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Part I

Handouts
1 A brief reminder

1.1 Abstract structures and logical inferences
In a very general setting mathematics is concerned with the study of abstract structures.
An abstract structure has the form M = (M,C ,R,F ) where M is a non–void set, C
as subset of M , R a set of relations on M and F a set of functions on M . Associated
to an abstract structure is its abstract language LM = L (C,R,F) which comprises a
set C of constants for elements of M , a set R of symbols for the relations in R and a
set F of symbols for the functions in F .

In general a signature for a logical language is a triple (C,R,F) where every R ∈
R and f ∈ F carries its arity 0 < #R ∈ N and 0 < #f ∈ N.

An abstract structure M = (M,C ,R,F ) interprets a signature (C,R,F) if ev-
ery constant c ∈ C has an interpretation cM ∈ M , every relation symbol R ∈ R
an interpretation RM ⊆ M#R and every function symbol f ∈ F an interpretation
fM:M#f −→ M .
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We say that a signature matches the structure M if there is a symbol c ∈ C, R ∈ R
and f in F for every constant in C , every relation in R and every function in F .

The closed terms of a signature (C,R,F) are either constants or composed terms
of the form (ft1, . . . , tn) where #f = n and t1, . . . , tn are constants or previously
defined composed terms.

Atomic sentences have the form (Rt1, . . . , tn) where R is an n–ary relation sym-
bols and t1, . . . , tn are closed terms. Starting from atomic sentences we can inductively
build a logical language L (C,R,F) using the familiar boolean operations and quan-
tifications. If quantification is restricted to individuals we talk about a first order logic
L1(C,R.F). If we also allow quantifiers ranging over relations we talk about a second
order logic L2(C,R,F).

For an abstract structure M that interprets the signature of a logical language every
closed term t possesses a canonical interpretation tM ∈M .

Defining M |= (Rt1, . . . , tn) iff (tM1 , . . . , tMn ) ∈ RM and continuing inductivley
according to the meaning of the logical operations we obtain a canonical satisfiability
relation M |= F for the sentences F in the language L (C,R,F). We say that F is
valid in M iff M |= F .

If S ∪ {F} is a set of L (C,R,F)–sentences we call S |= F a logical inference iff
for every abstract structure M that interprets (C,R,F) the fact that M |= G holds true
for all G ∈ S also implies M |= F .

An abstract structure M satisfies a set S of L (C,R,F)–sentences iff M interprets
(C,R,F) and satisfies all sentences in S.

A set S of L (C,R,F)–sentences is consistent iff there is a structure M which
satifies S.

A set S of L (C,R,F)–sentences is logically valid iff every structure which inter-
prets (C,R,F) satifies S.

1.1 Exercise Give a formal definition of tM and M |= F .

1.2 Exercise Show that S |= F iff S ∪ {F} is inconsistent.

1.3 Exercise Show that a set S of L (C,R,F)–sentences is consistent iff there is no
L (C,R,F)–sentence F such that S |= F ∧ ¬F .

1.2 Formal derivations
We extend a language L := L (C,R,F) by adding free individual variables, denoted
by x, y, z, x1, . . ., and free relation variables, denoted by X,Y, Z,X1, . . ., together
with their arities #X ∈ N. In forming terms individual variables are treated like con-
stants; in forming formulae relation variables are treated like relation symbols. Terms
without occurrences of free individual variables are closed, sentences are formulae in
which neither individual variables nor relation variables occur freely.

Even if a structure M interprets L there is no canonical interpretation for terms
containing free individual variables and no canonical satisfaction relation for formulae
containing free variables. Interpretation and satisfaction of terms and formulae need an
assignment Φ which assigns an element Φ(x) ∈ M to every free individual variable x
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and a set Φ(X) ⊆ M#X to every relation variable X . We denote by M |= F [Φ] that
M satisfies the formula F under the assignment Φ.

We extend the definition of a logical inference to sets of L –formulae.

1.4 Definition Let S∪{F} be a set of L –formulae. Then S |= F is a logical inference
iff for every structure M that interprets L and every assignment Φ we have

M |= G[Φ] for all formulae in G ∈ S implies M |= F [Φ].

1.5 Definition Let L := L (C,R,F) be a logical language. A formal rule is a figure

P1, . . . , Pn C,

where n ≥ 0 and {P1, . . . , Pn, C} is a set of L –formulae.

A formal system S is a set of formal rules.

Given a formal system S we define formal derivability A1, . . . , Am S F inductively
by:

• If A1, . . . , Am S
Pi for i = 1, . . . , n and P1, . . . , Pn F is a rule of S

then A1, . . . , Am S F .

A formal system S is sound if for every rule P1, . . . , Pn C in S we have
P1, . . . , Pn |= C.

1.6 Exercise (Soundness Theorem) Let S be a sound formal system. Show that
A1, . . . , An S F entails A1, . . . , An |= F .

The following completeness theorem by Kurt Gödel is one of the most important theo-
rems of Mathematical Logic.

1.7 Theorem (Gödel’s completeness theorem) Let L1 be a first order language and
S∪{F} a set of L1–formulae. Then there is a sound formal system S such that S |= F
entails S1, . . . , Sn S

F for a finite subset {S1, . . . , Sn} of S.

There is a fraternal twin to Gödel’s completeness theorem.

1.8 Theorem (Compactness Theorem) Let L1 be a first order language and S a set of
L1–sentences. If every finite subset Si ⊆ S is consistent, then S is consistent.

1.9 Exercise Show that Gödel’s completeness theorem entails the compactness theo-
rem. (The opposite direction—though true—is much harder to show).

A formal dervation A1, . . . , An S F in a formal system S can be viewed as a finite tree
whose root is labelled by F , whose leaves are labelled by the formulae Ai and which
is is locally correct with respect to the rules in S. This makes the correctness of a
formal proof machine–checkable, i.e., decidable. Admittedly in practice mathematical
proofs are not formalized to the point that they become machine–checkable, but they
should be formalizable in principle. This fact is responible for the intersubjectibility of
mathematical proofs.
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For full second order logic there is no compactness theorem, hence also no com-
pleteness theorem. So full second order logic is, in principle, useless for mathematical
reasoning. Nevertheless there are sound formal systems for second order logic.1

1.3 Why ordinal analysis?
Gödel’s completeness theorem establishes a tool for the investigation of abstract struc-
tures. We can try to characterize a structure M by a set of first order sentences which
are characteristic for and valid in M, the axioms for M. Starting from the axioms for
M we can argue by logical inferences to ensure that everything we conclude is a theo-
rem of M. Examples for this approach are group theory, ring theory, field theory and
similar algebraic disciplines.

In setting up an axiom system for a structure M we are confronted with a couple of
problems. First we have to ensure that the set of axioms is consistent. This causes no
problems in case of groups, rings, field etc, since there are finite structures which satisfy
the finitely many axioms. The second problem is that of categoricity, i.e., the question
whether we can characterize the structure by the axioms up to isomorphism. This,
however, is in general not possible for a first order axiom system by the compactness
theorem. In the case of groups, rings etc., it is not even desirable since we know that
there are many non isomorphic groups, rings, . . . .

The situation is different when we try to axiomatize standard structures which we
believe to be familiar with. The first—and probably most important— such structure
is the structure N of natural numbers. We have (and all our mathematical ancestors
had) in some sense a clear intuition of this structure. Here it would be desirable to
have an axiomatization up to isomorphism but this is excluded by the compactness
theorem.There are categorial second order axiom systems for N but, according to the
lack of a completeness theorem for second order logic, they are mathematically useless.
So we have to resign categoricity.

There are well-established axiom system for N, e.g. the Peano axioms which we
will later introduce in detail. Since we have resigned categoricity it remains the prob-
lem of consistency. This is not so easy to solve as in the case of the group—or similar
algebraic—axioms since the standard structure N is an infinite structure. Therefore
any adequate axiomatization of N has to incorporate infinity which entails that there
exist no finite structures that satisfy these axioms (as e.g. in group theory). But N is in
some sense the simplest infinite structure. In order to build a structure which satisfies
the axioms for N we need a structure somehow above N which itself needs a consistent
axiomatization which then is likely to embrace the axioms for N.

This exposes a foundational problem. Hilbert in his programme suggested a way
to solve this problem (even aiming at solving the consistency problem for all existing
mathematics) by formalization. Since a formal proof is a finite figure it should be
likely that we can show by finitistic—i.e. purely finite combinatorical—means that
there cannot be a proof figure of a contradiction.

This hope was destroyed by Gödel’s incompleteness theorems in which he showed
that a proof of the consistency of any recursively enumerable axiom system for N has

1These system, however, should rather be viewed as formal systems for a two sorted first order logic.
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to exceed the means of this axiom system. Especially there cannot be a consistency
proof for a recursively enumerable axiom system of N by finite combinatorics.

However, despite of Gödels incompleteness theorems Gerhard Gentzen in [1] gave
a consistency proof for the Peano axioms for N. His proof only used finitistic means
except for an application of a transfinite induction along a well–ordering of order–type
ε0. By Gödel’s incompleteness theorem it therefore follows that transfinite induction
up to ε0 cannot be provable from the Peano axioms. In a later paper [2] he showed
that conversely any ordinal less than ε0 can be represented by a well–ordering whose
well–foundedness is provable in Peano arithmetic. This was the birth of ordinally
informative proof theory. Since then we define the proof theoretic ordinal of an axiom
system T as the supremum of the order–types of well–orderings which are elementarily
definable in the language of T and whose well–foundedness is provable in T .

As we will see later the proof–theoretic ordinal of an axiom system in fact incor-
porates a measure for the performance of an axiom system with respect to the intended
standard structure and the universe of its subsets above it.

The aim of the course is to give an introduction to ordinal analysis on the example of
an axiom system for N which is equivalent to the Peano axioms.
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These handouts will be continued during the Sommer–school.
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