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Abstract

Empirical studies on farmland rental rates have predominantly concentrated on mod-
elling conditional means using spatial autoregressive models, where a linear functional
form between the response and the covariates is usually assumed. However, if it is in
fact non-linear, misspecifying the functional form can adversely affect inference. While
mean regression models only allow limited insights into the way covariates influence the
response, extending the analysis to the modelling of conditional quantiles can give a more
detailed picture of the conditional distribution. Based on data from the German agricul-
tural census, this article contributes to the agricultural literature by modelling conditional
quantiles of farmland rental rates semi-parametrically using Bayesian geoadditive quantile
regression models. The flexibility of this model class overcomes the problems associated
with functional form misspecifications and allows us to present a more detailed analysis.
Our results stress the importance of making use of semi-parametric regression models as
several covariates influence farmland rental rates in an explicit non-linear way.
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Introduction
Farmland is one of the most important production factors in agriculture. Based on cash-flow
considerations, farmers have to decide whether to buy or lease agricultural land. Amongst
others, one advantage of leasing is that farmers can use their cash reserves to invest in new
agricultural machinery and equipment, rather than to tie up capital in land purchases (Cia-
ian et al. 2012). This preference might explain why Germany is among European countries
with a high share of rented farmland: in 2008, on average 70% of the total German agricul-
tural farmland was leased, where the share of rented farmland was considerably higher in East
Germany (80%) compared to West Germany (60%) (Ciaian et al. 2012; Ciaian, Kancs, and
Swinnen 2010). Moreover, Ciaian, Kancs, and Swinnen (2010) report that German farmland
rental rates exhibit substantial spatial variation with rental rates being almost twice as high in
West Germany than in East Germany. These figures, and the fact that farmland rental rates
have increased considerably over the last years, imply that the analysis of rental rates is of
great importance in practice. Besides its relevance for farmers, the analysis of farmland rental
rates and their determinants is an active field of research in agricultural economics. Herriges,
Shogren, and Barickman (1992), Bierlen, Parsch, and Dixon (1999), Lence and Mishra (2003),
as well as Roberts, Kirwan, and Hopkins (2003) and Kirwan (2009) analyse the determinants
of price formations on agricultural rental markets in the United States. Fuchs (2002) analyses
rental rates of farmland and their determinants in Belgium, Denmark, France, Germany and
the Netherlands. Doll and Klare (1995), Drescher and McNamara (2000), Brümmer and Loy
(2001), Breustedt and Habermann (2008), Margarian (2008), Breustedt and Habermann (2009)
and Breustedt and Habermann (2011) investigate the determinants of rental rates in Germany.
Kilian et al. (2008), as well as Breustedt and Habermann (2010) and Habermann and Ernst
(2010) analyse the effects of increased land use for the production of bioenergy on German
rental rates.
Most empirical studies that analyse farmland rental rates and their determinants make use

of hedonic pricing models, as originally proposed by Court (1939) and popularized by Griliches
(1961), Lancaster (1966) and Rosen (1974). According to hedonic pricing theory, farmland
rental rates can be divided into the sum of its attributes‘ values which are then estimated
using regression models. In order to avoid biased estimates and misleading inference resulting
from spatial dependencies in the data, spatial autoregressive models have evolved as a standard
tool in hedonic pricing studies of farmland rental rates. However, a remaining problem with
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hedonic pricing models is related to the choice of an appropriate functional form, since there is
no theory that guides the researcher (Martins-Filho and Bin 2005). A common workaround is
to use data transformations as proposed by Box and Cox (1964). The functional form chosen
by the Box-Cox technique may, however, not adequately approximate the true relationship
between covariates and the response. In spatial modelling, misspecifications of the dependence
structure have particularly severe consequences; as an illustration, Kostov (2009) reanalyses the
data of Patton and McErlean (2003) using semi-parametric regression models, and concludes
that misspecifications regarding the functional form may be responsible for spuriously finding
spatial dependencies when hedonic pricing models are used.1 Consequently, hedonic models
should be extended to semi-parametric regression models that allow for a broader class of
functional relationships than parametric models (Ekeland, Heckman, and Nesheim 2004).
While empirical studies on farmland rental rates have predominantly concentrated on mod-

elling conditional means, extending the analysis to the modelling of conditional quantiles can
provide valuable insights into the price formation of farmland rental rates. It seems reasonable
to assume that some covariates have an effect on the mean, while they may have no influence
on more extreme quantiles; even if the same covariates are selected, the manner in which they
affect rental rates may change across quantiles. Therefore, the analysis based on quantile regres-
sion models can provide a more detailed picture of the conditional distribution of the response
variable. For this reason, linear spatial quantile regression models have recently been introduced
within spatial econometrics (see McMillen (2013) for a recent overview). However, this model
class cannot fully avoid the problems resulting from functional form misspecifications (Kostov
2013).
The purpose of this article is to extend the hedonic pricing literature of farmland rental rates

by modelling conditional quantiles of German farmland rental rates semi-parametrically using
Bayesian geoadditive quantile regression models. The flexibility of this model class frees the
researcher from choosing the underlying functional form a-priori and allows for the modelling
of a variety of covariates: linear effects of categorical covariates, smooth non-linear effects of
continuous covariates, as well as spatial effects to account for spatial autocorrelation and un-
observed heterogeneity. Our results indicate that linear spatial quantile regression models yield
a misleading picture of the underlying functional form as some of the covariates clearly have a
non-linear effect on rental rates. Consequently, Bayesian geoadditive quantile regression models
overcome the problems of linear spatial quantile regression models and allow us to present a
more detailed analysis of farmland rental rates and their determinants.
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Structured Additive Regression Models
In recent years, statistical research on semi-parametric regression models that go beyond tradi-
tional linear regression has brought forward a powerful toolkit that allows for a more realistic
treatment of a variety of real data problems. Structured Additive Regression Models (STAR),
originally proposed by Fahrmeir, Kneib, and Lang (2004) and Brezger and Lang (2006), have
turned out to be a very powerful model class as they cover the most prominent model exten-
sions as special cases. STAR models include Generalized Additive Models (GAM) (Hastie and
Tibshirani 1990), Varying Coefficient Models (VCM) (Hastie and Tibshirani 1993), Generalized
Additive Mixed Models (GAMM) (Lin and Zhang 1999), Geoadditive Models (Kammann and
Wand 2003), as well as Geographically Weighted Regression Models (Fotheringham, Brunsdon,
and Charlton 2002). We present STAR models for the conditional mean first, since this model
class forms the basis for geoadditive quantile regression models.

STAR Models: Getting the mean right
As with the usual linear regression framework, we assume that observations (yi,xi, zi), i =
1, . . . , n are given, where yi is a continuous response, xi = (xi1, . . . , xiq) is a vector of categor-
ical covariates and zi = (zi1, . . . , zip) is a vector of continuous covariates. In the Generalized
Linear Model (GLM) framework of Nelder and Wedderburn (1972), the conditional mean of
the response is modeled via

(1) E(yi|xi, zi) = h(ηlineari ) , with ηlineari = x′iβ + z′iγ

where h(·) is a response function that links the conditional mean of yi with the linear predictor
ηlineari . To allow the response to depend non-linearly on continuous covariates, GLMs can be
extended to GAMs by replacing the strictly linear predictor in Equation (1) with a more flexible
semi-parametric predictor

(2) ηi = x′iβ + f1(zi1) + . . .+ fp(zip)

where f1, . . . , fp are non-linear smooth effects of the continuous covariates and x′iβ is the
usual parametric part. For modelling the unknown functions fj, we follow Lang and Brezger
(2004) and Brezger and Lang (2006) who introduce a Bayesian analogue to P(enalized)-splines
originally proposed from a frequentist point of view by Eilers and Marx (1996). In order to
illustrate the basic principles of P-splines, we present the frequentist approach first, where it is
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assumed that the unknown function fj can be approximated by a polynomial spline of degree
lj. The spline is then represented as a linear combination of mj = hj + lj − 1 B-spline basis
functions Bj,k evaluated at pre-specified knots zj,min = ζj,1 < ζj,2 < . . . < ζj,hj = zj,max

(3) fj(zij) =
mj∑
k=1

γj,kBj,k(zij) , i = 1, . . . , n. ; j = 1, . . . , p.

where the coefficients γj,k can be interpreted as amplitudes that scale the basis functions Bj,k

accordingly to fit the data.2 To ensure a good fit to the data, Eilers and Marx (1996) suggest
using a sufficiently high number of equidistant knots (usually between 20 and 40), as well as to
simultaneously impose a penalty λj

∑mj
k=d+1(∆dγj,k)2 on adjacent B-spline coefficients γj,k that

prevents fj from being too wiggly. The penalized least squares criterion can then be expressed
as follows

(4) PLS(λj) =
n∑
i=1

(
yi − x′iβ −

mj∑
k=1

γj,kBj,k(zij)
)2

+ λj

mj∑
k=d+1

(
∆dγj,k

)2
, j = 1, . . . , p.

where ∆d denotes the d-th order difference operator, i.e., ∆1 = γj,k − γj,k−1 for d=1. The
penalty term, that balances the trade-off between a good fit to the data and the amount
of smoothness of fj, depends on the smoothing parameter λj: the greater the value of λj,
the higher is the penalization and the smoother is fj. A popular choice that has turned out
to work well in many empirical applications are penalized cubic B-splines with a quadratic
penalty term based on second order differences. Rewriting the smooth functions in matrix
form fj = (fj(z1j), . . . , fj(znj))′ = Zjγj, where γj = (γj,1, . . . , γj,mj)′ is a vector of regression
coefficients and Zj is a (n×mj) design matrix whose columns are given by the B-spline basis
functions evaluated at the observed covariate values Zj[i, k] = Bj,k(zij), leads to the semi-
parametric predictor η = Xβ + Z1γ1 + . . . + Zpγp, with the penalized least squares criterion
given by

(5) PLS(λ) = (y − η)′ (y − η) +
p∑
j=1

λjγ
′
jKdγj

The penalty matrix Kd can be partitioned into Kd = D′dDd, where Dd is a d-th order
difference matrix. In the Bayesian framework, the vector of regression coefficients γj and β
are considered to be random variables so that appropriate prior distributions have to be as-
signed. For the parameters β of the parametric part, non-informative priors are assumed, i.e.,
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p(βr) ∝ const, r = 1, . . . , q. Priors for the regression parameters γj of the smooth curves are
defined by replacing the difference penalty by first or second order random walks

(6)
RW1 : γj,k = γj,k−1 + uj,k, k = 2, . . . ,mj.

RW2 : γj,k = 2γj,k−1 − γj,k−2 + uj,k, k = 3, . . . ,mj.

where uj,k ∼ N(0, τ 2
j ) are Gaussian error terms. The amount of smoothness is controlled by

the variance parameter τ 2
j , that corresponds to the inverse of the smoothing parameter λj in

the frequentist setting: the larger the variance τ 2
j , the more γj,k is allowed to deviate from

the preceding values and the more flexible is the fit. The unknown variance parameters τ 2
j are

also considered as random variables and highly dispersed inverse Gamma hyper-priors p(τ 2
j ) ∼

IG(aj, bj) are assigned that allow for the estimation of the amount of smoothing simultaneously
with the regression coefficients. For initial values of first and second order random walks, flat
hyper-priors p(γj,1) ∝ const, and p(γj,1, γj,2) ∝ const, j = 1, . . . , p are assigned. From the
conditional distributions of first and second order randoms walks, it is possible to determine
the joint multivariate prior distribution of the complete vector γj (Fahrmeir et al. 2013). From
a Bayesian point of view, the quadratic penalty λjγ ′jKjγj in Equation (5) can then be replaced
with a Gaussian (improper) smoothing prior for the regression coefficients γj

(7) p(γj|τ 2
j ) ∝ 1

(τ 2
j )rank(Kj)/2 exp

(
− 1

2τ 2
j

γ ′jKjγj

)
, j = 1, . . . , p.

Besides categorical and continuous covariates, spatially referenced data also contain informa-
tion about the location where the observations have been collected. To include this information
into the model, an additional spatial term fgeo is added to the predictor from Equation (2)

(8) ηi = x′iβ + f1(zi1) + . . .+ fp(zip) + fgeo(si)

yielding a geoadditive model as proposed by Kammann and Wand (2003). The spatial effect
fgeo acts as a surrogate for unobserved covariates that are not included in the model and also
accounts for spatial autocorrelation (Fahrmeir and Kneib 2011). In the case that the spatial
effect originates from both spatially correlated and uncorrelated unobserved covariates, it is
advisable to split up the spatial effect fgeo = fstr + funstr into a structured, correlated ef-
fect fstr and an unstructured, district specific effect funstr. This partition allows the researcher
to assess the complete spatial information in the data. The estimation of the correlated spa-
tial effect fstr = (fstr(s1), . . . , fstr(sn))′ = Zstrγstr can be represented in a Bayesian frame-
work; for each district s ∈ {1, . . . , S}, a separate regression coefficient is estimated, where
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γstr = (γstr(1), . . . , γstr(S))′ is a vector of regression coefficients that collects all distinct spatial
effects. The (n× S) design matrix Zstr connects an observation i with the corresponding spatial
effect, i.e., Zstr[i, s] = 1 if yi was observed in district s and 0 otherwise. To ensure neighbour-
ing districts to have similar effects, Gaussian Markov Random Field (GMRF) priors are assigned
to the regression coefficients

(9) γstr(s)|γstr(−s) ∼ N

 1
|N(s)|

∑
r∈N(s)

γstr(r),
τ 2
str

|N(s)|

 , s = 1, . . . , S.

where γstr(−s) is the vector containing all spatial effects except the one for district s, and
|N(s)| denotes the total number of neighbours that share a common boundary with district
s. GMRF assume that, given the effects of all other district, the expected value of γstr(s) is
given by the average of the neighbouring districts. The variance τ 2

str and the inverse of the
number of neighbours |N(s)| control how much the effect of district s is allowed to deviate from
its prior expectation. The joint prior of all spatial effects can be derived from the conditional
distributions and can be represented as

(10) p(γstr|τ 2
str) ∝

1
(τ 2
str)rank(Kstr)/2 exp

(
− 1

2τ 2
str

γ ′strKstrγstr

)

where the precision matrix Kstr contains the neighbourhood information, i.e., Kstr[s, r] = −1
if districts s and r are neighbours, Kstr[s, r] = |N(s)| if s = r and Kstr[s, r] = 0 otherwise.
The joint prior in Equation (10) induces a specific correlation structure and ensures spatial
smoothness of the regression coefficients γstr, since parameters of neighbouring districts are not
allowed to deviate too strongly from one another. If spatial heterogeneity exists only locally, it
is not reasonable to assume that coefficients of neighbouring districts are spatially correlated
and an uncorrelated spatial effect should be used instead. To model funstr, district specific i.i.d.
Gaussian random effects γunstr(s)|τ 2

unstr ∼ N(0, τ 2
unstr), s = 1, . . . , S are commonly used. In the

Bayesian framework, the joint multivariate prior distribution of the unstructured effect can be
represented as in Equation (10), with Kunstr = I.
Assuming a conditional Gaussian response, i.e., y|η, σ2 ∼ N(η, σ2I), inference is based on

full Bayesian MCMC simulation, with the posterior given as follows

p (θ|y) ∝
n∏
i=1

p
(
yi|ηi, σ2

)
×

p∏
j=1

[
p(γj|τ 2

j )p(τ 2
j )
]
×

×
[
p(γstr|τ 2

str)p(τ 2
str)p(γunstr|τ 2

unstr)p(τ 2
unstr)

] q∏
r=1

p(βr)p(σ2)
(11)

7



where θ is the vector of all model parameters. For the variance of the residuals, highly dispersed
inverse Gamma priors are assigned as well, i.e., σ2 ∼ IG(aσ, bσ). Since conjugate priors are used,
the full conditionals are known distributions and a Gibbs-sampling algorithm can be used to
draw random numbers (we refer the interested reader to Fahrmeir and Kneib (2011) or Fahrmeir
et al. (2013) for details on the estimation of STAR models).

Structured Additive Quantile Regression: Going beyond the mean
The regression models discussed so far focus on modelling conditional means. In order to provide
a more detailed picture of the conditional distribution of the response variable, Waldmann et al.
(2013) extend STAR models to semi-parametric additive quantile regression models, which are
introduced in this section.
We start with the linear quantile regression model as proposed by Koenker and Bassett (1978)

(12) yi = x′iβτ + εiτ

where x is a design matrix that contains both categorical and continuous covariates, τ ∈ (0, 1)
indicates the quantile of interest, βτ is a vector of quantile specific regression coefficients and
εiτ is an unknown error term with cumulative density function Fετ that depends on the quantile
parameter τ . For linear quantile regression, no specific assumptions regarding the distribution
of the error term are made apart from εiτ and εjτ being independent for i 6= j, as well as
Fετ (0|x) = τ , meaning that the τ -quantile of the error term conditional on x is zero. Given
these assumptions, the quantile specific regression coefficients βτ are estimated by minimizing
an asymmetrically weighted sum of absolute deviations

(13) β∗τ = argmin
βτ

n∑
i=1

ρτ (yi − ηlineariτ )

where ηlineariτ = x′iβτ and

(14) ρτ (yi − ηlineariτ ) =


τ |yi − ηlineariτ | if yi ≥ ηlineariτ

(1− τ)|yi − ηlineariτ | if yi < ηlineariτ

is the check function that defines a suitable loss function for quantile regression. Hence, for a
fixed quantile τ and observation i = 1, . . . , n, the linear predictor ηlinearτi

models the conditional
quantile of the response yi.
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While in the frequentist setting of Koenker and Bassett (1978) no distributional assumptions
regarding the error term have to be made, the Bayesian formulation of quantile regression relies
on assuming an asymmetric Laplace distribution (ALD) as an auxiliary error distribution,
as suggested by Koenker and Machado (1999) and Yu and Moyeed (2001). This assumption
allows for the specification of a likelihood function that is needed for Markov chain Monte
Carlo (MCMC) inference. The asymmetric Laplace distribution with location parameter ηlineariτ ,
scale parameter σ2 and asymmetry parameter τ is particularly suitable for quantile regression
models, since the minimization of the check function in the frequentist setting can equivalently
be represented as maximizing the asymmetric Laplace likelihood function

(15)
n∏
i=1

p(yi|ηlineariτ , σ2, τ) ∝ exp
(
−

n∑
i=1

ρτ
(yi − ηlineariτ )

σ2

)

with respect to ηlineariτ . In the Bayesian framework of Waldmann et al. (2013), the strictly
linear predictor ηlineariτ in Equation (15) is replaced with the more flexible geoadditive quantile
predictor

(16) ηiτ = β0τ + β1τxi1 + . . .+ βqτxiq + f1τ (zi1) + . . .+ fpτ (zip) + fgeoτ (si)

that allows the researcher to analyze the influence of the covariates on the response variable
semi-parametrically, for each quantile separately. In order to avoid the difficulties of maximizing
the likelihood arising from the non-differentiability of the check function ρτ , Yu and Moyeed
(2001) and Kozumi and Kobayashi (2011) suggest representing the ALD as a location-scale
mixture of normal distributions. Using this representation, the Bayesian quantile regression
model can then be rewritten as a conditionally Gaussian regression model so that Bayesian
estimation procedures of Gaussian STAR models similar to Equation (11) are available for
geoadditive quantile regression models (see Fahrmeir et al. (2013) and Waldmann et al. (2013)
for the derivation of the full conditionals and the Gibbs sampling algorithm).

Data description and variable selection

Data description
For our analysis, we use farm-level data based on the 2010 German agricultural census (FDZ
2010). It is the most comprehensive survey since 1999 and gives a representative picture of the
agricultural situation in Germany. The focus of the census is on questions regarding land use
and livestock, property and leasing agreements, organic-farming, labor and employment. We
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use farmland rental rates for tenancies that are older than two years as the response which are
transformed into farmland rental rates per hectare. This number can be interpreted more easily
and farmers use this figure for guidance when determining appropriate rental agreements. We
also exclude tenancies that were entered between family members to obtain a market based
assessment of rental rates. Based on previous studies that analyse German farmland rental
rates (see Breustedt and Habermann (2010) or Habermann and Ernst (2010) among others),
we use the covariates presented in table 1 for the analysis.

[Table 1 about here.]

To account for differing soil qualities and varying precipitation levels, we use the share of rye in
the cropping pattern as an approximation. Rye can be considered as being relatively resistant
to drought and is predominantly grown on low quality agricultural land, which makes it a
reasonable choice. Cattle and pig density, as well as the poultry density in livestock units per
hectare of agricultural land serve as measures of the production intensity. To capture the local
competition for farmland, we include both the average livestock densities of each district and
the Herfindahl index as proxies. Field crops with high profit margins, such as the proportion
of sugar beet, winter wheat and potato in the cropping pattern, are used as indicators of the
farmers‘ willingness to pay. To take into account the potential effects of increased land use for
the production of bioenergy on rental rates, we include the capacity of each farmers´ biogas
plant in kWh in the model. This is an important issue for German farmers, since renewable
energy sources have come to the centre of attention for German energy and climate policy in
recent years. On the basis of the German Renewable Energy Act (EEG), which guarantees
fixed feed-in tariffs for electricity gained from renewable sources, farmers have decided to use
increasingly more arable land for the production of bioenergy. As a consequence, many farmers
and landowners are driven by the question as to how the EEG affects farmland rental rates.
To allow for structural differences in the rental market between East and West Germany, we
include a dummy variable in our model. To adjust for unobserved spatial heterogeneity that
is not accounted for by farm-level covariates, we also include socio-demographic covariates
on the district level from the Regionaldatenbank (2010). The discrete spatial information that
identifies each farmer and the municipality he operates in is provided by an 8-digit code. For ease
of visualization and interpretation, the spatial effects are presented as average spatial effects on
the district-level. The effects of the remaining covariates, however, are estimated and presented
at the farm-level. After removing non-renting farmers, as well as outlying observations, we are
left with 107,620 observations for the analysis.
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Variable selection
Variable selection is a challenging task in geoadditive quantile regression. The researcher has to
select a subset of covariates that he or she considers relevant for the analysis and has to decide
whether the spatial information in the data is better described by an unstructured or structured
effect. To make the task of variable selection more feasible, we use a systematic and fully data-
driven approach based on componentwise functional gradient descent boosting for structured
additive quantile regression, as proposed by Fenske, Kneib, and Hothorn (2011). Boosting is a
machine learning approach that is aimed towards maximizing the prediction accuracy of the
response by iteratively combining different model components, called base learners, where in
each iteration step only the best-fitting base learner, i.e., the most informative covariate, is
selected. For geoadditive quantile regression, boosting is particularly appealing since boosting
decides for each quantile separately which covariates should enter the model.3 Table 2 presents
the selected variables and their selection frequencies for different quantiles. We choose to model
conditional quantiles for τ = {0.05, 0.50, 0.95} to gain detailed insights into low, as well as into
medium and expensive rental rates.

[Table 2 about here.]

Table 2 shows that the way in which covariates affect farmland rental rates varies across
quantiles: while some covariates have an influence on low and median rates, they have no effect
on more expensive ones. From table 2 it is also apparent that only fstr has been selected for
the 5% and 95% quantiles in order to model the spatial information of the data. The spatial
effect can therefore be assumed not to exist only locally, but to be correlated across districts
for these quantiles. However, the unstructured spatial effect has also been selected for the
50% quantile indicating that there seems to be additional small scale, district specific spatial
information in the data. Also note, that for expensive rents, mainly those covariates that reflect
local competition for farmland, as well as field crops with high profit margins have been selected.
Regarding the effect of increased land use for the production of bioenergy on rental rates, table
2 shows that boosting has decided to include it as an important covariate for median rents only.

Analysis of farmland rental rates
After having identified the relevant economic variables that determine farmland rental rates,
we now present the estimation results of the Bayesian geoadditive quantile regression.4
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Parametric and semi-parametric effects
Figure 1 shows posterior mean estimates for the semi-parametric effects together with 80%
(dark grey) and 95% (light grey) pointwise credible intervals.5

[Figure 1 about here.]

According to figure 1, field crops with high profit margins, like sugar beets or potatoes, have
a positive effect on rental rates. However, while the effect of sugar beet initially increases across
all quantiles, it starts to decrease again for low rents if more than 30% of the farmland is used
for the cultivation. We further investigate the decrease of sugar beets for the 5% quantile by
forming the first derivative of the estimated effect and find that the sharp decrease is indeed
significant at a nominal level of 5%. For medium and high rents, there seems to be a threshold
effect as the effects level off above a share of 30%. Given the crop rotation, this seems to be
reasonable. The effect of farm size for small and medium-sized farms is a positive one, as rental
rates increase initially with growing farm size. Larger farms are more likely to realize economies
of scale and are therefore able to pay higher rents. However, note that the size only has an
increasing effect until a farm size of approximately 70 hectares. After this threshold, low rents
remain almost constant with increasing farm size, while medium rents are negatively affected
for farm sizes between 70 and 180 hectares. A possible explanation might be that, after a given
threshold, farms may be so large that they may have a comparatively higher market power
which allows them to keep rental rates low.
Similar to Drescher and McNamara (2000), Fuchs (2002) or Breustedt and Habermann (2011)

we find that livestock densities have a major impact on rental rates, both at the farm and the
district level. This positive influence might be explained by a statutory framework within which
farmers are restricted in the amount of manure they are allowed to discharge on their land.
Farmers with a livestock density that exceeds a certain threshold either have to rent additional
acreage or have to register a trade. To avoid tax disadvantages, farmers prefer to rent additional
farmland instead in order to reduce the livestock density. This effect is very pronounced for hog
and poultry density at the farm level, and even more so for medium and high rents on the
district level. The strong effects for regional livestock density also reflect the heavy competition
for farmland in certain districts. From figure 1, it also appears that biogas increases medium
rental rates, at least up to a plant capacity of approximately 380 kWh. As a result of the
increased uncertainty attached to the estimation, which is reflected in the wide credible bands,
reliable statements beyond this capacity cannot be made.
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We now turn to the analysis of parametric effects that are summarized in table 3, showing
posterior means, standard deviations and 95% credible intervals.

[Table 3 about here.]

Table 3 shows that differences exist between farmers and the rental rates they have to pay
depending on whether they operate their farm full-time or part-time, since full-time farmers
have to pay higher rents compared to their part-time counterparts. This difference may be
attributed to several reasons. In order to earn a living, full-time farmers have to have a high
production volume and a high production intensity. As a consequence, full-time farmers are on
average larger than part-time farmers, with an average farm size of about 61 hectares. This
is about the size until which rental rates increase with farm size (compare Panels (11)-(12)
of figure 1). Another reason for the difference might be due to the fact that the proportion of
full-time farmers is high in those districts where the principle income of the farmer is associated
with livestock farming, and hence, in districts where rental rates are high (compare Panels (14)-
(24) of figure 1). Due to the high demands with respect to capital intensity and the employment
of labour, livestock farming on a larger scale can be operated successfully only as a full-time
farmer.

Spatial effects
Our analysis of the spatial effects is motivated from a statistical point of view. In contrast to
econometrics, where spatial autoregressive models are commonly used, we account for spatial
correlation and non-observable farmland characteristics by adding a spatial term fgeoτ to the
additive predictor ηiτ . As a consequence, we are mainly interested in investigating spatial pat-
terns that emerge from spatial heterogeneities that are left unexplained after taking covariates
into account. Plotting the estimated effects of fgeoτ allows us to graphically investigate these
spatial patterns and assists in identifying additional covariates that capture the remaining het-
erogeneity in the data. A careful visual inspection of the distribution of these spatial effects can
also provide new insights into the data that were not previously considered. Significance maps
shown in figure 2 enhance the detection of spatial patterns by classifying the estimated spatial
effect into three categories; the spatial effect is classified as insignificant at the 80% level and the
corresponding district is coloured in grey, if the credible interval includes zero. Districts with
significant positive effects are coloured in white, whereas districts with significantly negative
effects are coloured in black.6
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[Figure 2 about here.]

Figure 2 shows that rental rates are considerably lower what can be explained with covariates
in the southwest, as well as in large parts of East Germany across all quantiles (black districts).
It is reasonable to assume that the pattern in East Germany results from structural differences
between East and West German rental markets, and in particular from the way rental rates
were set by the Bodenverwertungs- und -verwaltungs GmbH (BVVG), a company that man-
aged state-owned land in East-Germany. In order to account for the differences between East
and West German rental markets, we have included a dummy variable. However, as table 2
shows, the dummy variable leaves the structural differences between East and West German
rental markets unexplained since boosting has never selected it during any of the iterations.
Consequently, additional covariates other than the dummy variable have to be included in the
model in order to account for the differences between East and West German rental markets.
The patterns in the southwest of Germany may be attributed to the wine-growing districts.
Since rental rates are grouped by the type of use of the agricultural land, rental rates of vine-
yards are recorded separately in the data. As a consequence, although winegrowers had to pay
an average rent of approximately 828 EUR per hectare for vineyards in certain wine-growing
districts, these high rents do not contribute to the estimation and the map only shows below
average farmland rental rates.
Figure 2 also reveals that the covariates are better suited to explain expensive rental rates, as

the covariates leave heterogeneities unexplained only in very few districts of Germany across all
quantiles (white districts). While the pattern for the median and 95% quantile are similar with
respect to high unexplained rents, the 5% quantile identifies some additional districts in the far
north. In accordance with the literature and with the results from the semi-parametric effects,
figure 2 shows that rental rates for farmland are more expensive in districts where livestock
densities are high. Rental rates are also more expensive in districts in which high livestock
densities and high biogas densities meet, such as in the southern part of Germany.

Conclusion
In this article we model and analyse conditional quantiles of farmland rental rates semi-
parametrically using Bayesian geoadditive quantile regression models. The flexibility of this
model class overcomes the problems of functional form misspecifications and allows us to present
a more detailed analysis of farmland rental rates and their determinants. This is of interest, both
for practitioners and academics, since hedonic pricing studies in the agricultural literature have
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primarily concentrated on modelling conditional means, where a linear relationship between co-
variates and the response is usually assumed. Our results stress the importance of making use
of flexible, semi-parametric models as some of the covariates clearly have a non-linear influence
on farmland rental rates. By explicitly modelling and plotting the spatial effects, we account
for spatial autocorrelation and are able to detect spatial patterns in the data that can be used
in future studies in order to identify additional covariates that capture the remaining spatial
heterogeneity.
There are several ways to extend the current analysis. From an agricultural point of view, it

would be interesting to investigate whether the increased investment in agricultural land by both
agricultural and non-agricultural investors has an effect on farmland rental rates. Furthermore,
our analysis could be extended by using farmland rental rates of more recent data or by using
tenancies that have been signed or for which the terms have been adjusted within the last two
years, as they might be better suited for analysing the effect of bioenergy on the recent mark-up
of German farmland rental rates. From a statistical point of view, it would be interesting to
allow the effect of one or more covariates to vary across space. When modelling the covariate
effects, we have implicitly assumed that the way in which the covariates act on the response is
homogeneous across all districts. However, the effect of one or more covariates may vary both in
size and in their functional form from district to district. Geographically Weighted Regression
models allow regression coefficients to differ regionally from their global values and assume
that the spatial heterogeneity is explained solely by the space varying regression parameters.
Generalized Additive Models for Location, Scale and Shape (GAMLSS), originally proposed by
Rigby and Stasinopoulos (2005) and extended to Bayesian Structured Additive Distributional
Regression by Klein, Kneib, and Lang (2013), also provide an interesting extension of the
analysis, as they allow for the modelling of all parameters of an assumed response distribution
as additive functions of covariates. This is important in the case of (spatial) heteroscedasticity,
where interest does not lie with farmland rental rates themselves, but with their (spatial)
variation.
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Notes

1McMillen (2003) and Maddison (2004) also note that functional form misspecifications can falsely
lead researchers to fit a spatial model to the data, even if spatial dependencies are not present.

2Each B-spline consists of polynomial pieces of degree lj that are joined together smoothly at
points known as knots. Regression splines, specifically B-splines with penalties, are usually known as
P-splines.

3Componentwise functional gradient descent boosting for structured additive quantile regression is
a method that solves the following optimization problem

η∗τ = argmin
ητ

E [L(y,ητ )]

where y is the response, ητ is the geoadditive quantile predictor and L(·, ·) is a suitable loss func-
tion. In practical applications, the expected loss E [L(y,ητ )] is replaced with the empirical risk
n−1∑n

i=1 ρτ (yi − ηiτ ) which is minimized with respect to ηiτ . The following steps illustrate the basic
principle of componentwise functional gradient descent boosting:

Step 1: Specify a corresponding base learner bd for each component d = 1, . . . , D in the
additive quantile predictor ητ .

Step 2: Initialize all D base learners, as well as the additive predictor η̂[0]
τ and set the

iteration index to m = 1.

Step 3: Calculate the negative gradient residuals of the loss function that will serve as
a working response for the base learning procedure:

u
[m]
i = − δ

δηiτ
L(yi, ηiτ )

∣∣∣∣
ηiτ=η̂[m−1]

iτ

for i = 1, . . . , n.

Step 4: Fit each of the D base learners separately to the negative residuals to obtain
b̂

[m]
d .

Step 5: Select the best fitting base learner b̂[m]
d∗ and add a fraction of its fitted value to

η̂
[m−1]
d∗
τ

:

η̂
[m]
d∗
τ

= η̂
[m−1]
d∗
τ

+ ν · b̂[m]
d∗ , where 0 < ν ≤ 1 is a given step length.
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Step 6: Keep all other effects constant, i.e., set η̂[m]
dτ

= η̂
[m−1]
dτ

for d 6= d∗.

Step 7: Unless m = mstop, increase m by one and go back to Step 3.

The algorithm shows that the final estimate for the d-th component of the predictor ητ can be expressed
as a weighted sum of fitted base learners

η̂
[mstop]
dτ

=
mstop∑
m=1

ν · b̂[m]
d

where b̂[m]
d = 0 if the d-th base learner was not selected in iteration m. By stopping the algorithm

after a fixed number of iterations m = mstop, boosting implicitly performs variable selection; typically,
the important covariates (in terms of prediction accuracy) with a high influence on the response
will be selected first, while covariates with a limited influence will be selected, if at all, only in very
late boosting iterations. Hence, early stopping excludes those covariates from the model that are not
considered to have any explanatory power. The optimal number of iterations mstop is determined by
k-fold cross-validation. For the estimation of the effects presented in table 2, we have set k=5. For the
starting model of the boosting algorithm, we have include all covariates presented in table 1. Variable
selection is performed using the R-package mboost of Hothorn et al. (2013).

4The results are obtained via full Bayesian MCMC simulation based on 22,000 iterations, a burn-in
period of 2,000 iterations and a thinning parameter of 20 resulting in a sample of 1,000 samples from
the posterior. The smooth effects of continuous covariates are estimated via cubic penalized B-splines
based on second order random walk priors. To avoid very rough estimates for the extreme quantiles,
we use 10 equidistant inner knots for all model specifications. Hyper-parameters for the smoothing
variances τ2

j are set to aj = bj = 0.001 as a default. The structured spatial effect is estimated based on
a Markov Random Field prior, whereas for the estimation of the unstructured effect district specific
i.i.d. Gaussian random effects are used. The estimation is performed using the R-packages BayesXsrc
of Adler et al. (2013) and R2BayesX of Lang et al. (2013), which is an R interface to the standalone
software BayesX of Belitz et al. (2013).

5Since the parametric part of the geoadditive quantile predictor includes an intercept term, each
function is centered around zero, i.e.,

∑n
i=1 f1(zi1) = . . . =

∑n
i=1 fp(zip) = 0 in order to guarantee the

identification of the estimated semi-parametric effects. The estimated functions in figure 1 are plotted
in this way.

6Figure 2 presents the estimation results for the structured spatial effects only, as the unstructured
spatial effect of the 50% quantile is less important in terms of its magnitude.
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Figures
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Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.

Figure 1. Semi-parametric effects with 80% and 95% pointwise credible intervals.
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Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.

Figure 1 continued.
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(33) inha
(τ= 0.50)

(34) inha
(τ= 0.95)

(35) rent_lag
(τ= 0.50)

(36) bioenergy
(τ= 0.50)

(37) income
(τ= 0.50)

(38) labour
(τ= 0.50)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.

Figure 1 continued.
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(1) Posterior probabilities of fstr
(τ= 0.05)

(2) Posterior probabilities of fstr
(τ= 0.50)

(3) Posterior probabilities of fstr
(τ= 0.95)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.

Figure 2. Posterior probabilities of the structured spatial effect fstr based on a nominal level of
80%.
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Tables
Table 1. Description of Covariates

Covariate (farm-level) Description

farm_succ Farm succession (categorical: 1=yes, 2=no, 3=unsettled)
east Dummy Variable for East Germany (categorical: 1=West Germany, 2=East Germany)
organic Dummy Variable for organic farming (categorical: 1=yes, 2=no)
fulltime Dummy Variable indicating whether the farmer operates his business in full-time or part-time

(categorical: 1=no individual enterprise as legal form, 2=full-time, 3=part-time)
rent_share Share of rented agricultural land to total agricultural land (continuous)
farmland_rent Share of rented farmland to total rented agricultural land (continuous)
cattle Farm-level cattle density in animal unit (AU) per hectare (continuous)
hog_poultry Farm-level hog and poultry density in animal unit (AU) per hectare (continuous)
bioenergy Capacity of biogas plant in kWh (continuous)
winterwheat Share of winter wheat in cropping pattern (continuous)
sugarbeet Share of sugar beet in cropping pattern (continuous)
potato Share of potato in cropping pattern (continuous)
rye Share of rye in cropping pattern (continuous)
labour Labour force per hectare (continuous)
irrigation Share of agricultural land that could have been irrigated (continuous)
size Total agricultural land of the farmer in hectare (continuous)
Covariate (district-level) Description

hhi Herfindahl-Hirschman index based on the share of rented agricultural land to total agricul-
tural land in each district (continuous)

inha Inhabitants per square kilometre (continuous)
unempl Unemployment rate (continuous)
income Average income per inhabitant (continuous)
rent_lag Spatially lagged farmland rental rate (continuous)
dist2cc Distance to next city center in kilometres (continuous)
cattle_dist Average district-level cattle density in animal unit (AU) per hectare (continuous)
hog_poultry_dist Average district-level hog and poultry density in animal unit (AU) per hectare (continuous)

Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.
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Table 2. Covariates and their Selection Frequencies during Boosting Iterations

τ = 0.05 τ = 0.50 τ = 0.95
Covariate Freq. Covariate Freq. Covariate Freq.

fstr 0.3998 fstr 0.7162 fstr 0.3208
f(cattle_dist) 0.1453 f(cattle_dist) 0.0735 f(hog_poultry_dist) 0.1239
f(size) 0.0711 f(cattle) 0.0422 f(sugarbeet) 0.1103
fulltime 0.0675 f(rent_share) 0.0222 f(cattle_dist) 0.1056
f(farmland_rent) 0.0564 funstr 0.0217 fulltime 0.0762
f(rent_share) 0.0547 f(size) 0.0216 f(farmland_rent) 0.0752
f(hog_poultry_dist) 0.0398 f(hog_poultry_dist) 0.0199 intercept 0.0414
f(sugarbeet) 0.0395 f(sugarbeet) 0.0149 f(potato) 0.0334
f(winterwheat) 0.0347 f(farmland_rent) 0.0107 f(inha) 0.0313
f(unempl) 0.0239 fulltime 0.0083 f(rye) 0.0281
f(cattle) 0.0234 f(winterwheat) 0.0078 f(hhi) 0.0213
f(hog_poultry) 0.0179 f(unempl) 0.0076 f(hog_poultry) 0.0196
intercept 0.0152 f(hog_poultry) 0.0068 f(rent_share) 0.0130
f(rye) 0.0108 f(potato) 0.0053

f(rye) 0.0053
f(bioenergy) 0.0048
f(income) 0.0040
f(rent_lag) 0.0032
f(labour) 0.0022
f(inha) 0.0019∑

1.0000
∑

1.0000
∑

1.0000
Source: own calculations based on data from the 2010 German agricultural census and from the Regionaldatenbank.
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Table 3. Parametric Effects

τ = 0.05
Mean Std. 2.5% 97.5%

Intercept 167.3150 1.5635 164.3530 170.2770
full-time -4.4783 0.7025 -5.8641 -3.0617
part-time -9.0094 0.8166 -10.5819 -7.4320

τ = 0.50
Mean Std. 2.5% 97.5%

Intercept 324.0170 3.0758 317.5430 329.7030
full-time -5.3913 0.9449 -7.2346 -3.5716
part-time -12.1409 1.0729 -14.2923 -10.1269

τ = 0.95
Mean Std. 2.5% 97.5%

Intercept 445.6230 4.8821 436.3380 455.0340
full-time -11.3771 1.4211 -14.1269 -8.6229
part-time -29.8125 1.4229 -32.5452 -27.0207

Source: own calculations based on data from the 2010 German agricultural
census and from the Regionaldatenbank.
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