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1. Introduction: Maxwell's Equations and Plane Waves 

In what follows, we will consider the electrodynamic interaction of fluorescing mole-

cules with an inhomogeneous environment. Although the absorption and emission of 

light is a thoroughly quantum-mechanical process, many aspects of this interaction can 

be studied within the so called semi-classical framework, which is based on Maxwell’s 

electrodynamics. The core idea of this semi-classical approach is to handle the mole-

cule as a classical oscillating electric dipole, which is an excellent approximation for 

most molecules of practical interest (corresponding to the fact the most electronic 

transitions involved in fluorescence are dipole transitions). All calculations of light ab-

sorption and emission are calculated by solving Maxwell’s equations for the electro-

magnetic field in the presence of such a dipole. The term “semi” refers to the fact that 

the results of these calculations are then interpreted from a quantum-mechanical point 

of view. 

Thus, from a technical point of view, what we have do deal with are Maxwell’s equa-

tions, which read (in cgs units, which will be used throughout this tutorial)  

( ) πρ=ε 4Ediv  
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where E  and B  are the electric and magnetic field, r and j  are the electric charge and 

current density, ε and µ are the dielectric susceptibility and magnetic permeability of 

the medium, and c is the speed of light. For a singular dipole at the center of the co-

ordinate system 0=r  and oscillating with frequency ω, one has  

0=ρ  and ( ) ( )tii ω−δω−= exprpj , 

with ( )rδ  Dirac’s delta function in three dimensions, and p  the dipole amplitude vec-

tor. However, before we consider in detail the solution of Maxwell’s equations for the 

dipole, we first consider their solutions for a source-free medium (no free charges and 
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currents), which are plane electromagnetic waves, and study the interaction of these 

plane waves with a planar discontinuity of the dielectric susceptibility of the medium. 

With other words, we study the interaction of plane electromagnetic waves with an 

interface. The results of these studies will be of fundamental importance for the subse-

quent considerations of the oscillating dipole and its interaction with such an interface. 

We seek the solution for the electromagnetic field within a source-free medium in the 

form of plane waves, ( )tii ω−⋅∝ rkBE exp, , where k  and ω are the wave vector and 

oscillation frequency of the waves. For simplicity, we will always consider media with 

unity magnetic permeability, 1=µ , which is in excellent approximation for most mate-

rials of practical interest. By direct insertion into Maxwell’s equations a presented 

above, we find the relations 
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These relations show, first at all, that E , B , and k  are mutually orthogonal one to 

another. Next, applying the rotor a second time to the third equation and using the first 

and last equation leads to 

( ) EBrotEEkkErotrot
2

2
2
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thus defining the amplitude of the wave vector as cnck ω≡ωε=≡k  (which is 

also called the dispersion relation), and relating the amplitude of the electric and mag-

netic field EB n= . Here, the so called index of refraction ε=n  was introduced. 

Thus, plane waves are indeed solutions of Maxwell’s equations, as long as the relations 

BE ⊥ , kE ⊥ , kB ⊥ , EB n=  and cnk ω=  hold. As free variables we still have 

the electric field amplitude, E, the oscillation frequency ω, and the propagation direc-
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tion given by the unit vector kkk =ˆ  (throughout the tutorial, we will use a hat for 

symbolizing unit vectors).  

An important point is that the found plane wave solutions form a complete set of solu-

tions: any solution of the electromagnetic field within a source-free homogeneous 

( const.=ε ) medium can be represented by a superposition of these plane waves. In 

subsequent chapters, we will learn of alternative complete systems of solutions that are 

more adapted to problems with cylindrical or spherical symmetry. The plane wave so-

lutions, however, are perfect when studying problems involving only planar parallel 

interfaces, and the simplest problem that we will consider next is the interaction of a 

plane wave with a planar interface. 
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2. Plane Waves and Planar Boundaries: Fresnel’s Relations 

Let us consider the most general case of such plane waves at a planar interface dividing 

two media with index of refraction jn  and 1+jn . There are up to four interconnected 

plane waves (see figure below), denoted by ±
jE  and ±

+1jE , where the subscript refers to 

the medium, and the ± -sign to whether the wave travels into a positive direction (from 

medium j towards medium j+1) or into a negative direction (from j+1 towards j). If the 

electric field vectors are within the plane of the directions of wave propagation, the 

wave is called transversal electric (TE) or p-wave; if the electric field vectors are paral-

lel to the boundary, the wave is called transversal magnetic (TM) or s-wave.  
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To get a connection between these four plane waves, we have to consider the bound-

ary conditions. First of all, the plane waves represent periodic structures of the electric 

field in space. Along the boundary, the periodicity of the electric field on both sides of 

the boundary has to be the same. The periodicity is given by the projections of the 

wave vectors ±
+1, jjk  onto the boundary. Let us denote these components of the ±

+1, jjk  

as q , and the modulus of the component perpendicular to the boundary as 1, +jjw  (see 

figure below). Pay attention to the fact that q  is a two-dimensional vector within the 

plane of the boundary, and it is the same for all four plane waves, whereas 1, +jjw  has 

the same value on the same side of the boundary, but is different on different sides.  
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As we have seen in the preceding section, the lengths of the wave vectors are propor-

tional to the index of refraction, 1, +jjn . Setting for convenience the length of the wave 

vector in vacuum to unity, we thus have the general relation 

2
1,

2
1,1, +++ +== jjjjjj wqkn . 

Furthermore, the angle of incidence of the plane waves is given by 

1,1,sin ++ =θ jjjj nq , 

which yields directly Snell’s law of refraction because q is the same in all media. 

Next, we take into account the boundary conditions for the electric field: The electric 

field components parallel to the boundary, as well as the products of the dielectric con-

stant ( 2
jj n=ε ) with the components perpendicular to the boundary, have to be the 

same on both sides of the boundary.  

Let us first consider the p-wave case. Simple geometry gives the components of the 

electric field parallel and perpendicular to the interface as ±± jpjj Enw ,  and ±
jpj Enq , , 

respectively (the same holds for j+1). Thus, the boundary conditions can be written in 

a compact matrix form as: 
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where q was cancelled out. The inverse of the matrix on the l.h.s. is given by: 

w n w n
n n w

n w n
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Thus, the connection between the electric field components is explicitly given by:  
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where the short-hand notation jj www 1+≡  and jj nnn 1+≡  is introduced. 

 

Consider the special case of a plane wave incident from the j-side. Then, there will be 

no −
+1jE  component, but a reflected −

jE  and a transmitted +
+1jE  component. We thus 

find 
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and for the electric field amplitude in 1+j : 
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ê  a unit vector along +

+1, jpE , where zq ˆ,ˆ  denote unit vectors 

along q and perpendicular to the boundary, respectively. Finally, the spatial field 

dependence is given by the exponential term ( )ziwi j 1exp ++⋅ñq  where z  is the coordi-

nate perpendicular to the boundary, and ρρ the two-dimensional coordinate vector 

within the boundary plane. An important special case is when 1+jw  becomes imaginary, 

leading toe an evanescent wave on the j+1-side. This happens if 

( ) 0222
1

22
1

2
1 <−−=−= +++ jjjjj wnnqnw , 

which shows that a condition for the emergence of an evanescent wave is jj nn <+1 . 

The angle of incidence for which 22
1 jjj nnw −= +  is called the critical angle, where 

total reflection starts and evanescent waves emerge.  

The reflection and transmission coefficients are defined as  
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An important peculiarity of total internal reflection is the occurrence of a phase jump 

between incident and reflected wave, which can be seen by writing the electric field 

components ±
jpE ,  as (see matrix equation for the boundary conditions above) 
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If 1+jw  is purely imaginary, the factor in the brackets adds an additional phase ±φ  to 

the ±
jpE ,  components, with 
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Very similar considerations hold for s-waves. Because all electric field vectors are now 

parallel to the interfaces, one uses a second boundary condition involving the continu-

ity of the parallel component of the magnetic field across boundaries. For a plane wave 
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with electric field vector js,E  parallel to the boundary, the parallel component of the 

magnetic field is given by ( ) jsjjsj Ew ,,
ˆˆ =×⋅ Ekq . Thus, the boundary conditions read: 
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The reflection and transmission coefficients at a single interface ( )1, +jj  now are 

w
w

R
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=
1
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w

=
+
2

1
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and the phase jump under total reflection is ( )∆φ = −2 arctan Im w , and we again em-

ployed the short-hand notation jj www 1+≡  and jj nnn 1+≡ . 
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3. Oscillating electric dipole in a homogeneous environment 

After our exceeding review of plane electromagnetic waves and their interaction with 

planar interfaces, let us now return to the electromagnetic field of a free electric dipole 

within a homogeneous environment.  

Starting point of our considerations is the fourth of Maxwell’s equations for a oscillat-

ing electric dipole at the coordinate system’s origin, ( )0,0,0=r , thus 

( )rpEjEBrot δ
ωπ

−
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−=
π

+
ωε

−=
c
i

c
i

cc
i 44

. 

Together with the third of Maxwell’s equations, ( )BErot ciω= , this can be rewritten 

to 
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2 4
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Passing to Fourier space yields 

( ) ( ) ( ) pEkkEEEkk 2
0

2
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0 4 kkkk π=⋅−ε−=ε−××− , 

where the definition ck ω=0  was used. Multiplying both sides by k  gives a expres-

sion for Ek ⋅ : 
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when switching back from Fourier to direct space, E is given by  
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Representing k in appropriately oriented spherical coordinates ( )ψη,,k  so that 

ψ=⋅ coskrrk , this result can be rewritten as  
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where the integration over η yielded a factor 2π. Let us next consider the integrals 

only. The integral over ψ can be taken directly, giving 
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The integration over k can be done in the complex k-plane, where the integration is 

closed in the upper half plane at infinity, and the integration is deformed in such a way 

as to exclude the pole 0kk ε−= , taking into account that only outgoing waves with 

0nkk +=  are physically reasonable. Thus, the integral is taken over the following 

closed path  

Re k
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Applying Cauchy’s residue theorem we thus obtain 
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Without restriction of generality, let us calculate the action of the differential operators 

in a spherical co-ordinate system ( )φθ,,r  with its polar axis 0=θ  oriented along p. 

The we have (using in the following the abbreviation 0nkk = ) 
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or finally 
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This result describes the field of electromagnetic waves propagating away from the 

dipole’s position (always remember that there is the factor ( )tiω−exp  present which 

we have all the time omitted). The next figure shows the contours of constant field 

amplitude ( )rE  for a vertical dipole orientation. 

 

An interesting question is the angular distribution of energy radiation away from the 

dipole. The energy flux is given by the Poynting vector, ( ) BES ×π= 4c , or when us-

ing the complex-valued temporal Fourier amplitudes (as throughout this tutorial) and 

averaging over one oscillation period, by ( ) ( )*Re8 BES ×π= c  (star always denotes 

complex conjugation). We can further simplify our considerations when taking into 

account that only components in S that fall of with 2−r  will contribute to energy trans-

port towards infinity: anything that falls off faster cannot carry energy away, because 
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the area of dipole-enclosing spheres with radius r increases proportionally to 2r . Thus, 

we have to consider only components proportional to 1−r  in E and B, or  

( ) ( )[ ] ( )
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so that for the far-field Poynting vector we obtain 
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Thus, the radiation points away from the dipole’s position, and has the angular distri-

bution 

θ
π

=
φθθ

2
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The total power of emission is obtained by integrating over all angular directions,  
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n
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π

φθθ= ∫∫
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. 

What do we learn from these results? The angular distribution of radiation of a dipole 

follows a simple θ2sin -dependence, where θ is the angle between dipole orientation 

and radiation direction. This distribution is shown in the net figure.  
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Thus, there is no far-field energy transport along the direction of the dipole axis. The 

total emitted power is proportional to 44
0 ~ −λk , thus inversely proportional to the 

fourth power of the wavelength. Because the electrodynamics of light scattering on 

dipoles follows a similar mathematics as developed here, we have recovered the well-

known result that scattering intensity (scattering cross section) increases inversely pro-

portional to the fourth power of the wavelength. Finally, we have the interesting result 

that the total power of emission depends also on the refractive index n of the embed-

ding medium: This is the first encounter of the phenomenon that the dielectric proper-

ties of the environment can have a direct impact on the emission properties of a dipole 

(and thus on those of a fluorescing molecule).  

Until now, we were only interested in the purely mathematical derivation of the elec-

tromagnetic field of an oscillating electric dipole. Now, it is time to stop and to con-

sider the connection of the found results with the emission of a fluorescing molecule. 

Nearly all fluorescing molecules of practical interest are electric dipole emitters. Of 

course they are also quantum-mechanical entities in the sense that they are not emitting 

a continuous train of energy but emit their energy in quantized units, photons. These 

photons are characterized by their energy (which is directly connected with the oscilla-

tion frequency ω by ω= hE ) and polarization (corresponding to the electric field vec-

tor orientation in our consideration). However, what does, for example, the angular 

distribution and total power of emission as derived above tell us about the single mole-

cule’s fluorescence? The angular distribution of emission, as derived above within the 

framework of Maxwell’s electrodynamics for an oscillating dipole, corresponds to an 

angular probability distribution of photon emission: By repeatedly exciting a molecule 

and measuring the direction of subsequent photon emission, one obtains the same an-

gular distribution as that calculated above. The total power of emission has a similar 

quantum-mechanical interpretation: The larger that value, the faster the energy is emit-

ted away from the molecule, which means the shorter is the (average) lifetime of the 

excited state (fluorescence decay time). This correspondence between classical quanti-

ties such as angular distribution of radiation or total emission power, and quantum-

mechanical quantities such as angular distribution of photon emission or lifetime of the 

excited state is the content of the so-called semi-classical approach to single molecule 

fluorescence, and is the basis of all further developments of this tutorial. 
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4. Förster Resonance Energy Transfer 

In the conclusion of the preceding section, we considered the far-field emission of the 

dipole, neglecting the so called near-field components of the electric (and magnetic) 

field that fall off faster than 1−r . Here, we will concentrate on these near-field compo-

nents, and we will study the action of an oscillating dipole onto another electric dipole 

causing the hopping of the energy from an optically excited molecule to an excitable 

molecule in its ground state (Förster Resonance Energy Transfer, or FRET).  

Starting point is the 3−r -near-field part of electric field of the oscillating electric dipole 

(cf. with results of previous section): 

( ) ( )[ ] ( )
32

expˆˆ3
rn
ikr

r ddd pprrE −⋅≈ . 

Here, the subscript d indicates that the quantities refer to a so-called donor molecule, 

which will act by its electromagnetic near-field on a suitable acceptor molecule, if there 

is so-called spectral overlap between the donor’s frequency of emission and the accep-

tor’s frequency of optical absorption. 

The excitation rate of a potential acceptor molecule is given by the product of its 

absorption cross section and the number of (virtual) photons per area per second 

coming from the donor. This photon flux is calculated as the Poynting energy flux, 

proportional to ( ) 28 dEnc ⋅π  divided by the energy per photon hcλ . Taking 

furthermore into account that the acceptor dipole excitation is proportional to the 

scalar product of acceptor dipole ( ap ) orientation and exciting electric field ( dE ) 

orientation, and that the macroscopically measured absorption cross section σ is 

averaged over all possible dipole orientations (and thus only 31  of its maximum 

value), one finds for the acceptor excitation rate ak : 

( ) ddaa hc
nc

k φ⋅
λ

π
σ= 2ˆ

8
3 Ep . 

where dφ  is the donor’s fluorescence quantum yield (the probability that the donor’s 

energy is given away electromagnetically and not by e.g. molecular collisions). Insert-

ing the explicit expression for dE  yields 



Electrodynamics of Fluorescence Jörg Enderlein, 2003 

 15 

( )( ) ( ) 2
63

2
2

63

2

8

3
ˆˆˆˆˆˆ3

8

3
κ

φ
π

σλ
=⋅−⋅⋅

φ
π

σλ
=

rnh

p

rnh

p
k dd

dada
dd

a ppprpr . 

which defines the so called orientation factor κ as 

( )( ) ( )
[ ]
[ ]2

2

22

sinsincoscoscos2

coscoscos3

ˆˆˆˆˆˆ3

dada

da

dada

θθφ−θθ=

φ−θθ=

⋅−⋅⋅=κ ppprpr

 

Here, aθ  and dθ  are the angles between the donor and acceptor dipoles and the 

connecting vector r , φ is the angle between the two dipoles, and φ  the angle between 

the planes formed by the donor dipole and r  and the acceptor dipole and r , see figure.  

θd

φ

r

pd

pa

θa

 

If the donor and acceptor can freely rotate, one obtains an averaged value for 2κ  as 

[ ]

3
2

9
4

2
1

9
4

sinsincossinsincoscoscos4coscos4

sinsincoscoscos2

22222

22

=+=

θθφ+θθφθθ−θθ=

θθφ−θθ=κ

dadadada

dada

 

In the above equation for ak , one has still the a priori unknown quantity dp . It can be 

found by looking at the total energy emission of the free donor. From a quantum me-

chanical point of view, its energy is that of one photon, λhc . From an classical elec-

tromagnetic point of view, it is given by the emission rate of a dipole with amplitude 

dp  times the average lifetime of the donor’s excited state, dτ . Equaling both values 

yields: 

dd cnkp
hc

τ=
λ

4
0

2

3
1

 

where 0k  is again the wave vector in vacuum. Thus, one finds 
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dd
d nk

h
nk

h
p

τπ
=

τπ
=

3
0

3
0

2

2
3

2
3

 

and 

d
d

d
d

a rnkrnk
h

h
k φκ

τπ
σ

=φκ
τππ

σλ
= 2

644
0

2
643

0 8
9

2
3

8
3

. 

Until now, donor emission and acceptor excitation was assumed to happen at exactly 

one wavelength. The complete acceptor excitation rate has to be integrated over all 

wavelengths, leading to  

( )
( ) ( )

( )∫
∫

λλ

λλσλλ
φκ

τππ
=

d

d

d

d

tota
Fd

Fd

rn
k

4

2

644,
28

9
 

where ( ) ( )λλλ ∫ dd FdF  is the normalized emission spectrum of the donor. The so 

called Förster radius is given by 

( )
( ) ( )

( )∫
∫

λλ

λλσλλ
φ

ππ
κ

=
d

d

d
Fd

Fd

n
R

4

44

2
6
0

28

9
, 

so that 

6

0
,

1








τ
=

r
R

k
d

tota . 

Taking into account the relation between absorption cross section (in cm2) and molar 

extinction ε  (in l/cm/mol), 

ε≈
ε

=σ
AA NN

230310ln103

, 

one finds the usual textbook expression for totak ,  

( ) ( )
( )∫

∫
λλ

λλελλ

τ
φκ

π
⋅

=
d

ad

d

d

A
tota

Fd

Fd

rnN
k

4

6

2

45, 128
10ln9000

. 

In practice, FRET can be measured by either intensity or lifetime measurements. The 

fluorescence intensity of the donor is given by the ratio 
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anrf

f
da kkk

k
I

++
~ , 

where fk  and nrk  are the radiative (fluorescent) and non-radiative (e.g. molecular col-

lision induced) transition rates of the free donor molecule from its excited to its ground 

state. The subscript da refers to the donor intensity in presence of the acceptor. The 

intensity of the acceptor is given directly by aaa kI φ~ , where aφ  is the acceptor’s 

fluorescence quantum yield. Thus, we find the relations 

66
0

6

rR
r

kkk
k

I
II

anrf

a

d

dad

+
=

++
=

−
 

where dI  is the donor intensity at equal excitation and detection conditions, but in ab-

sence of the acceptor. If 0R  is known a priori, this relation can be used to infer the 

value of r from intensity measurements. 

An alternative is to use lifetime measurements. As already mentioned, the fluorescence 

lifetime or lifetime of the exited state is the inverse of the total transition rate from the 

excited to the ground state. Thus, for the lifetimes daτ  and dτ  of the donor in presence 

and in absence of the acceptor we find the relation 

66
0

6

rR
r

kkk
k

anrf

a

d

dad

+
=

++
=

τ
τ−τ

, 

which can again be used for determining r. 
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5. Fluorescing molecules on dielectric planar substrates 

Until now, we have considered only an emitting molecule within a homogeneous envi-

ronment or close to another absorbing molecule. Nonetheless, we have already seen 

that the properties of the molecule’s environment, ether represented by the refractive 

index of the embedding medium either by the optical-absorption capability of a nearby 

molecule, change the fundamental emission properties such as the excited state life-

time. Here, we will look closer onto this phenomenon, and more specifically, we will 

study the impact of the presence of a planar substrate on the molecule’s emission 

properties. 

When considering an oscillating dipole at position 0r  over a surface, it is useful to go 

back to the integral representation of the free dipole as given in Section 3:  

( )
( )

( ) ( )[ ]pkkp
Rkk

rE ⋅−ε
ε−

⋅
πε

π
= ∫ 2

02
0

23

3 exp

2

4
k

kk
id

m
mm

, 

where 0rrR −= , and the index m refers always to characteristics of the medium 

where the dipole is located. We will employ cylindrical coordinates with their z-axis 

perpendicular to the interface and pointing from the dipole towards the interface. The 

general geometry and several vectors used are shown in the following scheme. 

mpe

es

ex

ey

ez

mk

es

pe

k
η

ψ

η
m

mpe

es

−

+

+

mk−

dipole position

 

Performing the integration along the wave vector component that is vertical to the in-

terface, along a closed contour in the complex plane similar to that employed in Sec-

tion 3, Cauchy’s theorem yields 
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( )[ ] ( )( )00
2

2

exp
2

zziik
w
di

mmmm
mm

−+−⋅⋅−
πε

= ±±∫ wññqpkkp
q

E , 

where we have introduced cylindrical co-ordinates ( )00 , zz −−= ññR  and 

( )mm w±=± ,qk , and the abbreviations 22 qkw mm −=  and 0kk mm ε=  are used ( mw  

being value of the vertical k-component at the pole of the integrand’s denominator). 

The ±-superscript in ±
mk  in accordance whether the target point r is below or above 

the dipole’s position, and the value of mw  has always non-negative imaginary part, 

corresponding to the fact that we admit only waves propagating away from the dipole, 

see also figure above. The found representation is the so called Weyl representation of 

the electric field of an oscillating dipole. This representation is perfectly suited to study 

the interaction of the dipole with a planar substrate at z = 0 . Upon interaction, every 

plane wave in the Weyl representation is refracted and diffracted at the interface ac-

cording to the formulas derived in Section 2.  

 

Let us consider the case of a simple interface dividing the upper medium (z < 0) with 

dielectric constant mε  from a lower medium (z > 0) with dielectric constant ε. Firstly, 

we separate the p- and s-waves within the Weyl representation above. Let us introduce 

two unit vectors +
mpe  and se  that are perpendicular to each other and to the wave vec-

tor mk , and with se  being parallel to the interface (cf. figure above). These unit vec-

tors correspond to the polarizations of the p- and s-components of the plane wave 

propagating along mk  and allow the recasting of the Weyl representation into the form 

( ) ( )[ ] ( )[ ]00

2
0 exp

2
zziwi

w
dik

mssmpmp
m

−+−⋅⋅+⋅
π

= ∫∫ ±± ññqpeepee
q

E . 

The unit vectors themselves have the explicit forms (in Cartesian co-ordinates, as 

shown in above figure) 

( ) ( )mmmmmmmp kqww η−ηψηψ=−ψψ=+ sin,cossin,coscos,sin,cose , 

( )0,cos,sin ψψ−=×=×= −−++
mmpmmmpms kk ekeke . 



Electrodynamics of Fluorescence Jörg Enderlein, 2003 

 20 

Secondly, every plane wave in the above representation is reflected and transmitted at 

the interface, with reflection and transmission coefficients spR ,  and spT ,  for plane p- 

and s-waves that are given by (see Section 2) 

,,
ww
ww

R
ww
ww

R
m

m
s

mm

mm
p +

−
=

ε+ε
ε−ε

=  

and 

ww
w

T
ww

nwn
T

m

m
s

mm

mm
p +

=
ε+ε

=
2

,
2

. 

Now, it is straightforward to write down expressions for the electric fields transmitted 

through and reflected at the surface: 

( ) ( )[ ] ( )[ ]iwzziwiTT
w
dik

msssmppp
m

T ++−⋅⋅+⋅
π

= ∫∫ +
00

2
0 exp

2
ññqpeepee

q
E  

( ) ( )[ ] ( )[ ]iwzziwiRR
w
dik

msssmppmp
m

R −+−⋅⋅+⋅
π

= ∫∫ +−
00

2
0 exp

2
ññqpeepee

q
E  

where the additional unit vectors 

( ) ( )mmmmmmmp kqww η−ηψ−ηψ−=−ψ−ψ−=− sin,cossin,coscos,sin,cose , 

( ) ( )η−ηψηψ=−ψψ= sin,cossin,coscos,sin,cos kqwwpe  

are defined. Please notice the negative sign in front of the exponential term iwz in the 

expression for the reflected field, showing that the reflected waves move away from 

the interface.  

 

The next important quantity, after having obtained expressions for the electric field, is 

the angular distribution of radiation in both half spaces. For a propagating plane 

wave, ( )rkEk ⋅iexp , propagating within a medium of refractive index n, the intensity 

of electromagnetic radiation into the direction k  is given by ( ) 2
8 kEπ= cnS . Thus, 

the intensity of the dipole radiation emitted into the upper half-space (z < 0) into a 

solid angle element ( ) φ=Ω dqdkwqd mm/2  along direction ( )w,q  is proportional to 
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( ) ( )[ ] ( ) ( )[ ] ( )
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The still unknown proportionality factor can be found by considering the limiting case 

that the upper and lower half space have the same refractive index, for which one has 

to recover the angular distribution of radiation of a free dipole (Section 3). Then, 

0≡= sp RR , and the above expression simplifies to 

( )[ ]22

22
022

22
0

2

2

ˆ
2

ˆˆ
2

prpepe ⋅−
π

=




 ⋅+⋅

π
∝

Ω
− p

kk
n

kk
n

d
Sd m

msmp
m

m
R  

which should be identical to ( )[ ]22
4
0 ˆ

8
pr ⋅−

π
p

kcnm , so that the missing proportionality 

factor is 22 mkcπ , or  

( )[ ] ( )[ ]( ){ }.ˆ2exp12expˆˆ
8
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2

0

4
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2

2

pepee ⋅++⋅+
π
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smsmmppmp

mR ziwRziwR
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d
Sd

 

By applying a similar line of reasoning for the angular distribution of radiation into the 

solid angle element ( ) φ=Ω dqdwkqd /2  in lower half space, we obtain 

{ } ( )[ ]0

22
24

0
2

2

Im2expˆˆ
8

zwTT
w
wcnk

d
Sd

mssmpp
m

T −⋅+⋅
π

=
Ω

+ pepe . 

Notice the exponential term in the last expression: Even plane wave components with 

( ) 0Im >mw , that are non-propagating and quickly decaying in upper half space (eva-

nescent modes), can contribute to the far-field radiation in lower half-space. What is 

happening from a quantum-mechanical point of view is that virtual photons that are 

non-propagating in upper half-space tunnel through the gap between dipole and inter-

face into the lower-half space where they are allowed to propagate. This can, of 

course, only happen if the refractive index of the lower half-space is larger than that of 

he upper half-space, so that there exist values of q where simultaneously ( ) 0Im =w  

and ( ) 0Im >mw . 
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Let us next consider two limiting cases of dipole orientation: dipole orientation verti-

cal, and dipole orientation parallel to the interface. In case of a vertical orientation we 

have zp ˆp= , so that  

( ) 2

0

24
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2

2

2exp1
8

ziwR
k
qpkcn

d
Sd

mp
m

mR +
π

=
Ω

 

and 

( )[ ]0

2
24

0
2

2

Im2exp
8

zwT
wk

qwpcnk
d

Sd
mp

mm

T −
π

=
Ω

. 

The resulting angular distribution of radiation for a vertical dipole directly on a wa-

ter/glass interface (nm = 1.33, n = 1.5) is shown in the next figure. 

 

n = 1.33

n = 1.50

 

 

For the parallel dipole (along the direction φ = 0) we have ( )0,0,p=p , and thus obtain 

( ) ( )












φ++φ−
π

=
Ω

22

0
22

0

224
0

2

2

sin2exp1cos2exp1
8

ziwRziwR
k
wpkcn

d
Sd

msmp
m

mmR  

and 

( )[ ]0
2222

2224
0

2

2

Im2expsincos
8

zwTT
k
w

w
wpcnk

d
Sd

msp
m

m

m

T −












φ+φ
π

=
Ω

. 

The corresponding emission pattern is shown in the next figure. 

 

n = 1.33

n = 1.50
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When integrating the derived angular distributions of radiation over all angles in both 

half-spaces, i.e.  

2

22

00
2

22

00

00

Ω
φ+

Ω
φ= ∫∫∫∫

ππ

d
Sd

d
kw

qdq
d

Sd
d

wk
qdq

S T
nk

R
nk

mm
tot

m

, 

one calculates the total power of emission, totS . The ratio of that power to the total 

power of radiation of the free dipole in homogeneous medium with refractive index nm 

then gives the inverse ratio of the fluorescence decay times in both cases.  

The next figure shows the thus calculated dependence of the fluorescence lifetime for a 

dipole at a water/glass interface in dependence on its distance from silver surface inter-

face.  

 

 

The red line refers to a dipole oriented parallel, the blue line to a dipole oriented verti-

cally to the surface. 
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6. Fluorescing molecules near planar metallic substrates 

In the last Section, we considered the interaction of an emitting molecule with a dielec-

tric substrate. In that case, no optical absorption of the emitted light took place. Thus, 

by integrating the far-field angular distribution of radiation over the whole solid angle 

of 4π, we were able to obtain the total power of emission of the dipole, which is in-

versely related to the fluorescence decay time. When considering the interaction with a 

metal (metal film or metallic half-space), the situation becomes more complicated. 

Metals have dielectric constants with non-zero imaginary part, leading to absorption of 

electromagnetic radiation within metallic bodies. Thus, the integral over the complete 

far-field radiation does no longer equal the total emission power of the dipole, because 

there is additional energy absorption within the metal. To obtain this total emission, 

one has to integrate the Poynting vector over a closed surface enclosing the dipole but 

no other absorbing material. In case of a dipole over a planar, possibly metallic sub-

strate, one has thus to find the total energy emission into the lower half-space via the 

integral 

( )*
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ˆRe
8
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π

= ∫
=

−
z

dA
c

S . 

The electric field at z = 0  is given by either  
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2
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or 

( )( ) ( )( )[ ] ( )[ ]00

2
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2
ziwiRR

w
dik

msssmppmpmp
m

R +−⋅⋅++⋅+
π

= ∫∫ +−+ ññqpeepeee
q

E . 

Both expressions will lead to the same result for the energy flux through the interface. 

The corresponding magnetic fields are obtained by acting with the operator rot1
0
−k  on 

the electric field expressions: 
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2
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q
B . 
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Thus, we obtain two alternative expressions for the total energy flux through the inter-

face: 
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and  
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In the above expressions, all primed variables refer to the integration variable q′ , and 

we used he well-known identity for Dirac’s δ-function 

( )[ ] ( ) ( )qqqqññ ′−δπ=′−⋅∫ 222 2exp id . 

Both expressions obtained for −S lead to exactly the same values, although that is not 

obvious when comparing them by sight.  

 

Again, we consider the two limiting dipole orientations, vertically and parallel to the 

surface. We will present final results using the expression for −S  on the dipole side 

(involving reflection coefficients). This is especially advantageous if one considers mul-

tilayered substrates: all results remain valid, one has only to use the generalized reflec-

tion coefficients for the multilayer structure. Thus, for the vertical dipole, we obtain 
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Similarly, we find for the parallel dipole the result: 
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The usefulness of these results is that they allow for calculating the total emission 

power of the molecule into the substrate, and together with the total emission into the 

upper half-space as derived in the previous section, the yield information about the 

fluorescence lifetime of the molecule. Moreover, for a substrate with thin absorbing 

layers allowing light to tunnel through and radiate into the lower half-space, we have 

already derived the angular distribution of radiation into that half-space: The found ex-

pressions of the last Section remain valid as long as one uses the correct transmission 

coefficients for the absorbing substrate. These coefficients can be calculated exactly in 

the same way as for dielectric substrates, as was detailed in Section 2. 

 

As an example let us consider the emission of a dipole near a water/glass interface that 

is covered by a thin (5 nm) film of silver (n = 0.163 + i 4.07). The next figure shows 

the calculated angular distribution of radiation both within the glass and the water for a 

vertically oriented dipole. 

 

Water

Glass

Angular Distribution of
 Radiation for Vertical Dipole

 

 

The dependence of the fluorescence decay time and the amount of energy absorbed by 

the metal for the same configuration shows the next figure. The energy absorption is 

calculated in the following way: firstly, one calculates the complete far-field emission 

via integrating the angular distribution of radiation over all directions; secondly, on 

calculates the total emission power of the dipole as the sum of the far-field radiation 
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into the upper half-space (water) plus the energy flux through the water/metal inter-

face, using the expressions found above. The energy absorption is then given as the 

ratio of complete far-field radiation divided by total emission power. In the figure, the 

reference lifetime τ0 is that of the free dipole in water. 
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7. Fluorescing molecules in beads and spherical cavities 

Until now, we have studied only the interaction of fluorescing molecules with planar 

substrates. In this Section, we will extend our studies to problems with spherical sym-

metry, i.e. the interaction of dipole emitters with spherical beads and cavities. In Sec-

tion 3, we have found a representation of the electric field (and thus indirectly also for 

the magnetic field) of the oscillating electric dipole in plane waves, which proved to be 

the corner-stone for handling all subsequent problems of dipole interactions with planar 

substrates. The same philosophy applies for other than planar geometries: For any 

given geometry, find a representation of the dipole field in an orthogonal function sys-

tem corresponding to the given geometry. Unfortunately, there exist separable, com-

plete, and orthogonal function systems only for a limited number of special co-ordinate 

systems, among the Cartesian, cylinder, spherical and ellipsoidal co-ordinates. In 

spherical co-ordinates, a complete orthonormal vector-valued function system is pro-

vided by the so-called vector spherical harmonics, which are defined in spherical co-

ordinates ( )φθ,,r  by 
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Here, m
nP  denote associated Legendre polynomials with argument cos θ, the fn are 

spherical Bessel functions with argument kr, the φθ eee ,,r  are unit vectors along the 

co-ordinate lines, and the functional system is labeled by the integer indices (n, m), 

∞<≤ n0 , nmn ≤≤− . The vector spherical harmonics constitute a complete set of 

orthogonal functions that fulfill the vector wave equation, namely 02 =+∆ MM k , to-

gether with the zero-divergence condition 0=Mdiv  (similarly for N). When omitting 

the zero-divergence condition, there exists still a third class of functions to form a 

complete functional basis, which we will however not consider here. Thus, the func-

tions M and N constitute a complete (within the space of zero-divergent functions) 
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orthonormal vector-valued function system in spherical co-ordinates similarly to the 

plane-wave function system in Cartesian co-ordinates which we met in Section 1. Ad-

ditionally, the vector spherical harmonics are connected by the relations NMrot k=  

and MNrot k= . The harmonics for negative values of m, nm ≤ , are given by the 

complex conjugate expressions of f
mnM  and f

mnN .  

Next, we have to find a representation of the dipole field in this function system. with-

out proof, we state here only the final result which reads 

( ) ( ) ( )[ ]∑ ∑
∞

= −=

+=
1n

n

nm

h
nmnm

h
nmnm kbka rNrMrE  

with the expansion coefficients 

( ) ( )rMp ′⋅
+

π
= k

nn

ikk
a j

nmnm 1

4 2
0  and ( ) ( )rNp ′⋅

+
π

= k
nn

ikk
b j

nm
D
nm 1

4 2
0 . 

Here, j and h stand for the spherical Bessel and Hankel functions ( )krj  and ( )krh1 . It 

is assumed that rr <′ , else one has to interchange hj ↔ .  

For practical purposes, several special dipole positions/orientations are of interest. 

Without loss of generality, we consider further only dipoles situated on the polar axis 

0=θ . If the dipole is oriented perpendicular to that axis along the direction 

( )0,2 =φπ=θ , we have 

( )
( ) ( )rkj
nn
n

kka nn ′
+
+π

=± 1
122

01, ∓ , 
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( )( )
rk

rjr

nn
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01, , 

and if it is oriented along he polar axis 0=θ , we find 0≡nma  and 

( ) ( )
r

rkj
nikb n

n ′
′

+π= 1242
00, . 

With these expressions at had, the further procedure of studying the interaction of the 

dipole with spherical objects is straightforward. As an example, let us consider a dipole 

within a metallic spherical cavity of inner radius R and thickness d as shown in the fig-
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ure on the next page. Due to the interaction of the dipole field with the cavity, a reac-

tion field is generated which can itself be expanded in vector spherical harmonics, on 

expansion for every of the three different media cavity core (c), shell (s), and environ-

ment (e) 
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The csek ,,  are the three corresponding wave numbers of the three media, and if the di-

pole is e.g. o located within the core, one has obviously to use ckk =  in the dipole-

field expansion on the previous page. Notice the occurrence of the different Bes-

sel/Hankel functions in the above expansion: Outside the cavity, only expanding wave 

traveling away from the cavity are admitted, thus asking for ( )rkh en
1 ; inside the core, 

the field has to remain finite, thus only ( )rkj en  are allowed; within the shell, both func-

tions are admitted. 

 

 

 

The eight unknown coefficients ( ) ( ) ( ) ( ) ( ) ( ) ( )hs
nm

js
nm

e
nm

c
nm

hs
nm

js
nm

e
nm bbbaaaa ,,,, ,,,,,,,  and ( )c

nmb  in the 

above equations have to be found as solutions to the boundary conditions for the elec-
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tric and magnetic field amplitudes, namely that the tangential components of the elec-

tric and magnetic fields are continuous across all boundaries. For every order n of the 

above expansions, this yields a total of eight linear algebraic equations for the eight 

unknown coefficients, which can be solved in a straightforward way. We won’t give 

here the rather complex algebraic solution – in practice, one can use a numerical equa-

tion solver for doing the job. 

Two quantities are of major interest when considering the molecule’s fluorescence 

emission: the lifetime of its excited state, and the energy transmission through the me-

tallic shell (i.e. the probability that the dipoles energy is emitted away from the cavity). 

For obtaining both values, one calculates the energy fluxes inS  and outS  through the 

inner and outer surface of the metallic layer. If there are no non-radiative transition 

channels from the excited to the ground state (unity fluorescence quantum yield), then 

the excited state lifetime is proportional to inS1 . Moreover, the probability that the 

dipole’s energy is radiated away from the cavity and is not absorbed within the metal 

layer is given by inout SS . 

Knowing the electric and magnetic field amplitudes allows calculating inS  and outS  by 

integrating the Poynting vector over the corresponding surfaces, i.e. 

( ) 




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where cdipolein EEE += . Analogously, one finds 

( ) 



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π
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+= dRr
eeout d

c
S ABE *Re

8
. 

As before, the fluorescence lifetime of the molecule is inversely proportional to the to-

tal emission power, inS , and the energy transmission through the metallic shell is given 

by inout SS . 

As a numerical example we consider a cavity with a polymeric core (n = 1.5) of 24 nm 

radius, surrounded by a silver shell (n = 0.163 + i 4.07) of 5 nm thickness, and im-

mersed into a water solution (n = 1.33). The next figure shows the dependence of the 

optical transmission, inout SS , on the dipole’s position within the cavity for the two 
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principal dipole orientations, perpendicular ( ⊥ ) and along (||) the line connecting the 

cavity’s center wit the dipole’s position.  
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Similarly, the next figure shows the dependence of the fluorescence lifetime, using as 

reference lifetime τ0 the lifetime of the same configuration but without the metallic shell 

(dipole within core in water).  
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