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In the face of increasing availability and use of distribution data, large-scale approaches of mapping species distribution
patterns have become a central component of development of large-scale conservation policies. Particularly in tropical
regions and for non-vertebrate taxa, knowledge on distribution patterns at large spatial extents remains woefully limited.
Datasets are often geographically and taxonomically incomplete, have presence-only character and lack abundance
information. One intermediate step for the application of such data common to most approaches is the construction of
species geographic ranges. In this study, we investigated the effects of different methods for constructing species ranges on
range attributes and species richness. We selected the Neotropical palm genus Bactris as a typical example for a diverse
tropical plant taxon that is comparatively well researched, but under collected. For 48 Bactris species, we compared
point-to-grid ranges, expert ranges, convex polygons and modelled ranges. Range attributes and resulting species richness
patterns differed tremendously and were constrained by incompleteness of the respective data type and by the errors
associated to the method itself. The consequences of applying different methods to construct species ranges highlighted
here can aid in selecting appropriate methods for analysing distribution data at large geographic scales.

Key words: Bactris, data scarcity, large-scale distribution data, MAXENT, plants, spatial patterns, species geographic
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Introduction
Geographic ranges of species represent the basis of most
macroecological and biogeographical studies (e.g. Jetz &
Rahbek, 2002; Graham & Hijmans, 2006; Grenyer et al.,
2006; Kreft et al., 2006; Jetz et al., 2008; Raedig et al.,
2010) as well as a fundamental criterion to assess the con-
servational importance of species and regions (Willis et al.,
2003; Orme et al., 2005; IUCN Standards and Petitions
Subcommittee, 2010).

Recent studies indicate that different range attributes are
of crucial importance towards our perception of richness
patterns as well as of their environmental correlates and
causal drivers (e.g. Lennon et al., 2004; Luoto et al., 2005;
Kreft et al., 2006; McPherson & Jetz, 2007). Basically,
a geographic range can be defined as the area wherein

Correspondence to: Claudia Raedig. E-mail: claudia.raedig@
fh-koeln.de

occurrences of individuals of a species are located
(Rapoport, 1982; Gaston, 1991). Whereas the extent of
occurrence (EOO) describes the area between the outmost
borders of a species range, the area of occupancy (AOO) de-
scribes the area where a species is actually present (Gaston,
1991, 2003). These two parameters are used by the IUCN
to derive biologically meaningful properties of geographic
ranges (Gaston & Fuller, 2009; IUCN Standards and Pe-
titions Subcommittee, 2010). In practice, species distribu-
tions at large spatial extents and at coarse grain are usually
depicted using EOO (e.g. Buckley & Jetz, 2007; Hurlbert &
Jetz, 2007).

Apart from this distinction, species ranges used to de-
rive distribution maps rely on different data sources and
different methods to construct species ranges from primary
occurrence data. Generally, species ranges are in one way
or another related to field collections, observations, or mu-
seum specimens. At large spatial extents, these data are
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Fig. 1. Schematic illustration of frequently used methods to depict the geographic range of a species. (A) Point data form the basis of the
different types of species ranges. (B) Point-to-grid ranges are created by binning point data into a gridded mapping scheme. (C) Expert
ranges are deduced by experts based on knowledge of specimens, field experience and other non-quantifiable information. (D) Convex
polygons represent the minimal convex set including all underlying point data. (E) Modelled ranges are based on statistical relationships
between observed occurrences and climatic and other environmental variables.

mostly presence-only data, lacking the information whether
a species is truly absent from areas where it has not been
recorded (e.g. Graham et al., 2004; Elith et al., 2006).
Such georeferenced data can be used to generate dot maps
(Fig. 1a). Often, point data are transformed into gridded
mapping templates yielding point-to-grid maps (Fig. 1b).
A second major data source originates from distribution
atlases (Fig. 1c). Such expert-drawn range maps are usu-
ally constructed by complementing occurrence data with
extensive, but not quantified, expert knowledge on species
and their environmental requirements (Graham & Hijmans,
2006; Hurlbert & Jetz, 2007). This latter data source has
been extensively exploited to analyse large-scale richness
patterns of taxa – such as terrestrial vertebrates – which
are generally well-known and mapped at a global scale
(e.g. Orme et al., 2005; Grenyer et al., 2006; Buckley &
Jetz, 2007, Schipper et al., 2008). For non-vertebrate taxa,
no comparable studies based on expert ranges exist at the
global scale.

Furthermore, two main approaches exist to construct
species ranges. First, methods for range construction as
utilised by the IUCN to estimate EOO (IUCN Standards and
Petitions Subcommittee, 2010) interpolate species ranges
using convex polygons which flank the outermost known
edges of documented occurrences (Willis et al., 2003;
Fig. 1d). This approach is based on geometric rules and
generally does not consider ecological variables that de-
termine the distribution of species or phenomena such as
disjunct distributions. Secondly, species ranges can be pro-
duced by extrapolating over the limits of documented oc-
currences applying different extrapolation constraints. Ex-
trapolation can be performed using criteria like the distance

to neighbouring occurrences (Hopkins, 2007), a standard
diameter as buffer width (Schulman et al., 2007), or the
average distance of a minimum spanning tree between oc-
currences as buffer width (Rapoport, 1982; Willis et al.,
2003; Hernández & Navarro, 2007; Moat, 2007). Another
extrapolation approach is species distribution modelling
which has attracted massive scientific interest in the past
decade (e.g. Guisan & Zimmermann, 2000; Thuiller et al.,
2003; Segurado & Araújo, 2004; Guisan & Thuiller, 2005;
Araújo & Guisan, 2006; Elith et al., 2006; Araújo & New,
2007; Botkin et al., 2007; Tsoar et al., 2007; Cayuela
et al., 2009). Statistical relationships between species oc-
currences and environmental predictor variables are used
to model suitable areas where a species is likely to occur
(Fig. 1e).

With the increasing availability and use of species-level
distribution data for basic and applied issues in ecology,
biogeography and conservation, it becomes necessary to
scrutinise uncertainties arising from different methods to
construct species ranges. A central prerequisite for identi-
fying these uncertainties is the consideration of the basic
problems inherent to all large-scale distribution datasets:
incompleteness and data quality. In particular for tropi-
cal regions and speciose, cryptic or otherwise inconspicu-
ous taxa, distribution datasets often are incomplete (Prance
et al., 2000; Crisp et al., 2001; Linder, 2001; Graham et al.,
2004; Schmidt et al., 2005; Cayuela et al., 2009). For in-
stance, continental-scale analyses of plant richness were
based on, e.g. c. 5% of Neotropical (Morawetz & Raedig,
2007) and c. 10–15% of African angiosperm species (Küper
et al., 2004). And even in regions with a longstanding floris-
tic tradition like Europe, only about 20% of the flora has
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yet been mapped (Jalas & Suominen, 1972–1994; Jalas
et al., 1996, 1999; Kurtto et al., 2004, 2007). This dif-
ference in incompleteness is reflected by the number of
tree specimens contained in the Missouri Botanical Garden
VAST (VAScular Tropicos) database and others: in Great
Britain and Ireland each tree species is documented with
on average 4311 records, and in the Netherlands with 6687
respectively; for selected tropical American countries with
up to 16-fold higher tree species richness only between six
(Guatemala) and 21 (Nicaragua) documented records per
tree species exist on average (Cayuela et al., 2009).

Probably the most critical issue contributing to incom-
pleteness of large-scale distribution datasets is geographi-
cally heterogeneous sampling effort (Nelson et al., 1990;
Gaston, 2003; Graham & Hijmans, 2006; Morawetz &
Raedig, 2007; Raedig et al., 2010). In general, sampling
effort decreases with increasing difficulty of sampling, thus
collecting activity in remote regions is low. Hence, Beck
et al. (2007) found that the mean number of locality records
per species was low in general, and lowest for amphibians
and vascular plants (six and seven records per species re-
spectively) along the eastern flank of the Andes in Peru and
Bolivia. Schulman et al. (2007) showed that sampling ef-
fort in Amazonia is highly heterogeneously distributed and
classified 43% of Amazonia as botanically not explored, a
further 28% as poorly and only 2% as comparably well-
collected (at 0.5◦ grid resolution).

In addition to the spatial incompleteness, the quality of
data in terms of taxonomic correctness varies strongly be-
tween distribution datasets. In a growing number of studies
partly unrevised data sources are exploited. Verifying un-
revised botanical data, Hopkins (2007) found error rates of
up to more than 40% for Amazonian plants. Unfortunately,
revised distribution data covering large areas are hardly
available. The few available large-scale datasets share a
common characteristic which makes their statistical anal-
ysis difficult: the number of occurrences for the species
are often low and datasets contain high portions of single-
tons (e.g. Condit et al., 2002, Panama: 22%; Beck et al.,
2007, Bolivian Andes: 28%; Morawetz & Raedig, 2007,
Neotropics: 21%). In distribution modelling, species with
few records are typically excluded due to statistical con-
straints. This exclusion will aggravate the effect of species
richness patterns tending to be dominated by widespread
species (Jetz & Rahbek, 2002; Lennon et al., 2004; Kreft
et al., 2006). However, the excluded species probably have
the smallest ranges and are therefore of greatest conser-
vation concern (Graham & Hijmans, 2006; Cayuela et al.,
2009). Thus, for presence-only datasets, a high proportion
of species with few occurrences (e.g. Morawetz & Raedig,
2007: 42.5% of species with three or less occurrences)
advises against distribution modelling. If the scale of anal-
ysis is fine-grained and sufficient data are available, ranges
have been successfully modelled (e.g. Thuiller et al., 2003;
Graham & Hijmans, 2006; Hernandez et al., 2006), and are

useful for conservation purposes such as new population
discovery (Raxworthy et al., 2003; Williams et al., 2009).

The construction of species ranges is hampered by both
incompleteness of distribution data and varying data qual-
ity. Against this background, understanding the effects of
the different methods to construct species ranges is relevant
for biodiversity mapping, macroecology, climate change re-
search and conservation. Effects of different data types have
been assessed for species richness at large geographic ex-
tents deduced from survey data and museum specimens
(Guralnick & Van Cleve, 2005) as well as expert ranges
and survey data (Hurlbert & White, 2005; Hurlbert & Jetz,
2007; McPherson & Jetz, 2007). These studies were re-
stricted to well-known taxa and regions and already provide
evidence for the relevance of the underlying data for scale
issues of species richness, or for the deduction of drivers
of species richness, but did not explore species ranges as
such. At the regional scale, different methods for construct-
ing species ranges have been explored (Graham & Hijmans,
2006), yet an examination of species range construction for
the detection of large-scale distribution patterns is lacking.
Furthermore, the influence of data types and species range
construction remains unknown for diverse groups such as
plants, for which distribution data are disproportionately
scarce, and for humid tropical regions which are particularly
diverse but under-collected (Prance et al., 2000; Cayuela
et al., 2009).

The goal of this study was to analyse the effects of differ-
ent methods to construct species ranges on large-scale spa-
tial patterns of species richness for a diverse tropical plant
taxon. We thus selected the palm genus Bactris which repre-
sents one of the few cases where both revised point-to-grid
ranges and expert ranges are available for a tropical plant
genus (Henderson et al., 1995; Henderson, 2000). We chose
common methods used to construct species ranges from
these two sources and constructed point-to-grid ranges, ex-
pert ranges, convex polygons and modelled ranges. We
then compared resulting species ranges and aggregated
maps of species richness (e.g. Graham & Hijmans, 2006;
Diniz-Filho et al., 2008; Gove et al., 2008). More specifi-
cally, we addressed the following questions: (1) What are
the differences between the constructed species ranges in
terms of frequency distribution and further range attributes?
(2) What are the differences between the derived maps of
species richness regarding spatial structure, spatial congru-
ence, in particular of centres of species richness, and across
different spatial scales? (3) How can these differences be
explained and accounted for?

Methods
Construction of species ranges
Point-to-grid maps based on revised specimens of 73
species (87 species and subspecific taxa) of Bactris are
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provided in Henderson (2000) at a 1◦ × 1◦ resolution.
Expert ranges for 64 species were extracted from the
Field Guide to the Palms of the Americas (Henderson
et al., 1995). In this work, ranges of 550 Neotropical
palms are depicted as expert range maps. In order to com-
pare datasets, taxonomies used in Henderson (2000) and
Henderson et al. (1995) had to be adjusted (64 species, Ap-
pendix S1, see supplementary material which is available
on the Supplementary Content tab of the article’s online
page at http://dx.doi.org/10.1080/14772000.2011.588726).
Polygons of expert ranges were first digitised and then over-
laid with the 1◦ × 1◦ grid in order to extract occurrences
per grid cell. The centres of the grid cells from point-to-
grid maps were interpolated to convex hulls using Hawth’s
Analysis Tools extension for ArcGIS, version 2.10. The re-
sulting polygons built our convex polygon dataset and for
reasons of comparability were recalculated to the same 1◦

grid cells.
We used MAXENT (Maximum Entropy Modeling) to

model ranges based on point-to-grid occurrences and en-
vironmental data (Phillips et al., 2006). MAXENT is a
frequently used software and has been shown to be capable
of modelling presence-only data when dealing with scarce
occurrences (Hernandez et al., 2006; Pearson et al., 2007;
Wisz et al., 2008; Williams et al., 2009). Using randomly
assigned pixels from a background area, MAXENT distin-
guishes between the two instances ‘presence’ and ‘random’
which is comparable to using pseudo-absences instead of
absences (Phillips et al., 2006). For detailed information on
our application of MAXENT (see Appendix S3, available
online, as above).

Environmental predictors were derived from the World-
Clim Global Climate GIS database (20 predictors;
Hijmans, 2005). Additionally, two categorical data lay-
ers, ecoregions (Olson et al., 2001) and vegetation zones
(Bletter et al., 2004), were included. To avoid over
fitting (Guisan & Thuiller, 2005), the number of oc-
currences should be at least ten times the number of
predictors (Harrell, 2001; Gibson et al., 2007), and multi-
collinearity among predictors should be avoided (Graham,
2003; Guisan & Thuiller, 2005; Dormann et al., 2007).
Therefore, we excluded the most-correlated predictors
based on a Spearman rank correlation matrix to minimise
both collinearity and number of predictors (see Appendix
S2, which is available online, as above).

Predictors that finally entered the modelling were alti-
tude, maximum temperature of the warmest month, pre-
cipitation seasonality, precipitation of the warmest quarter,
ecoregion and vegetation zone. Robust models could be
generated for 48 species (see Appendix S3).

According to the general purpose of our study, we de-
cided to use a fixed threshold to determine area pre-
dicted as suitable for a species (P > 0.5 for all Bactris
species).

Comparing datasets
Range size was measured as the sum of occupied grid cells.
Since coastal grid cells can affect the calculation of range
size, the area of these cells was adjusted based on the
fractional land surface in five classes from 0.2 to 1 de-
gree. Range size frequency distributions (RSFDs) as well
as mean, median and maximum range size were compared
for all range types and tested for similarity (Mann–Whitney
Rank Sum Test).

Maps of species richness were generated for each dataset
by summing up incidences per 1◦ grid cell. Species richness
generally shows a strong pattern of spatial autocorrelation,
i.e. values of nearby grid cells are more similar values than
distant ones due to the spatially and temporally induced
causal interaction among nearby locations (Fortin et al.,
2002). The inherent spatial autocorrelation of richness maps
was assessed with Moran’s I correlograms. Moran’s I values
generally vary between −1 and 1, with values greater than
zero indicating positive autocorrelation and values close to
zero indicating absence of spatial autocorrelation. In order
to quantify differences between resulting species richness
patterns, pairwise values of species richness were plotted
against each other to determine their degree of similar-
ity (Pearson’s r). Moreover, to investigate how patterns of
similarity change with spatial scale, we determined the cor-
relation between richness pairs at increasingly coarser grain
sizes (up to 5◦). We further examined the spatial congruence
of richness centres. First, richness centres were defined as
cut-off percentages of species richness for very small (1%)
to fairly large (25%) richness centre size. Then, the spatial
overlap of richness centres at a certain cut-off level was de-
termined as the proportional overlap between two richness
centres.

Results
Range sizes of the Bactris species studied vary from small-
ranging species such as B. glassmannii and B. horridispatha
with four point occurrences to wide-ranging species with
more than 100 point occurrences (B. maraja, B. simpli-
cifrons (see Appendix S3, available online). Range sizes
calculated for the four different range types differed con-
siderably (Table 1) but generally followed a strongly right-
skewed distribution which reached or approximated nor-
mality after log10-transformation (Fig. 2). The median range
size was smallest for point-to-grid data (15.9), and the
RSFD of this data type differed significantly from all other
RSFDs (P < 0.001). The median range size was about four
to seven times larger for expert ranges (66.3), modelled
ranges (111.6) and convex polygons (70.0). RSFDs of the
latter three were statistically indistinguishable from each
other (P = 0.079–0.714). However, the maximum range
size of expert ranges (918.8) was larger than both modelled
ranges (437.2) and convex polygons (770.6).

http://dx.doi.org/10.1080/14772000.2011.588726
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Table 1. Statistical descriptors of geographic range size, measured as the number of grid cells, for four different range types.

Range type Median Mean SD Min Max Skewness Kurtosis

Point-to-grid range 15.9 23.7 26.6 3.2 137.2 2.6 7.5
Expert range 66.3 150.7 211.2 4.0 918.8 2.1 3.8
Convex polygons 70.0 180.2 222.0 5.4 770.6 1.5 1.2
Modelled range 111.6 143.2 114.7 11.6 437.2 1.2 0.7

∗
SD, standard deviation; Min, minimum; Max, maximum.

The much smaller size of point-to-grid ranges was also
reflected in overall lower species numbers per grid cell and
in a high porosity of the species richness map (Fig. 3a).
The location of maximum richness differed for each rich-
ness map (Fig. 3). Maximum point-to-grid richness (n = 15
species) was located in the Peruvian Amazonia near Iqui-
tos (−73.5◦ W, −3.5◦ S) (Fig. 3a). Grid cells with highest
species richness (n = 18) for expert ranges were located in
the eastern Guyanas and north of Manaus in Brazil (Fig.
3b). These cells were embedded in a coherent belt of high
species richness extending from French Guiana and Suri-
name southward to the Amazon, and along the Amazon
up to the Iquitos region and southern Colombia. Maximum
convex polygon richness (n = 21) was located in two grid
cells at the Japurá river in western Brazil (66.5◦ W, 1.5◦ S;
67.5◦ W, 1.5◦ S) (Fig. 3c). Aside of these grid cells, a larger
centre of convex polygon richness with grid cells containing
20 species was located in the border region of Colombia,
Peru and Brazil. Both centres were part of a belt with contin-
uously high species richness stretching from the Guyanas to
the Amazon and almost covering the entire western Ama-
zonian region. The maximum grid cell count of modelled
Bactris ranges (n = 23) was located in northern Guyana
(60.5◦ W, 6.5◦ N; Fig. 3d). Here, the entire Guyanas consti-
tuted a contiguous richness centre; further richness centres
with more than 20 species lay along the Amazon. In parallel
to the different location of richness centres, the prominent
distribution gap of Bactris in the Cerrado and the Caatinga,
two savannah formations in Brazil, was more or less de-
tectable for point-to-grid, expert and modelled richness,
and entirely lacking for convex polygon richness.

Species richness patterns resulting from all four range
types showed a spatial structure (Fig. 3e). Positive spatial
autocorrelation occurred up to approximately 2000 km in
all four range types indicating that neighbouring grid cells
had more similar values of species richness. In concordance
with the high porosity illustrated in Fig. 3a, point-to-grid
richness exhibited the most distinct pattern and by far the
lowest level of spatial autocorrelation (Fig. 3e). The spatial
structure of species richness was more similar for modelled
ranges, expert ranges and convex polygons.

Grid cell-wise plotting of the species richness demon-
strated the degree of congruence between different range
types (Fig. 4). Whereas point-to-grid data showed low cor-

relations with all other richness patterns (Pearson r-values
0.38 to 0.49, Fig. 4a–c), the remaining richness patterns
were more similar. Expert and convex polygon richness
(Fig. 4d) showed the highest similarity (r = 0.90). Decreas-
ing the grid resolution to 2◦ yielded higher correlations of
richness patterns (r-values 0.64 to 0.92, Fig. 5a). From 3◦

to 5◦ grid resolution, correlation of richness patterns be-
came consistently more similar to each other with r-values
ranging from 0.81 to 0.95.

Further examination of the spatial congruence of rich-
ness centres confirmed these patterns (Fig. 5b). Point-to-
grid data showed the lowest spatial congruence of richness
centres compared with all other pairs. For instance, when
comparing the 10% most species-rich grid cells, the spatial
congruence between richness centres appeared to be rela-
tively low and varied between c. 20% and 40% (Fig. 5b,
dotted lines). With a less strict definition of richness cen-
tres, congruence of pairs increased. Consequently, for 25%
of most species-rich grid cells, spatial congruence ranged
between 34.9% and 78.3%. Again, the highest similarity
was observed between expert range and convex polygon
richness.

Discussion
We selected the well-researched but under-collected palm
genus Bactris to examine uncertainties arising from differ-
ent range type data and range construction methods. Al-
though palms and particularly Amazonian palms represent
a traditionally under-collected group (Balick et al., 1982),
Bactris was chosen because the distribution data have been
revised recently and the collection frequency is probably
higher than for other palm genera.

Thus, our analyses were based on two high-quality, re-
cently revised distribution datasets but of an unknown de-
gree of incompleteness. This incompleteness is mainly due
to heterogeneous spatial sampling effort: whereas in lo-
cations that are comparatively well-collected (e.g. Iquitos,
Tefe, Manaus), specimens of Bactris have been sampled,
for areas in-between, hardly any specimens exist in the
herbaria (Henderson, 2000). The degree of incompleteness
in distribution data is further aggravated by the low overall
number of verified geographic records per species (mean =
25). Robust ranges could only be modelled for 48 Bactris

http://http://aggravate
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Fig. 2. Range size frequency distributions (RSFDs) on linear and logarithmic scale for four different range types. (A–B) Point-to-grid
data, (C–D) expert range data, (E–F) convex polygon data and (G–H) modelled range data.

species. This reduced the present analysis to 75% of the
total number of species in the genus useful for analysis.

The unknown degree of incompleteness of the datasets
has further implications. Whereas it would be interesting
to use the datasets to derive biologically relevant charac-
teristics of species ranges such as the robustness of the

species distribution to threatening processes (Gaston &
Fuller, 2009), the AOO and EOO parameters are diffi-
cult to distinguish in large-scale datasets. ‘Large-scale’ or
‘coarse grained’ refers to grid resolutions which are un-
derlying analyses of distribution pattern at global or con-
tinental scale, usually at 0.5◦ grid resolution (with a grid
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Fig. 3. Species richness and spatial autocorrelation patterns of Bactris at 1◦ × 1◦ resolution for four different range types. (A) Point-to-grid
richness, (B) expert richness, (C) convex polygon richness and (D) modelled richness. Projection: Aitoff, Central Meridian 60◦ W. (e)
Moran‘s I correlograms illustrate patterns of spatial autocorrelation for the richness maps in (A–D).

cell size of c. 2500 km2) and above. The recommenda-
tion of the IUCN for an appropriate spatial scale for the
usage of AOO is given by a 4 km2 grid cell size (IUCN
Standards and Petitions Subcommittee, 2010). However, as
grain size gets larger, AOO and EOO converge. A given
10 000 km2 grid cell cannot be considered as actual AOO
when only one or few point occurrences exist for that grid
cell or when point occurrences are concentrated in a small
area in the grid cell. Since such detailed information is not
available for the majority of large-scale datasets, the us-

age of the AOO parameter is not recommended at large
scales.

Comparing the four sets of species ranges and species
richness, we showed that the method chosen to construct
species ranges has a great impact on identifying and inter-
preting large-scale patterns of plant species richness. This
finding is in agreement with Graham & Hijmans (2006)
who showed diverging richness patterns at a regional scale
for Californian amphibians and reptiles subject to the un-
derlying range construction. McPherson & Jetz (2007) in
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Fig. 4. Pair-wise comparisons of the four richness variables per 1◦ grid cell and correlation coefficients (Pearson’s r) of the plotted
relationships. Dotted lines are the equity lines indicating a 1:1 match between two range types. The solid lines indicate linear fits.

contrast found more similar richness patterns when com-
paring richness patterns for South African birds derived
from expert range maps, survey data and species distribu-
tion models.

Species ranges
In our point-to-grid dataset, most species ranges were of
small and medium size (Fig. 2a–b). While point-to-grid
ranges imply a high risk for error of omission, meaning

Fig. 5. Pair-wise comparison of richness variables at increasing spatial resolution and for varying definitions of ‘richness centres’. (A)
Correlation between richness variables at grain sizes from 1◦ to 5◦. Convex polygons are abbreviated as ’polygons’. Total number of grid
cells are: 2117 (1◦), 608 (2◦), 295 (3◦), 178 (4◦) and 118 (5◦). (B) Spatial congruence is shown as proportion of similar grid cells from the
total number of grid cells per richness cut-off. Definitions of richness centres are given in 1% steps. The dotted line indicates the spatial
congruence of pairs of richness for the upper 10% of most species-rich grid cells, with 10% representing a threshold that is commonly
employed to identify richness centres.
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that absences of the species are falsely indicated (Fielding
& Bell, 1997; Graham & Hijmans, 2006; Rondinini et al.,
2006), they minimise the risk of estimating false pres-
ences, i.e. errors of commission. In contrast, construction
of species ranges using the three other methods implies
a higher error of commission. For conservation planning,
these errors are considered to be more profound because
they potentially lead to the protection of areas where an en-
dangered species is thought to be present but is not (Fielding
& Bell, 1997; Rondinini et al., 2006). However, due to
omission error, the high point-to-grid richness found in
some well-collected grid cells is likely to be similarly high
in adjacent but poorly collected grid cells. Consequently,
point-to-grid ranges are helpful in directing attention to-
wards regions where high numbers of species may occur.

Expert ranges are based not only on exhaustive knowl-
edge of the respective taxon, but also of the survey area, thus
reducing the risk of errors of commission compared to con-
vex polygons. In addition, expert ranges will include grid
cells which have not been sampled but presumably contain
the species in question and therefore decrease the effects of
heterogeneous sampling effort. Thus, expert ranges should
represent a valuable source for large-scale assessments of
species richness and are probably much more reliable than
convex polygons. However, the quality of expert range data
is highly dependent on the expertise of the respective spe-
cialist(s), and different taxonomists will inevitably gen-
erate different range maps for one and the same species
(Schulman et al., 2007).

Compared with expert ranges, convex polygons rely only
on point occurrences and thus, error of commission is con-
siderably higher. Overestimation of ranges is particularly
high when disjunct species occurrences are fitted into one
contiguous polygon. As a workaround, a more complex
approach to fit better convex polygons to underlying occur-
rences has been suggested (Burgman & Fox, 2003; IUCN
Standards and Petitions Subcommittee, 2010): an alpha hull
is constructed using only those occurrences which are con-
nected by a line being a multiple a of the average line length.
For a large a, constructed ranges are coarse (at maximum
the convex hull), for a smaller a, constructed ranges become
finer (at minimum the occurrence points). In the absence of
a standard solution to select an adequate a for species with
occurrences varying from four to 139, we used the simple
convex polygon approach.

In spite of using a small set of predictors to avoid over
fitting of the model, the use of six predictors would ideally
require at least 60 occurrences per species (Harrell, 2001).
Our modelled ranges rely on fewer than 60 occurrences
for most species (90%). Moreover, the potential identifica-
tion of different predictors and the potential use of differ-
ent modelling algorithms would have resulted in different
ranges and derived richness maps, but for comparison of
different modelling approaches see for example Elith et al.
(2006) and Phillips et al. (2006). Subject to these uncer-

tainties, range sizes for most species were predicted to be
rather large, as reflected by the highest median (Table 1).
However, the number of largest range sizes (greater than
316 grid cells) was comparatively small (Fig. 2g–h, Ta-
ble 1). Furthermore, the maximum size of modelled ranges
was far lower than of convex polygons and less than half the
size of expert ranges. Thus, ranges modelled for widespread
species have a lower risk of error of commission.

Spatial structure and congruence of
species richness
The disparities in range size are also clearly reflected by dis-
parities in resulting species richness patterns (Fig. 3a–d).
The most conspicuous disparity between point-to-grid rich-
ness and all other types of species richness also becomes
evident in the low spatial autocorrelation of point-to-grid
richness (Fig. 3e) corroborating the strong porosity of this
distribution dataset. These differences are in parallel to
findings by McPherson & Jetz (2007), but compared to
their study, the differences we found were even more pro-
nounced. Furthermore, similar to their study, our modelled
richness showed a lower level of spatial autocorrelation
than expert richness (Fig. 3e). In contrast to McPherson &
Jetz (2007) and Graham & Hijmans (2006), we found that
modelled richness was slightly lower than corresponding
expert richness (Fig. 4e). Pair-wise comparisons of rich-
ness patterns (Fig. 4) otherwise confirmed differences be-
tween point-to-grid richness and all other richness variables
as well as the relatively high spatial congruence of expert
range and convex polygon richness.

One possible solution to the problems associated with
incompleteness of distribution data and heterogeneous data
quality would be to coarsen the resolution as patterns of
richness generated with different data types should con-
verge with coarser grain (Hurlbert & Jetz, 2007). Up to a
resolution of 2◦, pair-wise correlations of point-to-grid rich-
ness with all other variables were relatively low in our study
(Fig. 5a). Only at 5◦ grid resolution did all combinations
show high correlation (r ≥ 0.9). While such low-resolution
maps can be helpful to obtain a broad overview on distribu-
tion patterns, their usefulness is rather limited in an applied
context (Graham & Hijmans, 2006). For instance, Grenyer
et al. (2006) found that most protected areas are smaller than
1.53 km2. In a hypothetical 5◦ grid cell (equalling roughly
250 000 km2), the associated species can occur anywhere
within the grid cell, probably outside of protected areas.
Therefore, in particular for analyses with a conservation
background, the best scale will be the finest.

While a less strict definition of a richness centre led to
an increased spatial congruence of richness pairs at 1◦ (Fig.
5b), graphs of discrete pairs do not converge. This indicates
pronounced differences of richness centres irrespective of
the richness threshold used. Again the high spatial con-
gruence of expert range and convex polygon richness is
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noticeable. One explanation for their consistently high
correlation is that the degree of filling of gaps between
documented occurrences is comparable for both methods.
However, since expert ranges tend to distinguish disjunct
occurrences and to exclude unfavourable areas, the com-
mission error will be lower than for convex polygons. This
commission error, however, is not reflected in the correla-
tion coefficients, but becomes apparent in the continuous
distribution of convex polygon richness in the Cerrado and
the Caatinga (Fig. 3c). Nevertheless, both types of species
ranges will rather over-estimate species richness.

Conclusions
The construction of species ranges even for comparatively
well-researched tropical plants to analyse biogeographical
patterns remains a challenge. Although it is most desir-
able to draw on standardised methods to deduce sound
distribution patterns, there is clearly no silver bullet for
the construction of species ranges and richness maps from
distribution data at large spatial scales. With regard to the
differences contrasted here, the matching of range construc-
tion to the available data sources and the due consideration
of errors associated with range construction are essential to
reduce the bias in our knowledge of distribution patterns.

In the lack of a validation dataset, a typical feature of dis-
tribution datasets from tropical regions, the error associated
with the construction of ranges cannot be directly quanti-
fied. However, the general quality of errors inherent to the
method for constructing species ranges as illustrated here
has to be considered and has further to be communicated
to the users of resulting distribution maps. When species
ranges are used as a basis for further analysis and recal-
culated to a too-fine grain size erroneous presence will be
inferred. This error of commission will influence derived
models, and thus increase the rates of error compared with
the use of original occurrence data (Hurlbert & Jetz, 2007).

Narrow-ranging species often represent a substantial por-
tion of the investigated species and are in the focus of
conservation efforts. One option to better integrate these
species into large-scale research is the use of geometric ap-
proaches which need not meet the statistical requirements
modelled ranges are bound to. Such approaches represent
a repeatable version of the construction of expert ranges
and can also be used when working with large datasets
(Hopkins, 2007; Raedig et al., 2010). Another alternative
is represented by expert-based range maps which directly
integrate both geometric and environmental modelling ap-
proaches (Graham & Hijmans, 2006). The best approach
for most large-scale distribution datasets probably will be a
mixture of existing methods adapted to the special charac-
teristics of the underlying dataset.

One important finding of this study is that the construc-
tion of each range type at one point or another requires
expert knowledge on the species’ ecology. This is evident

for expert ranges, but also necessary for modelled ranges
(parameter, model and threshold selection) as well as for ge-
ometric approaches such as the alpha hull (determination
of factor a) or the buffering of occurrence points (selec-
tion of buffer width). Thus, parallel to analysing available
distribution data, taxonomic base-line work in order to as-
semble reliable distribution and ecological data must not
be neglected but rather intensified (e.g. Prance et al., 2000;
Gropp, 2003; Morawetz & Raedig, 2007; Cayuela et al.,
2009), in particular for megadiverse tropical clades.
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