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Motivating example

Proteins

• are large biological molecules

• function often requires dynamics

• configuration space is high-dimensional

Group of Bert de Groot seeks to identify a relationship between

collective atomic motions of a protein

and

some specific protein’s (biological) function.
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Motivating example

The data from the Molecular Dynamics (MD) simulations:

• Yt ∈ R is a functional quantity of interest at time t, t = 1, . . . , n

• Xt ∈ R3N are Euclidean coordinates of N atoms at time t

Stylized facts

• d = 3N is typically high, but d � n

• {Xt}t , {Yt}t are (non-)stationary time series

• some (large) atom movements might be unrelated to Yt

Functional quantity Yt is to be modelled as a function of Xt .
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Yeast aquaporin (AQY1)

• Gated water channel

• Yt is the opening diameter (red line)

• 783 backbone atoms

• n = 20, 000 observations on 100 ns timeframe
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AQY1 time series

Movements of the first atom and the channel opening diameter
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Simple linear case

Hub, J.S. and de Groot, B. L. (2009) assumed a linear model

Yi = XT
i β + εi , i = 1, . . . , n,

Xi ∈ Rd , or in matrix form Y = Xβ + ε, ignored dependence

in the data and tried to regularise the estimator by using PCA.
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Motivating example

PC regression with 50 components
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Motivating example

Partial Least Squares (PLS) lead to superior results
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Regularisation with PCR and PLS

Consider a linear regression model with fixed design

Y = Xβ + ε.

In the following let A = XTX and b = XTY .

PCR and PLS regularise β with a transformation H ∈ Rd×s s.t.

β̂s = H arg min
α∈Rs

1

n
‖Y − XHα‖2 = H(HTAH)−1HTb,

where s ≤ d plays the role of a regularisation parameter.
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Regularisation with PCR

In PCR one derives H = (h1, . . . , hs), hi ∈ Rd as follows

h1 = arg max
h∈Rp

‖h‖=1

ĉov(htx)

hi = arg max
h∈Rp

‖h‖=1

ĉov(htx), s.t. h1 ⊥ . . . ⊥ hi , i = 2, . . . , k

Since ĉov(htx) = htX tXh/n, hi is the ith eigenvector of X tX/n.
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Regularisation with PLS

In PLS one derives H = (h1, . . . , hs), hi ∈ Rd as follows

1. Find
h1 = arg max

h∈Rd

‖h‖=1

ĉov(Xh,Y )2 ∝ XTY = b

2. Project Y orthogonally: Xh1(hT1 A h1)−1hT1 X
TY = X β̂1

3. Iterate the procedure according to

hi = arg max
h∈Rd

‖h‖=1

ĉov(Xh,Y − X β̂i−1)2, i = 2, . . . , s
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Theoretical properties of PLS

• PLS is highly non-linear in the response Y

• Little is known on statistical properties

• Influence of dependence in the data on PLS is unclear

• PLS is closely related to the conjugate gradient
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PLS and Krylov spaces

For PLS is known that hi ∈ Ki (A, b) (A = X tX , b = X tY ), where

Ki (A, b) = span{b,Ab, . . . ,Ai−1b} is a Krylov space of order i

With this the alternative definition of the PLS estimator is given by

β̂s = arg min
β∈Ks(A,b)

‖Y − Xβ‖2.

Note that any βs ∈ Ks(A, b) can be represented as

βs = Ps(A)b = Ps(XTX )XTY = XTPs(XXT )Y ,

where Ps is a polynomial of degree at most s − 1.
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Regularisation with PLS

For the implementation and proofs the residual polynomials

Rs(x) = 1− x Ps(x)

are of interest. Polynomials Rs

• are orthogonal w.r.t. an appropriate inner product

• satisfy a recurrence relation

Rs+1(x) = asxRs(x) + bsRs(x) + csRs−1(x)

• are convex on [0, rs ], where rs is the first root of Rs(x) and
Rs(0) = 1.
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PLS and conjugate gradient

PLS is closely related to the conjugate gradient (CG) algorithm for

Aβ = XTXβ = XTY = b.

The solution of this linear equation by CG is defined by

β̂CGs = arg min
β∈Ks(A,b)

‖b − Aβ‖2 = arg min
β∈Ks(A,b)

‖XT (Y − Xβ)‖2.

15 / 43



CG in deterministic setting

CG algorithm has been studied in Nemirovskii (1986) as follows:

• Consider Āβ = b̄ for a linear bounded Ā : H → H
• Assume that only approximation A of Ā and b of b̄ are given

• Set β̂CGs = arg minβ∈Ks(A,b) ‖b − Aβ‖2H.
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CG in deterministic setting

Assume

(A1) max{‖Ā‖op, ‖A‖op} ≤ L, ‖Ā− A‖op ≤ ε and ‖b̄ − b‖2H ≤ δ

(A2) The stopping index s satisfies the discrepancy principle

ŝ = min{s > 0 : ‖b − A β̂s‖H < τ(δ‖β̂s‖H + ε)}, τ > 0

(A3) β = Āµu for ‖u‖H ≤ R, µ,R > 0 (source condition).

Theorem (Nemirovskii, 1986)

Let (A1) – (A3) hold and ŝ <∞. Then for any θ ∈ [0, 1]

‖Āθ(β̂ŝ − β)‖2H ≤ C (µ, τ)R
2(1−θ)
1+µ (ε+ δRLµ)

2(θ+µ)
1+µ .
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Results for CG and PLS

Blanchard and Krämer (2010)

• used stochastic setting with i.i.d. data (Yi ,Xi )

• proved convergence rates for kernel CG using ideas in Nemirovskii
(1986), Hanke (1995), Caponnetto & de Vito (2007)

• argued that the proofs for kernel CG can not be directly
transferred to kernel PLS

In two recent papers we

• use stochastic setting with dependent data

• prove convergence rates for linear and kernel PLS

building upon Blanchard and Krämer (2010) and Hanke (1995).
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First paper

Singer, M., Krivobokova, T., Groot, L.B., Munk, A. (2016)
Partial least squares for dependent data. Biometrika, 103: 351-362.
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Latent variable model

Standard linear model Y = Xβ + ε is extended by assuming

X = T (NPt + ηF )

Y = T (Nq + εf )

where N and F are random matrix (n× l , n× d), f is a random vector

N, F , f are independent with i.i.d. entries, mean 0 and variance 1;

T ∈ Rn×n, P ∈ Rd×l and q ∈ Rl are deterministic, η, ε ≥ 0.

If T 2 is a covariance matrix, then one can interpret X as

a matrix form of a time series {Xt}nt=1, Xt = (Xt,1, . . . ,Xt,d)

and Y as a vector of a real-valued time series {Yt}nt=1.
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Krylov space

In this latent model (compare setting of Nemirovskii)

Ā = PPt + η2Id is estimated by A = X tX/n

b̄ = Pq is estimated by b = X tY /n

and the PLS estimators are obtained as before

β̂s = arg min
β∈Ks(A,b)

‖Y − Xβ‖2.

Note that the true parameter is β(η) = (PPt + η2Id)−1Pq.
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First result

Theorem (Singer, K., Munk, de Groot, 2016)

If under the latent variable model the fourth moments of N11, F11
exist, then for A = X tX/‖T‖2, b = X tY /‖T‖2

E‖Ā− A‖2 =
‖T 2‖2

‖T‖4

(
c1 +

n∑
t=1

‖Tt‖4

‖T 2‖2
c2

)

E‖b̄ − b‖2 =
‖T 2‖2

‖T‖4

(
c3 +

n∑
t=1

‖Tt‖4

‖T 2‖2
c4

)
,

where ci , i = 1, 2, 3, 4 are known and independent of n.
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Second result

For the standard PLS algorithm we find

Theorem (Singer, K., Munk, de Groot, 2016)

Let the latent variable model with η > 0 hold and the fourth moments
of N11, F11 exist. Let also ŝ be the first index 0 < ŝ ≤ d such that

‖X t(X β̂ŝ − Y )‖2 ≤ ρ1‖β̂ŝ‖+ ρ2

for ρ1, ρ2 → 0. Then it holds with probability at least 1− γ, γ ∈ (0, 1]

‖β̂ŝ − β(η)‖ ≤ ‖T 2‖
‖T‖2

{
c5(γ) +

‖T 2‖
‖T‖2

c6(γ)

}

where c5(γ) and c6(γ) are known and independent of n.

23 / 43



Convergence term

‖T 2‖ ‖T‖2 ‖T 2‖‖T‖−2

Independence
√
n n n−1/2

AR ∼
√
n n ∼ n−1/2

ARIMA ∼ n2 ∼ n2 ∼ c , c > 0

Population Krylov space elements Ā and b̄ can not be estimated

consistently for non-stationary processes; what about β̂i?
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Third result

Since β̂i is highly non-linear in Y , only β̂1 is feasible for the analysis

For the standard PLS algorithm we get

Theorem (Singer, K., Munk, de Groot, 2016)

Let the latent variable model hold and eights moments of N11, F11
and f1 exist.

If ‖T 2‖‖T‖−2 9 0, then β̂1(η) is an inconsistent estimator for β1(η)
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Corrected PLS

It seems natural to standardise the data before running PLS,

or, equivalently, to use AT = X tT̂−2X/n and bT = X tT̂−2Y /n

Theorem (Singer, K., Munk, de Groot, 2016)

Let T̂ 2 be a consistent estimator for T 2 s.t.

‖TT̂−2T − In‖2 = Op(rn) for some positive sequence rn → 0, n→∞.

Then
‖Ā− AT‖2 = Op(rn), ‖b̄ − bT‖ = Op(rn).

Moreover, with probability at least 1− ν, ν ∈ (0, 1)

‖β̂ŝ(T̂ )− β(η)‖ = O(rn).
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Simulation setting

Latent variable model with X = T (NPt + ηF ), Y = T (Nq + εf )

• N11, F11, f1 are N (0, 1), d = 20, n ∈ {250, 500, 2000}
• Pij are i.i.d. B(1, 0.5); qi = 1/i

• η and ε chosen so that the signal-to-noise ratio is 2

• number of latent components l = 1

• T 2: identity, AR(1), ARIMA(1,1,1)

• M = 1000 Monte Carlo replications for β̂1
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Simulation results
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Simulation results
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Protein data
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Second paper

Singer, M., Krivobokova, T., Munk, A. (2017)
Kernel partial least squares for stationary data.
Conditionally accepted in the Journal of Machine Learning Research
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Kernel regression

A nonparametric model

Yt = f (Xt) + εt , t = 1, . . . , n,

where

• {Xt}t is a d-dimensional stationary time series

• {εt}t i.i.d. zero mean sequence independent of {Xt}t
• f ∈ L2(ρX ), X is independent of {Xt}t and {εt}t and ρX = PX1
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Kernel regression

A nonparametric regression model is treated in the reproducing
kernel Hilbert space (RKHS) framework.

Let H be a RKHS, that is

• (H, 〈·, ·〉H) is a Hilbert space of functions f : Rd → R with

• a kernel function k : Rd × Rd → R, s.t. k(·, x) ∈ H and

f (x) = 〈f , k(·, x)〉H, x ∈ Rd , f ∈ H.

Unknown f is estimated by f̂ =
∑n

i=1 α̂ik(·,Xi ).

33 / 43



Kernel regression

Define operators

• Sample evaluation operator (analogue of X ):

Tn : f ∈ H 7→ {f (X1), . . . , f (Xn)}T ∈ Rn

• Sample kernel integral operator (analogue of XT/n):

T ∗n : u ∈ Rn 7→ n−1
∑n

i=1 k(·,Xi )ui ∈ H
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Kernel PLS and kernel CG

Now we can define the kernel PLS estimator as

f̂s = arg min
f ∈Ks(T∗

n Tn,T∗
n Y )
‖Y − Tnf ‖2.

The kernel CG estimator is defined as

f̂ CGs = arg min
f ∈Ks(T∗

n Tn,T∗
n Y )
‖T ∗n (Y − Tnf )‖2H.

35 / 43



Kernel PLS: assumptions

Two standard (not restrictive) assumptions on H

(C1) H is separable;

(C2) ∃ κ > 0 s.t. |k(x , y)| ≤ κ, ∀x , y ∈ Rd and k is measurable;

To obtain optimal convergence rates we need also assumptions on

• regularity of the true function f

• complexity of H (w.r.t. ρX )

which can be expressed in terms of the eigenvalues of

k(x , y) =
∞∑
i=1

ηiφi (x)φi (y).

36 / 43



Source condition

Regularity of f is described by the source condition

(SC) f ∈ Hr , r ≥ 1/2, where

Hr =

{
f : f =

∑
i

θiφi (x) ∈ L2(ρX ) and
∑
i

θ2i

η
2(r+1/2)
i

≤ R2

}
.
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Effective dimensionality condition

Complexity of H is described by the effective dimensionality

dλ =
∞∑
i=1

ηi
ηi + λ

, λ > 0

(ED1) dλ ≤ Cλ−ζ , ζ ∈ (0, 1]

(ED2) dλ ≤ C log(1 + ξ/λ), ξ > 0
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Assumptions on the data

We make additional assumptions on {Xt}t :

(D1) X1 ∼ Nd(0, σΣ), (Xh,X1)T ∼ N2d(0,Σh), h = 2, . . . , n with

Σh =

(
σ σh
σh σ

)
⊗ Σ,

where Σ is a positive definite symmetric matrix.

(D2) For ρh = σ−1σh there exists q > 0 and 0 < c1 < c2 such that

c1h
−q ≤ |ρh| ≤ c2h

−q, h = 1, . . . , n.
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Kernel PLS with Gaussian data

With appropriate concentration inequalities and optimal stopping
times we get under (C1), (C2), (D1), (D2), (SC) and (ED1)

‖f̂ŝ − f ‖2 =

{
O{n−r/(2r+ζ)}, q > 1,

O{n−qr/(2r+ζ)}, q ∈ (0, 1).

while under (C1), (C2), (D1), (D2), (SC) and (ED2)

‖f̂ŝ − f ‖2 =

{
O{n−1/2 log(n/2}, q > 1,

O{n−q/2 log(nq/2)}, q ∈ (0, 1).

Stationary data with q > 1 do not alter the convergence rate,
in contrast to the long-range dependent data with q ∈ (0, 1).
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Simulations

Let H be the RKHS corresponding to K (x , y) = exp(−l‖x − y‖2),
l > 0 and take f ∈ H:
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Simulations

L2 errors of KPLS and KCG for different sample sizes and dependence
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Protein data

Another protein: T4 Lysozyme of the bacteriophafe T4;
n = 4601, d = 3 · 486 estimated by KPLS, KPCR and PLS.
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