M/ (kr,q,f)= / (n+m)8P sng +meotqr,” e, & Hf
; 2n+1(n- m!ln(n"'l) proint
Nnm(kr qf) Al 4p (n+m)!% o fuBlee, +

ST

m u imf l;l

m

an

Here, P denote associated Legendre polynomials with argument cos g, the £, are

spherical Bessal functions with argument 47, the e e, areunit vectors along the

- €q
co-ordinate lines, and the functional system islabeled by the integer indices (n, m),
O£ n<¥, - nE£méEn.Thevector spherical harmonics constitute a complete set of
orthogonal functions that fulfill the vector wave equation, namely DM + kM =0, to-
gether with the zero-divergence condition divM =0 (smilarly for N). When omitting
the zero-divergence condition, there exists still athird class of functionsto form a
complete functional basis, which we will however not consider here. Thus, the func-

tionsM and N constitute a complete (within the space of zero-divergent functions)
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orthonormal vector-vaued function system in spherical co-ordinates similarly to the
plane-wave function system in Cartesian co-ordinates which we met in Section 1. Ad-

ditionally, the vector spherical harmonics are connected by the relations rotM = AN

and rotN = kM . The harmonics for negative values of m, |m| £ n, are given by the

complex conjugate expressions of M i and N/,

nlm| *

Next, we have to find a representation of the dipole field in this function system. with-

out proof, we state here only the final result which reads

E()=4

n=1

la,, M" (k) + b, N" (kr)]

nm nm

fl QJO;

n

with the expansion coefficients

4pzkk 2
o+

Apikk}
n(n+1)

p>M/, (kr9 and b2, = "2 pxN7 (kr9).

nm

Here, j and / stand for the spherical Bessel and Hankel functions j(kr) and 4*(kr). It

is assumed that »¢< r, else one hasto interchange j « 4.

For practical purposes, several specia dipole positions/orientations are of interest.
Without loss of generality, we consider further only dipoles situated on the polar axis
g=0. If thedipoleis oriented perpendicular to that axis along the direction

(@=p/2,f =0), wehave

b= g2 [P+ 91,48, (-9)
e °\ n(n+1) k¢

and if it is oriented along he polar axis q =0, wefind «,, ° 0 and
b 2 J4p(2n +1 Jy (k ([)
"0 r¢

With these expressions at had, the further procedure of studying the interaction of the
dipole with spherical objectsis straightforward. As an example, let us consider adipole

within a metallic spherical cavity of inner radius R and thickness 4 as shown in the fig-
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ure on the next page. Due to the interaction of the dipole field with the cavity, areac-
tion field is generated which can itself be expanded in vector spherical harmonics, on
expansion for every of the three different media cavity core (c), shell (s), and environ-

ment (e)

o

A [ (k.r) + bONE (.r),

m=-n

=
Il
LY

E =8 A [esM (k) + BN (kr)+ al M (kr)+ b5ON" (k)]

n=.

ik

m=-n

& [ai, )+ bNL, (k)]

1 m=-n

o

=
Il

The k, , . arethe three corresponding wave numbers of the three media, and if the di-

poleis e.g. o located within the core, one has obvioudly to use & =k, in the dipole-

field expansion on the previous page. Notice the occurrence of the different Bes-

sel/Hankel functions in the above expansion: Outside the cavity, only expanding wave

traveling away from the cavity are admitted, thus asking for /*(k_); inside the core,
the field has to remain finite, thusonly j, (k,) are allowed; within the shell, both func-

tions are admitted.

The eight unknown coefficients '), a©7) ab") g) p) pls) pba) gng pl) jn the

nm? nm T um Y am Y T nm Y T nm

above equations have to be found as solutions to the boundary conditions for the elec-
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tric and magnetic field amplitudes, namely that the tangential components of the elec-
tric and magnetic fields are continuous across all boundaries. For every order n of the
above expansions, thisyields atotal of eight linear algebraic equations for the eight
unknown coefficients, which can be solved in a straightforward way. We won't give
here the rather complex algebraic solution —in practice, one can use a numerica equa-

tion solver for doing the job.

Two quantities are of major interest when considering the molecul€' s fluorescence
emission: the lifetime of its excited state, and the energy transmission through the me-
tallic shell (i.e. the probability that the dipoles energy is emitted away from the cavity).

For obtaining both values, one calculates the energy fluxes S, and S,,, through the

out

inner and outer surface of the metallic layer. If there are no non-radiative transition
channels from the excited to the ground state (unity fluorescence quantum yield), then

the excited state lifetime is proportional to /S, . Moreover, the probability that the

dipole’ s energy isradiated away from the cavity and is not absorbed within the metal
layer isgivenby S,,./S,, .

Knowing the electric and magnetic field amplitudes allows calculating S, and S, , by

integrating the Poynting vector over the corresponding surfaces, i.e.

R N ..
Sin_8pReg§Ein Bin)XdAH

where E,, =E, ,. +E_. Anadogously, one finds

dipole

S

out

é \ u

=S Res (JE.” B.)4AQ.

80 g a
As before, the fluorescence lifetime of the molecule is inversely proportional to the to-

tal emission power, S,,, and the energy transmission through the metallic shell is given
by Suut/Sin *

As anumerical example we consider a cavity with a polymeric core (n = 1.5) of 24 nm
radius, surrounded by a silver shell (» = 0.163 + i 4.07) of 5 nm thickness, and im-
mersed into a water solution (» = 1.33). The next figure shows the dependence of the

optica transmission, S, /S,, , on the dipole’s position within the cavity for the two

in ?
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principal dipole orientations, perpendicular (~ ) and along (||) the line connecting the

cavity's center wit the dipole’ s position.
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Similarly, the next figure shows the dependence of the fluorescence lifetime, using as
reference lifetime t o the lifetime of the same configuration but without the metalic shell

(dipole within core in water).
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