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Abstract 
 
We analyze welfare implications of policies promoting environmentally friendly vehicles 
employing rich Swiss micro-data on 23,000 newly purchased cars and their buyers. Our estimates 
reveal substantial income heterogeneity in price elasticity and electric vehicle (EV) adoption. 
While CO2 levies secure road financing revenue, emissions of the new car fleet only slightly 
decrease. In contrast, subsidies support EV uptake, and lead to a more pronounced emission 
reduction. Both instruments have redistributive implications. We compute optimal subsidy - fuel 
tax combinations subject to a pre-specified EV target and to securing road financing in the 
presence or absence of equity concerns. 
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1 Introduction
According to the International Energy Agency (IEA), the transport sector accounted for one

quarter of globalCO2 emissions in 2016, being 71% higher than in 1990. Road vehicles thereby

represent nearly three-quarters of transport CO2 emissions with 3.6 Gt CO2 in 2018. Progress

on reducing emissions from the transport sector lags behind. Even though global electric car

sales rose in the last years, only 0.5% of the world’s vehicles are electric (Bloomberg NEF

Electric Vehicle Outlook 2019) and car buyers continue to purchase larger, heavier fossil fuel

driven vehicles. For the transport sector to meet projected mobility and freight demand while

reversing CO2 emissions growth, measures such as promoting energy e�cient technologies

for vehicles and the fuels that drive them will need to be deployed.

Policy makers design ambitious policies to combat rising emissions in the car sector. �ese

range from strict limits on CO2 emissions,
1

fuel e�ciency standards, subsidies, tax rebates or

EV portfolio mandates. Despite the generous government support through instruments and

regulations, households are still reticent when it comes to the adoption of non fossil fuel driven

cars. As such, it is important to analyze households’ car choice decision between combustion

engine and alternative fuel vehicles to be able to be�er understand the factors that hinder or

foster the di�usion of these technologies in the population (Xing, Leard, & Li 2021, Springel

2021). Furthermore, policies should also be assessed with regards to their impact on environ-

mental outcomes (Bento, Jacobsen, Kni�el, & Van Benthem 2020, Holland, Mansur, Muller, &

Yates 2016) as well as their potential redistributive implications, which requires an in depth

analysis of the e�ects of tax policy changes or subsidies across the income distribution (Sallee

2011, Durrmeyer 2021).

In this paper we estimate a stylised car choice model and address the welfare implications

of a number of counterfactual policy scenarios for the overall sample and by income groups.

We �rst analyze the e�ects of an additionalCO2 levy raised on fossil fuels and the implications

of an up-front price subsidy for EVs. In a second step we compute the optimal subsidy-CO2

levy combination from a social planner perspective under di�erent constraints. In many coun-

tries, revenue raised by from fuel and motor vehicle taxation is used to fund road transport

infrastructure. EVs are subject to preferential tax and tari� treatment while fuel e�cient cars

bene�t from registration tax rebates. While this policy is meant to incentivise the adoption of

EVs, hybrid and fuel e�cient cars, it also raises equity concerns and may jeopardize the �nanc-

ing of the road infrastructure. Widespread adoption of fuel e�cient cars, while desirable from

an environmental perspective, may come at a cost in terms of lower public revenues to �nance

the road infrastructure (Davis & Sallee 2020). At the same time, generous support mechanisms,

such as up-front price subsidies also require public outlays. It is thus important that a compre-

hensive welfare analysis accounts for additional dimensions beyond the change in consumer

surplus, namely the impact on public �nances and the e�ect on emissions. Furthermore, such

policies may be regressive. Accounting for impacts along the income distribution allows us to

address potential equity concerns.

We employ a discrete choice model with a control function approach following Petrin &

Train (2010) to estimate households’ preferences for new vehicles in the Swiss Canton of Bern

1
�e EU stipulates a �eet-wide emission reduction from new cars by 55% in 2030 compared to 2021.
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observing all private new car purchases from January 2017 to June 2019. �e perfect match

between household and car ownership micro-data allows us to account for a large number of

car as well as household speci�c a�ributes. In addition to unobserved heterogeneity through

random coe�cients, we can also control for observed heterogeneity in the valuation of certain

car speci�c characteristics.

We �nd a strong negative impact of car prices a�er accounting for potential price endo-

geneity and signi�cant heterogeneity in di�erent income groups’ price sensitivity. House-

holds in our sample react signi�cantly less to changes in variable costs than up-front prices.

�e average own-price elasticity amounts to -1.87. Our estimates imply substantial income

heterogeneity with an average own-price elasticity of -2.18 for households in the lowest and

of -1.37 for households in the highest income quartile. EV buyers tend to have more persis-

tent preferences with a substantially higher EV to EV cross-price elasticity. Overall, we predict

more than 2 out of 3 registered cars are gasoline driven, while the share of EVs and hybrid cars

are relatively low with 1.77% and 4.7% respectively. Lower income households are almost 10

percentage points more likely to purchase a gasoline car than the highest income households.

�e pa�ern is reversed for the other fuel type categories. While a household in the lowest

income group has a less than 1% probability to purchase an EV, agents in the highest income

quartile are almost 2 percentage points or 150% more likely to do so.

�e policy experiments reveal that the introduction of an additionalCO2 levy only slightly

increases the average probability to purchase an EV or hybrid car and has li�le impact on

emission reductions. Furthermore, consumer surplus decreases while the additional income

generated by the levy increases public revenue. �e tax has however regressive e�ects, since

the share of annual tax payments to annual income is more than 4 times higher for households

in the lowest compared to those in the highest income bracket for a simulated levy of CHF

0.12/l. Second, an EV price subsidy leads to a signi�cant increase in EV uptake. For example,

a CHF 4,000
2

subsidy leads to an 0.34 percentage point higher uptake of EVs and an overall in-

crease in consumer surplus and more pronounced emission reductions. Overall subsidy costs

are relatively low with less than CHF 1 million additional outlays. �is policy also features

redistributional e�ects, as the majority of subsidy payments go to higher income households.

Furthermore, we assess the welfare implications of these policy changes. Public revenue im-

pacts outweighs the e�ects on consumer surplus or emission reductions (all expressed in terms

of their monetary equivalents), suggesting that subsidies cost more than they bene�t while the

revenue generated by additional fossil fuel taxes and the monetary equivalent of emission re-

ductions exceed the reduction in consumer surplus.

�e last counterfactual addresses the above mentioned trade-o�s related to emission re-

duction, securing the �nancing of the road infrastructure and possible equity concerns. Hence,

we estimate the optimal policy mix ofCO2 levy and EV subsidy from the perspective of a social

planner that maximises changes in aggregate consumer surplus subject to generating enough

revenue to �nance the road infrastructure and achieving a pre-de�ned EV market share tar-

get in the presence or absence of equity concerns. Our results show that a combination of

relatively high subsidies (CHF 10,000) and relatively low additional CO2 levies (CHF 0.06 per

2
1 CHF ≈ 1 USD
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l) maximises utilitaristic consumer welfare. If the social planner cares about equity and thus

places a higher weight on the utility of lower income households, both subsidy and the levy

are substantially lower at CHF 6,300 and CHF 0.03 per liter. �is gap, however, narrows, if we

allow households to adjust their annual mileage consumption based on higher driving costs.

�e optimal policy mix then features again a high subsidy (CHF 9,700) and a modest fossil

fuel levy (CHF 0.05 per liter) while the emission reduction is almost twice as large. �is opti-

mal policy mix leads to substantial increases in the EV share of 34-66% with relatively small

additional public outlays of CHF 1.4 to 2.7 millions.

We contribute to several related strands of the literature. First, the estimation of demand

on the car market in general (Berry, Levinsohn, & Pakes 1995, Train & Winston 2007, Gilling-

ham, Iskhakov, Munk-Nielsen, Rust, & Schjerning 2019) and agents’ preferences for EVs and

HVs in particular (Xing et al. 2021, Egnér & Trosvik 2018) with our work closely related to

Huse & Koptyug (2021) from a methodological point of view. Second, the valuation of future

variable costs relative to the valuation of up-front costs (Grigolon, Reynaert, & Verboven 2018,

Gillingham, Houde, & Van Benthem 2021). Most empirical studies use fuel price variation to

assess whether or not an energy paradox in the valuation of fuel costs exists. While Grigolon

et al. (2018) �nd only slight undervaluation of fuel costs relative to vehicle prices in a structural

estimation of purchases in Europe, Gillingham et al. (2021) use a quasi-experimental se�ing

and �nd quite substantial consumer myopia. Similarly, Huse & Koptyug (2021) �nd that both

future fuel costs and vehicle registration taxes are undervalued in comparison to upfront costs

with registration taxes presenting the strongest undervaluation. Other empirical work on this

topic shows mild to moderate undervaluation if any at all (Busse, Kni�el, & Ze�elmeyer 2013,

Allco� & Wozny 2014, Leard, Linn, & Zhou 2021).

Furthermore, we contribute to the literature focusing on the impact of government policies

such as subsidies, tax credits, fuel taxes and emission standards on the car market and emis-

sion abatement (Li, Linn, & Spiller 2013, Durrmeyer & Samano 2018, d’Haultfoeuille, Givord,

& Boutin 2014, Bento et al. 2020) but also the speci�c market outcomes of policies promoting

fuel e�cient vehicles (Gallagher & Muehlegger 2011, Muehlegger & Rapson 2018, Chen, Hu,

& Kni�el 2021). Most studies �nd that government intervention supports the uptake of more

fuel-e�cient vehicles but at relatively high costs. Muehlegger & Rapson (2018) for example

estimate that California’s bill to reach the EV adoption goals by 2025 is quite high at USD 12-18

billion. Additionally, the type of instrument also plays a role, as for example, a sales tax waiver

for hybrids is substantially more e�ective than income tax credits in promoting hybrid vehicles

(Gallagher & Muehlegger 2011). Other studies highlight potential windfall gains of subsidies

and tax credits since these may promote vehicle purchases by households that intended to

buy an environmentally friendly vehicle anyway (Li et al. 2013, Xing et al. 2021, Muehlegger

& Rapson 2020, Chen et al. 2021). Closely related is the analysis of the distributional impact

of fossil fuel taxes and vehicle subsidies (Bento, Goulder, Jacobsen, & Von Haefen 2009, Sallee

2011, Durrmeyer 2021). Most papers �nd that subsidies are completely passed through to con-

sumers (Sallee 2011, Muehlegger & Rapson 2018) but governmental interventions redistribute

between income groups. Borenstein & Davis (2016) �nd that 90% of vehicle income tax credits

were granted to the highest income quintile, while Durrmeyer (2021) �nds that middle in-

come households bene�t the most from the French feebate policy. �ese papers are part of a

4



broader and growing literature analysing distributional consequences of environmental poli-

cies (Bento 2013) in various �elds such as carbon pricing in general (Ohlendorf, Jakob, Minx,

Schröder, & Steckel 2021), electricity markets (Reguant 2019), private photovoltaic (Feger, Pa-

vanini, & Radulescu 2022) and water conservation (Wolak 2016).

Our contribution to the above mentioned papers is manifold. First, our detailed micro-

data with a perfect match between households and their newly registered cars features very

detailed socio-demographic and car level characteristics. �is allows an accurate assessment

of the e�ects of di�erent car characteristics across the income distribution and we are thus able

to assess how car prices a�ect choice probabilities across income quartiles. �e heterogeneity

in the response to car prices by income group is novel and is important for the assessment of

policies such as a subsidisation of EVs, as it allows for a thorough assessment of redistributive

impacts. Furthermore, we can also assess cross-price elasticities by income quartile revealing

how fuel type substitution pa�erns vary with income. Second, we compute optimal subsidy-

fuel tax combination using a welfare maximisation approach subject to safeguarding the road

infrastructure �nancing while simultaneously achieving a pre-speci�ed environmental target.

In addition, our detailed data allows us to compute this optimal policy mix in the presence of

equity concerns where the government places a higher welfare weight on the utility of low

income households.

�e paper is structured as follows. Section 2 provides an overview of the institutional

background and in Section 3 we present the empirical strategy. Section 4 provides an overview

of the data and some descriptive statistics. Section 5 presents the regression results and is

followed by a welfare analysis in Section 6. Finally Section 7 concludes.

2 Background and institutional setting
Our empirical analysis relies on data and information on car registrations in the Swiss Canton

of Bern which, with an area of 6,000 km2
, is the second-largest Swiss canton with just over

1 million inhabitants. �e di�erent taxes and support schemes already in place are discussed

in the following. Taxes, levies and support schemes in the passenger car sector have two

main goals. On the one hand, they should address the various driving-related externalities

such as local emissions, global carbon emissions, tra�c and accident risks. On the other hand,

they are designed as bene�t taxes, meaning that the bene�ciaries of the publicly provided

infrastructure should bear the main share of its costs. Similar to most developed economies,

Switzerland employs a wide policy mix to address these issues.

As a small open economy, Switzerland does not have any domestic car manufacturers and

each vehicle registered here is imported at some point in time. �us, vehicles are subject to

a 4% import tari�. In order to promote EV adoption, the federal government exempts fully

electric vehicles from this tari�. In addition, each imported car is subject to an a�ribute-based

fuel economy standard which is a function of carbon emissions and its weight. Most car brands

are represented by general importers which bring the majority of cars into Switzerland.
3

Once

a company imports more than 50 cars annually, it has to pay a penalty if emission goals are

3
Less than 1% of cars was imported by individuals in 2019.
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not met. �e penalty is calculated on the �eet-wide fuel economy instead of on the single car

level.

Furthermore, vehicles are subject to an annual 40 CHF bene�ts levy that allows highway

access. Switzerland has implemented a fuel tax per liter of fossil fuel, aimed at both �nancing

the road infrastructure as well as internalising pollution externalities. In addition, fossil fuel

selling companies are subject to a carbon compensation scheme and required to o�set parts

of their emissions. �is rate is increased on an annual basis and amounts to 12% at the mo-

ment. Furthermore, regulations stipulate the amount of costs that can be passed through to

consumers via the fuel price.

Switzerland is a federal country with 26 di�erent cantons, and hence, various additional

regulations exist on regional level. Most cantons levy an annual vehicle registration tax, with

the main purpose to �nance local road infrastructure. �is tax is a function of a car’s weight

in the Canton of Bern. Fully electric vehicles as well as fuel e�cient vehicles bene�t from

tax reductions during the �rst four years of car registration. Some cantons also implemented

additional measures to promote the adoption of fuel e�cient vehicles such as EV subsidies,

income tax deductions for fuel e�cient cars or support mechanisms for EV charging stations.

�e Canton of Bern currently has no price or income tax credit incentive in place to promote

EVs. However, public charging stations are subsidised.

3 Empirical Analysis
In this paper we analyze households’ new car choice behaviour in the Swiss Canton of Bern.

We employ a unique dataset matching household speci�c characteristics with detailed infor-

mation on car ownership and car speci�c a�ributes. Since our data includes extensive in-

formation on socio-demographic characteristics, we are not only able to infer the e�ect of

car-speci�c characteristics such as price, engine power and fuel economy on household utility

but can also estimate how the valuation of these characteristics interacts with agent speci�c

a�ributes such as income, age, family size or urbanity.

Starting with the seminal work of Berry et al. (1995), most empirical studies estimating

demand, substitution pa�erns and welfare e�ects of certain policies in the automobile market

employ a random coe�cients logit demand model (i.e. Grigolon et al. (2018) or Azarafshar

& Vermeulen (2020)). However, due to lack of access to individual level data, these models

usually aggregate individual decisions into market shares. One of our dataset’s main advan-

tage is the extensive information of household characteristics, which allows us to control for

a large number of observables and assess car choice probabilities across the income distribu-

tion. Previous research also incorporated household characteristics based on random draws

from population surveys into a model with market shares. For example, the Micro-BLP model

(Berry, Levinsohn, & Pakes 2004) employs individual level decisions of car buyers and their re-

ported second-choice data to improve the estimation of substitution pa�erns in the car market.

�ey thereby draw on information on the population distribution of certain socio-economic

factors such as age and income. Similarly, Train & Winston (2007) and Xing et al. (2021) use

survey data on household speci�c characteristics and second choice data to estimate substitu-

6



tion pa�erns in US car markets. �e second choice data in these papers was crucial to precise

estimates.

Since we do not observe second choices and observe one market ’only’, namely the Canton

of Bern, the micro-BLP model is not the adequate approach. Even though we could construct

a time-series of market-shares spanning more than ten years, we believe that the variation in

prices, fuel costs and available choices would not be su�cient to achieve precise estimates.

Hence, we resort to a standard discrete choice model based on an aggregated choice set and

individual level socio-economic data, meaning we directly model a utility function and choice

probabilities instead of aggregated market shares.

Utility speci�cation
Households retrieve utility from owning and using a car, as well as from consumption of other

commodities. Households have the choice between various distinct vehicle types with speci�c

characteristics. To be more speci�c, we model the conditional indirect utility of household i,
purchasing vehicle type j the following way:

uij = βxi xj + βzzixj + αi(log(pj) + γ log(Gij + Tj)) +
∑
l=2−4

φl log(pj)d
l
i + εij (1)

xj is a vector of car speci�c characteristics, such as engine power, height, weight and size

and βxi is a vector of coe�cients that captures the (individual) valuations of those a�ributes.
4

�e household speci�c characteristics are summarised by the vector zi, including age, house-

hold size and location speci�c characteristics. We interact household a�ributes with car spe-

ci�c characteristics that are di�erently valued by di�erent household types thus capturing

observed heterogeneity preference pa�erns. pj denotes the price of vehicle type j, and dli is a

dummy variable indicating if household i belongs to income quartile l (l ∈ [ 2, 3, 4 ]). Hence,

we allow for heterogeneity in the marginal utility of income based on income level with α1

measuring the baseline log price sensitivity of the lowest income households and φl measuring

each household quartiles average deviation from the baseline log price sensitivity. We follow

Grigolon et al. (2018) and model the variable costs as present value of lifetime costs. Gij rep-

resents the present value of future fuel costs including fuel taxes, and Tj the present value of

future car registration taxes which are a function of weight and fuel e�ciency. γ denotes the

future valuation of these costs respectively. It indicates whether or not a household pays full

a�ention to future costs associated with a purchase of a certain car type or if a future pay-o�,

for example in the form of a be�er fuel economy, is undervalued. We de�ne the present value

of expected fuel costs and the present value of expected taxes as:

Gij = E

[
S∑
s=1

mi[ejgjs(1 + τ gjs)]

(1 + r)s

]
(2)

Tj = E

[
S∑
s=1

tjs
(1 + r)s

]
(3)

4
We estimate a distribution of coe�cients for various characteristics and thus allow households to individually

deviate from the mean valuation of certain characteristics
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where mi represents the annual kilometres driven, which is a household speci�c variable,

as we assume it does not vary by fuel type choice. ej denotes the fuel economy of the car

type (l or kWh per km), gjs is the expected price for a unit of car type j’s fuel in period s and

τ gjs the fuel tax which is set to zero for the status quo and then raised to CHF 0.12 / Liter in

the counterfactual.
5

S is the time horizon of the household, which can be thought of as the

expected length of ownership but also the expected lifetime, r denotes the discount rate. In

Equation 3, tjs represents the annual car registration taxes that are levied based on a car’s

weight and fuel e�ciency. EVs are subject to lower rates and both EVs as well as fuel e�cient

vehicles bene�t from further reductions during the �rst four years of registration. We allow

for consumer speci�c km driven but assume mileage is inelastic with respect to fuel economy,

which is in line with previous research (i.e. Bento et al. (2009) or West, Hoekstra, Meer, &

Puller (2017)). Hence, mileage is decider speci�c but choice invariant. Furthermore, we follow

the literature and model a household’s expectation about future fuel prices to only depend on

today’s fuel price.
6

In a similar vein, we assume that households do not anticipate or do not

have expectations about future tax system changes and only consider the current system when

they decide on their car purchase. Following Grigolon et al. (2018), we de�ne a capitalisation

factor as

ρ =
S∑
s=1

1

(1 + r)s
(4)

which allows us to simplify the two equations for Gij and Tj to write the present value of

fuel costs and taxes as

Gij = ρmi[ejgj(1 + τ gj )] (5)

Tj = ρtj (6)

We can then substitute Equation 5 and Equation 6 into Equation 1 and derive the utility of

household i from purchasing car type j as:

uij = βxi xj +βzzixj +αi(log(pj)+γρ log(mi[ejgj(1+τ gj )]+tj))+
∑
l=2−4

φl log(pj)d
l
i+εij (7)

To simplify noti�cation we de�ne the deterministic part of utility as Vij and split the utility

function into:

uij = Vij + εij (8)

with

Vij = βxi xj + βzzixj + αi(log(pj) + γρ log(mi[ejgj(1 + τ gj )] + tj)) +
∑
l=2−4

φl log(pj)d
l
i (9)

5
At the moment Switzerland imposes a tax on certain types of fuels such as gasoline and diesel. �ese taxes

are paid by the importing companies of gasoline and diesel and we assume these taxes and the VAT are part of

the fuel price gjs used to calculate the driving costs. �e additionally introduced tax τgjs represents an extra levy

on top of the already existing taxes.

6E[gjs] = gj
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Estimation
Inferring the choice probabilities allows us to investigate how households value certain car

characteristics and later perform a number of counterfactual scenarios. �e estimation of

discrete choice models with individual level data and an exhaustive choice set is implemented

by specifying a likelihood function based on each household’s probability to choose a certain

vehicle type. Assuming the non deterministic utility component εij to be independent and

identically distributed with a type 1 extreme value distribution, allows to derive standard logit

functional forms for the choice probabilities. �is models imply independence of irrelevant

alternatives (IIA). In other words, the relative odds of two cars being chosen remain the same

independent of the availability of another option (Train 2009). As Berry et al. (1995) point out,

the automobile market is unlikely to follow such restrictive substitution pa�erns.

To overcome the potential bias following from a violation of the IIA assumption we specify

the utility function more �exibly by introducing random coe�cients. We thus allow for agent’s

heterogeneous valuation of certain car characteristics. Instead of a single point estimate, we

estimate a distribution of certain coe�cients. �e mixing distribution f(β;θ) is speci�ed for a

number of coe�cients with β = (βxi , αi) and θ being mean and variance parameters to be es-

timated. Estimating a distribution of coe�cients relaxes the independence assumption for the

εij’s. Assuming type 1 extreme value distributed individual and vehicle type speci�c εij’s the

following formula denotes the probability of household i choosing vehicle type j (McFadden

& Train 2000):

Pij =

∫
eVij∑
j e

Vij
f(β|θ)dβ (10)

Many candidates exists for the mixing distribution. We resort to a continuous one and

assume a normal distribution. We estimate each random coe�cient’s mean and standard de-

viation, but no covariance terms between them. Many mixed logit applications use normally

distributed coe�cients and the heterogeneity in valuation is generally picked up comparably

well. A notable exception are bi- or multimodal preference distributions (Train 2016, Bansal,

Daziano, & Achtnicht 2018). Since we control for various observed heterogeneity pa�erns

such as, for example, income related price sensitivity or age dependent engine power valua-

tion, we think that potential bi-modal valuation structures are already captured by these and

thus do not need to be modelled further in the mixing distribution.

We maximise the log likelihood function consisting of the sum of each household’s log

probability to purchase each vehicle type using simulated maximum likelihood estimation.

We use 100 Halton draws for each individual to estimate the random coe�cients.

Identi�cation
In addition to the random deviations, the car market, as a di�erentiated product market, likely

exhibits unobserved car speci�c characteristics correlated with household’s derived utility.

�ose would be subsumed into εij and lead to biased price coe�cients, as researchers can

expect car dealerships to observe such preference pa�erns. Hence, part of the error term is

observed by both consumers and producers but not by the econometrician. Assuming that

car manufacturers charge higher markups if they observe their products to have sought-a�er

characteristics, such as, for example, high brand popularity, prices will be correlated with

these unobserved product characteristics. Hence, price sensitivity estimates are upward bi-

9



ased. Berry et al. (1995) suggest an instrumental variable approach and Petrin & Train (2010)

implement a control function approach to correct biased estimates. We follow the control

function approach, but use BLP style instruments as well as a marginal cost shi�er inspired

by Swiss regulations. Formally we split the error terms into two components: εij = ε1ij + ε2ij .
In this se�ing, ε1ij is correlated with the price based on characteristics unobserved by the re-

searcher while ε2ij is i.i.d extreme value. In a �rst step, we estimate a log linear pricing equation

of the following form

log(pj) = βxj + λzj + µj (11)

where xj denotes the car characteristics of vehicle j and zj is a vector of marginal cost

shi�ers of vehicle j. �e estimated residuals from this pricing function µ̂j are used as an

additional term in the utility function to control for the potential correlation between prices

and ε1ij .
We propose as a marginal cost shi�er the annual penalties for �eet wide fuel e�ciency

standards provided by Swiss law. All cars sold in Switzerland are imported and thus globally

produced. As a small open economy, we do not expect Swiss consumers’ demand to a�ect

global conglomerates vehicle portfolio. Most brands either have a subsidiary company or a

unique partner acting as general importer. Since 2012, the federal government has introduced

CO2 emission �eet standards for car importers. Firms that import more than 50 cars per year

are subject to an assessment of the average �eet emission. If emission standards are not met,

a substantial penalty based on the deviation is charged. �ose penalties apply to all general

importers and are signi�cant enough to apply as cost shi�ers.
7

Penalties are calculated based on the entire �eet imported by either the general importer or

a pool of importers together.
8

Emission targets for one �eet are a function of a general target

set by law (i.e. 130g CO2 / km in 2019) and additional allowances based on the sales-weighted

average weight in comparison to the average weight two years ago. For example, if the �eet is

on average heavier (lighter) than the mean car two years before, then the �eet emission target

is set higher (lower) than the initial general target. �e target calculation thus depends on

the weight of the car but also on the registration numbers of certain vehicles within the �eet.

�is could potentially harm the identi�cation strategy, as the target may be related to demand

pa�erns and pass through of potential penalties may not be identical within the car �eet if

importers act strategically. In other words, if the general importer charges a higher share of

the potential penalty to popular vehicle models than would be justi�ed by this model’s contri-

bution to the deviation from the vehicle �eet goal. We argue that such strategic behaviour is

less likely due to the following reasons: First, the general importer is (for most brands) not the

only sales agent in the market. Several smaller and regional retail sellers also operate in the

market and thus the general importer may not perfectly observe preference pa�erns for the

di�erent vehicle models at a given point in time. Second, the actual penalties are computed in

retrospective once the complete vehicle �eet can be assessed, meaning that while the general

7
Penalties rose from CHF 3.5 Mn. in 2012 to more than CHF 78 Mn. in 2019. For example, the VW group as

the biggest importer in 2019 had an average penalty per car of CHF 390 (approximately 1% of average suggested

retail price) or a total of CHF 35 Mn.

8
Importing companies have the ability to form an emission pool and have their �eet assessed as one importer
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importer may have an idea whether they are on track to meet the emission goal or not, they

are unlikely to constantly assess the exact deviation. Nevertheless, we calculate the marginal

cost shi�er in di�erent ways to account for potential concerns regarding strategic behavior.

First, we assume a complete pass through of the policy and the marginal cost increase

for each individual car is identical to the amount it would be subject to, if the household

imported it directly. In other words, we use the formula based penalty for each vehicle as

marginal cost shi�er. Hence, potential penalties are charged to consumers, even though at the

end of the year, if the emission target is met, the penalty would be zero.
9

Second, importers

may not behave strategically and pass on emission standard penalties based on the calculated

formulas. We control for this issue, by using the lagged equally distributed penalty as a cost

shi�er.
10

�ird, if importers behaved strategically and distributed expected penalties according

to known, but by the econometrician unobserved, preference pa�erns for certain cars in their

product portfolio, then the exclusion restriction would be violated. Hence, in addition to the

marginal cost shi�er, we also use the classic BLP-style instruments. �ese are constructed

as the sum of characteristics from competitors’ vehicle �eet and the sum of characteristics

from the own vehicle �eet excluding the chosen option.
11

�e relevance assumption is tested

through �rst-stage F-tests.

Sample and choice set
We model the purchase decision of households conditional on buying a new car (in the spirit

of Train & Winston (2007) as well as Xing et al. (2021)). �e dataset includes more than 3,000

distinct make-model-trim-fuel combinations. We follow a common procedure in the literature

(i.e. Bento et al. (2009)), and calculate average car characteristics on a level of make-model fuel

type combination (i.e. VW Golf diesel or Audi A6 gasoline).
12

Our �nal choice set includes 489

distinct cars a�er excluding a few exotic options.
13

Some households have a lower number of

options available since not all cars were available in all 3 years of observation.

9
We tested di�erent calculations of the penalty variables and the formula based is the best performing predic-

tor in terms ofR2
, AIC and BIC. Detailed regressions are available in Table 11 in the Appendix. We use sensitivity

checks to address potential concerns about strategic behaviour of importers that could harm our identi�cation

strategy. �e third way to calculate penalties assesses for each importer’s �eet its speci�c weight based goal.

Penalties are then assessed to each car based on its individual deviation from this �eet-speci�c goal. Another test

is also the deviation from the lagged �eet-speci�c goal.

10
For example, if in 2018, an importer was subject to a penalty of CHF 50 Mn. and imported 100,000 cars, we

use the penalty of CHF 500 as instrument for each car in 2019.

11
We also perform a sensitivity check, where we only use the BLP instruments.

12
To compute these average values we use actual registration data from all of Switzerland as weights for

di�erent vehicle types within the category and collapse the data on an annual basis.

13
We exclude car options based on pre-de�ned rules. We exclude cars of brands with less than 5 registrations

during our observed time frame overall as well as make - model combinations with 2 or less registrations in any

given year. �is ensures that results are not driven by outlier preferences. We do not apply those rules for EVs

since they are of special interest in our analysis. Low registrations of certain EVs are probably more due to low

overall market share than very special characteristics. �e options excluded are mainly high priced cars of luxury

brands such as Ferrari or Bentley.
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4 Data
We draw on a unique panel data set on household income, wealth, and further characteristics

for the Canton of Bern and the years 2008-2017 provided by the Tax O�ce of the Canton of

Bern. �ese variables are matched to car registration data from the Canton Bern’s Road Traf-

�c O�ce observing every new car registration between 2008-2019. However, we only observe

current vehicle ownership and thus cannot match the registrations with the tax information

panel data, as it is unlikely, especially for older cars, that the current owner has also been the

initial purchaser. Nevertheless, we can observe market penetration of the four di�erent drive

types (gasoline, diesel, electric or hybrid) over time. Figure 1 depicts the evolution of the an-

nual number of registered cars divided into our categories of interest, namely gasoline, diesel,

electric or hybrid cars. �e �gure shows a decline in the annual number of registered gasoline

and diesel driven cars and an increase in the number of hybrid or electric cars. However, the

absolute number of environmental friendly cars is still very low, as shown by the right hand

axis in Figure 1. Accordingly, in 2018, there were around 1,000 newly registered hybrid and

less than 500 electric cars in the Canton of Bern. �e corresponding �gures for gasoline and

diesel amounted to around 13,000 and 6,000 respectively.

Figure 1: Evolution of registered cars by type between 2008 and 2018
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As we only observe current ownership we reduce the panel structure into a cross-sectional

observation. We assume that cars that were newly registered between 2017 and 2019 are still

owned by their respective initial purchasers in June 2019
14

and we only keep those observa-

tions.
15

If a household owned more than one car registered in the last 2.5 years, we keep the

car with the most recent registration date, since we consider this the most recent occurrence

of revealed preferences.
16

We collect additional vehicle characteristics such as the brand and type name, fuel econ-

omy, engine power and the size of the car from the Swiss Federal Road o�ce. In addition, price

data is retrieved from Eurotax, a company that collects historical suggested retail prices. Data

is very disaggregated
17

as for instance VW Golf V, VW Golf VI, VW Golf VII are recorded as

three di�erent observations with even further distinction into the various types and models

(i.e. GT, sport, TSI, TDI…). Furthermore, we observe the import timespan and thus market

availability. Since the car type record in the observed choice data is not always as distinct we

employ a weighted string match algorithm to match the recorded registration with the closest

price data available.
18

We also include information on automobile taxes and motor vehicle registration taxes.

We assume full pass-through and consider the 4% one-o� import tari� (automobile tax) as

part of the suggested retail price. In addition, vehicle owners pay a cantonal annual vehicle

registration tax, which in Bern is a function of car weight, energy e�ciency and vehicle age.

EVs are subject to much lower rates. Further reductions for EVs and e�cient vehicles are

rewarded for the �rst 4 years of registration.
19

We assume a car longevity of 10 years
20

and

compute the present discounted value of annual vehicle taxes for a period of 10 years. We

follow the literature (Allco� & Wozny 2014, Grigolon et al. 2018, Cerruti, Alberini, & Linn

2019) and assume a discount rate of 6%.
21

�e present value of registration tax payments varies

between CHF 840 and CHF 5,462 , with a higher average value of CHF 3,312 for conventional

cars and a much lower value of around CHF 1,357 CHF for EVs.
22

14
We collected vehicle registration data in June 2019 and hence we observe ownership status as of this date.

15
Matched socio-demographic data is thus collapsed. Income and wealth represent averages. Age and house-

hold size are most recent observation.

16
We do not lose much information by only including one car per household. Only 13% of the households in

our entire cross-section (cars aged 0-12 years) own more than one car with vehicle registrations ranging from

one to four per agent. Moreover, no household has multiple registered cars during the same year.

17
�e price information is available for around 48,000 distinct vehicle types in our time frame of observation.

18
Make and time of observations need to match perfectly, then the type classi�cation is further distinguished

into various parts and a match score is calculated based on decreasing weights for the di�erent speci�cations.

For example, ’Golf’ as the second word of the registration of a ’VW Golf VII’ is higher weighted than the third

part ’VII’. By employing this weighted score and using a rather high match threshold we ensure that the actual

price in the data is as close as possible to the actually valid price on the market.

19
Details on the calculation of the tax can be found on the webpage of the Road Tra�c O�ce of

the Canton of Bern https : //www.svsa.pom.be.ch/svsapom/de/index/navi/index/rund − ums −
fahrzeug/fahrzeugsteuer − berechnen.html , found 30.04.2020

20
�is is at the lower end of Eurostat estimates but according to a COMPARIS questionnaire Swiss households’

average holding period is 6 years for newly purchased cars and 5 years in general.

21
We also perform sensitivity checks with respect to these values and present the results in Table 12 in the

Appendix.

22
�is corresponds to roughly 11% of the average vehicle price, with a much lower value of 3% for EVs.
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We de�ne a car’s fuel economy as the costs per 100km driven. Fuel e�ciency is retrieved

from the Swiss Federal Roads O�ce’s TARGA dataset. E�ciency estimates are based on both

laboratory as well as driving tests. Fuel prices are measured as the annual average in the

year of registration gathered from the Swiss Statistical O�ce. �e Car Registration dataset

also includes the number of driven kilometres for some cars. However, this information is

not observed for the majority of our sample, since new cars did not have to a�end the reg-

ular check-up’s yet. �us, we use odometer readings of older cars and di�erent households

and estimate a mileage consumption function to impute the average expected annual distance

driven.
23

�is procedure allows us to calculate the present value of future driving costs based

on mileage, average e�ciency and average fuel costs.
24

In Table 1 we summarise car characteristics based on three di�erent samples. First, we

present the choice set available to households. Roughly 50% are gasoline driven. More envi-

ronmentally friendly cars such as EVs and hybrids
25

are less o�en encountered with 20 and 54

make - model combinations respectively. Taxes and driving costs are lower for EVs, whereas

prices are on average similar across categories except for hybrid cars which are more expen-

sive in this sample. �e second panel presents the actually observed choices. Almost 70% of

registrations are gasoline driven cars. EVs and HVs exhibit relatively low market shares. Gaso-

line cars display below average prices, weights, engine power and size. In contrast, EVs are on

average CHF 20,000 more expensive than corresponding gasoline vehicles. EVs and hybrids

feature considerably lower variable costs in terms of taxes and driving. �e last panel presents

the most frequently purchased vehicle per fuel category. �e gasoline driven VW Polo was the

most popular vehicle with 419 total registrations. With a below average price and relatively

high e�ciency and low annual taxes within the category of gasoline driven cars it seems to

be an a�ractive option. In terms of hybrids and EVs the most popular choices are Toyota Yaris

and Renault Zoe.

In addition, we control for the availability of EV charging stations. Several previous stud-

ies found that the availability of public charging stations a�ects the di�usion of EVs (Egbue

& Long 2012, Egnér & Trosvik 2018). We download coordinates of all charging stations from

LEMNET and count the numbers of charging stations within 5km of each household’s address.

Additionally, we compute the distance to the closest EV. Neighbors may in�uence adoption of

new technology. For example, a constant visual exposure as well as one’s neighbours customer

experience can in�uence car choice (Jansson, Pe�ersson, Mannberg, Brännlund, & Lindgren

2017). �e le� panel of Figure 2 plots both the share of EVs in total car registrations whereas

the number of charging stations per 100 registered vehicles per municipality is presented in

the right panel. �is allows a graphical assessment of clustering pa�erns as well as correlation

between charging station di�usion and EV adoption. �ere is heterogeneity in terms of EV

registration shares between the di�erent municipalities but li�le concentration or clustering.

23
We control for the added variation due to our approach in an additional robustness check. For example,

(Alberini & Bareit 2019) assume a constant mileage consumption of 16,000 km for diesel vehicles and a lower

consumption rate of 12,000 km for other vehicles.

24
We again assume a discount rate of 6% and a vehicle holding period of 10 years.

25
Our dataset does not allow us to distinguish between plug-in Hybrid cars and standard hybrid vehicles and

we thus aggregate them into one category.
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Table 1: Choice set

N Price (kCHF) Tax KW Weight (kg) Height (m) Size (m2) CHF / 100km
Choice set
Total 489 47 400 136 2,077 1.55 8.17 9.17

Gasoline 242 44 415 143 1,957 1.53 7.96 10.38

Diesel 173 45 420 123 2,202 1.59 8.43 8.52

Electric 20 48 90 145 2,020 1.55 7.44 3.6

Hybrid 54 62 384 142 2,232 1.52 8.55 7.87

Observed choices
Total 23,074 35 382 112 1,929 1.55 7.83 8.94

Gasoline 16,005 31 372 108 1,815 1.53 7.59 9.28

Diesel 5,601 43 445 122 2,237 1.62 8.5 8.71

Electric 380 53 96 195 2,197 1.53 8.17 3.8

Hybrid 1,088 40 305 97 1,921 1.54 7.79 6.82

Most frequent choice
VW Polo (gas) 419 23 226 80 1,608 1.43 7.09 7.78

Ford Kuga (diesel) 291 31 490 109 2,246 1.68 8.32 8.18

Renault Zoe (EV) 79 31 88 100 1,976 1.56 7.07 4.04

Toyota Yaris (Hybrid) 230 26 222 54 1,565 1.51 6.69 5.34

Note: �e �rst panel presents the summary statistics of the theoretically available choice set for each household. N denotes the number

of cars per category, whereas the other columns represent the average car characteristics. In the second panel, the same variables are

presented, but in terms of actually observed choices. �e last panel presents the most frequently observed choice. Here, the �rst column

presents the number of households that chose this particular car and the reported car characteristics are the actual values.

Figure 2: EV and charging station diffusion

Notes: �e le� panel shows the EV di�usion normalised by number of registered cars on a community level. �e right map shows the number

of public charging stations per 100 registered cars on a community level. Both maps were computed by the authors based on data from the

Road Tra�c O�ce of Bern as well as charging station data downloaded from LEMNET.

�e map reveals that several high adoption municipalities are spread throughout the canton.

Public charging stations are most prevalent in the urban centers (i.e. Bern city) as well as in
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the touristic regions in the South of the canton (i.e. Grindelwald or Gstaad).
26

Furthermore,

we illustrate the distribution of households owning an EV and hybrid cars in Figure 5 in the

Appendix. �e distribution of vehicles throughout the canton roughly corresponds to the dis-

tribution of the population with li�le local concentration. Southern regions with low di�usion

are mountainous and thus scarcely populated.

We use information from the Federal Department of Energy to calculate the marginal cost

shi�er. As mentioned above, each company importing more than 50 cars annually is subject

to an average �eet emission assessment. An importer’s individual emission target is a linear

function of the average vehicle weight within the �eet.
27

Penalties are not based on a brand

speci�c structure, but calculated on general importer information.
28

Overall penalties for each

general importer are calculated in �ve di�erent ways to create a marginal cost shi�er for each

vehicle in the choice set.
29

Table 2 presents the summary statistics for some socio-economic and car characteristics for

both our �nal sample of 23,074 households as well as for the subsamples divided by fuel type

category.
30

Average household income amounts to CHF 114,000. �e mean vehicle price lies

at around CHF 35,000. Most variables feature considerable variation, as for instance vehicle

prices vary between CHF 8,000 to CHF 210,000. Summary statistics are also presented by fuel

type. Mean household income of EV owners is around 50% higher than overall average income.

�e average distance to an EV charging station is 1.32 km without any signi�cant variability

between the di�erent fuel type households. On average agents drive 12,300 kilometres which

is in line with previous estimates for Switzerland (i.e. Alberini & Bareit (2019)). However,

mileage is quite heterogeneous and varies between 4,100 and almost 30,000 kilometres per year,

with diesel car owners driving on average 4,000 kilometres more relative to other categories.

Exhaustion pipe CO2 emissions are 0 for EVs but can vary between 88g/km and 359 g/km

for gasoline driven cars. Previous research has shown that an electric vehicle’s environmental

bene�t heavily depends on local factors of electricity production, especially on the energy mix

(Holland et al. 2016). Nevertheless, we think in our se�ing zero emissions from EVs are a safe

assumption, as Switzerland relies almost entirely on non-fossil fuel electricity production
31

and

the three main providers in the Canton of Bern actually guarantee their customers a certain

26
�is seems plausible for public charging stations with availability in spaces where private parking is scarce

(cities) and daily or touristic visits frequent.

27
Details of the calculation scheme are available at https://www.bfe.admin.ch/bfe/en/home/

efficiency/mobility/co2-emission-regulations-for-new-cars-and-light
-commercial-vehicles.html

28
For example, all brands of the Volkswagen holding are assessed a common penalty, independent of the actual

brand they belong to. We assume, that the �nes within the holding are equally assessed between for example

Skoda and Audi even though the holding might serve di�erent market segments with the di�erent brands.

29
Detailed calculation of the penalty is described in Section 3

30
Some household characteristics might be compromised (i.e. 1900 birth year leading to maximum age of

119). We decided to keep those observations, as all socio-demographics are formalized as categorial variables (i.e.

Age-group 60+) to prevent bias from outliers or measurement error, but maximise available choices.

31
According to the Swiss overall energy statistics hydropower accounted for a share of 55% to 60%, while nu-

clear power accounted for another 30%- 35%. �ermal natural gas plants, as the only fossil fuel based production,

accounted for less than 5%.

16

https://www.bfe.admin.ch/bfe/en/home/efficiency/mobility/co2-emission-regulations-for-new-cars-and-light-commercial-vehicles.html
https://www.bfe.admin.ch/bfe/en/home/efficiency/mobility/co2-emission-regulations-for-new-cars-and-light-commercial-vehicles.html
https://www.bfe.admin.ch/bfe/en/home/efficiency/mobility/co2-emission-regulations-for-new-cars-and-light-commercial-vehicles.html


electricity mix, which does not contain any fossil fuel based electricity.
32

32
While this might overestimate the overall environmental bene�t, we focus on exhaustion pipe emission, due

to data availability. �us, a consistent comparison should not take electricity emission into account.
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Table 2: Summary Statistics

Overall Sample

N Mean Sd Min. Median Max.
Household income (TCHF) 23,074 114 467 0 94 68,364

Household wealth (TCHF) 23,074 691 5,046 0 322 648,887

Age (main income source) 23,074 55 15 21 56 119

Suggested car price (TCHF) 23,074 35 20 8 32 210

Distance driven (KM/year) 23,074 12,342 2,875 4,132 11,961 29,715

Fuel Economy (CHF/100km) 23,074 9 2 3 9 25

CO2 emission (g/km) 23,074 132 32 0 129 359

Distance to EV charging station (m) 23,074 1,320 1,300 1 789 9,679

Household size 23,074 2.1 1.11 1 2 5

Urbanity of home 23,074 1.91 .88 1 2 3

Gasoline

N Mean Sd Min. Median Max.
Household income (TCHF) 16,005 111 556 0 90 68,364

Household wealth (TCHF) 16,005 680 5,825 0 311 648,887

Age (main income source) 16,005 55 16 21 57 99

Suggested car price (TCHF) 16,005 31 20 8 28 210

Distance driven (KM/year) 16,005 11,259 2,084 4,132 11,183 29,715

Fuel Economy (CHF/100km) 16,005 9 2 6 9 25

CO2 emission (g/km) 16,005 135 27 88 129 359

Distance to EV charging station (m) 16,005 1,317 1,292 1 787 9,679

Household size 16,005 2 1.05 1 2 5

Urbanity of home 16,005 1.91 .88 1 2 3

Diesel

N Mean Sd Min. Median Max.
Household income (TCHF) 5,601 117 95 0 101 3,698

Household wealth (TCHF) 5,601 618 2,456 0 303 144,041

Age (main income source) 5,601 52 13 21 52 94

Suggested car price (TCHF) 5,601 43 15 12 41 115

Distance driven (KM/year) 5,601 15,717 2,322 4,498 15,695 28,872

Fuel Economy (CHF/100km) 5,601 9 1 5 9 16

CO2emission (g/km) 5,601 138 21 86 137 244

Distance to EV charging station (m) 5,601 1,323 1,328 3 784 9,296

Household size 5,601 2.38 1.23 1 2 5

Urbanity of home 5,601 1.93 .89 1 2 3

Hybrid

N Mean Sd Min. Median Max.
Household income (TCHF) 1,088 129 106 3 105 1,395

Household wealth (TCHF) 1,088 963 2,101 0 491 28,973

Age (main income source) 1,088 60 13 22 61 90

Suggested car price (TCHF) 1,088 40 20 18 35 160

Distance driven (KM/year) 1,088 11,418 2,125 6,337 11,228 27,692

Fuel Economy (CHF/100km) 1,088 7 2 4 6 15

CO2 emission (g/km) 1,088 91 28 33 87 221

Distance to EV charging station (m) 1,088 1,352 1,282 7 829 6,617

Household size 1,088 2.06 1.01 1 2 5

Urbanity of home 1,088 1.9 .87 1 2 3

Electric

N Mean Sd Min. Median Max.
Household income (TCHF) 380 170 141 7 138 1,092

Household wealth (TCHF) 380 1,495 3,844 0 711 63,082

Age (main income source) 380 55 13 22 54 119

Suggested car price (TCHF) 380 53 25 24 46 104

Distance driven (KM/year) 380 10,838 2,181 4,466 10,663 23,351

Fuel Economy (CHF/100km) 380 4 1 3 4 6

CO2 emission (g/km) 380 0 0 0 0 0

Distance to EV charging station (m) 380 1,313 1,310 37 791 7,482

Household size 380 2.47 1.2 1 2 5

Urbanity of home 380 1.84 .85 1 2 3
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5 Regression Results
Discrete choice estimation, especially with large choice sets and random parameters are com-

putationally demanding (von Haefen & Domanski 2018). In a �rst step, we estimate maximum

likelihood models based on the logit probabilities without allowing for random coe�cients.

According to Train (2009) a logit speci�cation may capture average preferences fairly robust,

even if tastes vary randomly between agents. Column (1) in Table 3 presents the conditional

logit (CL) results. In column (2) we add the random deviations (RCL) for each household for

three variables - the car price, height and weight. As shown by the estimated standard devia-

tions of the coe�cients and the log likelihood value of the speci�cation, the random deviations

add li�le additional explanatory power to the model. In column (3) we additionally control for

car type (i.e. SUV) and car brand country of origin (i.e. Germany for Audi).
33

�ese additional

dummies signi�cantly improve the model �t, indicating that there seem to be unobserved

brand or car type speci�c preferences in consumers’ utilities. In the speci�cations presented

in columns (4) and (5) we control for the potential price endogeneity by applying the control

function approach introduced in Section 3. �e estimate of the price coe�cient increases in

absolute terms compared to columns (1)-(3) which con�rms the upward biased estimates if

positive correlation between unobserved car characteristics and prices is not accounted for.
34

Both the up front price as well as the future variable costs display a negative and highly

signi�cant coe�cient. Moreover, the reaction to the vehicle price is more pronounced, which

is in line with previous and recent �ndings on myopic car consumers (i.e. (Gillingham et al.

2021, Grigolon et al. 2018)). �e discrepancy between the upfront cost valuation and the fu-

ture variable cost valuation becomes more pronounced once we control for price endogeneity.

We should note however, that we only examine a subsample of the population, namely new

car buyers and hence, in contrast to the aforementioned papers, we cannot draw conclusions

about general consumer myopia. Additionally, we do not only control for fuel costs but also

for vehicle registration taxes and thus cost salience could be another potential explanation for

the undervaluation, which has been found to be the case in Sweden (Huse & Koptyug 2021),

the UK (Cerruti et al. 2019) and Germany (Andor, Gerster, Gillingham, & Horvath 2020). Ve-

hicle registration tax is a function of weight with a reduced rate for electric and relatively

e�cient fossil fuel cars. �ese reductions are not publicly advertised and households may not

be perfectly aware of them. Additionally, taxes are charged once per year in retrospective and

new vehicle buyers may be less aware of potential cost savings. Di�erences between up-front

cost and future expected variable cost valuations may also stem from the fact that households

anticipate policy changes over the lifetime of their vehicle, such as for instance a future expira-

tion of the temporary annual tax registration reduction. �us, the undervaluation of variable

33
We tried to control for brand dummies as well, but this absorbs substantial identifying variation.

34
�e reported standard errors correspond to the square root of the diagonal of the inverse hessian matrix.

As elaborated by Petrin & Train (2010) the control function approach and hence the double usage of the data in

estimation would require the standard errors to be corrected, as they could potentially be biased. We estimate

our main speci�cation RCL-Logit II with bootstrapped standard errors based on 100 random subsample draws of

25% of the sample with replacement. Due to computational limitations a larger sample draw or more replications

appear infeasible. Results of the bootstrapped standard errors are available upon request, since the main results

are consistent.
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costs may be a combination of several factors such as salience, ina�ention and future policy

or price expectations. Coe�cients of the other control variables feature the expected sign.

Households prefer more powerful, heavier and bigger cars. �ere is a general preference for

gasoline cars and a negative taste for other fuel types such as electric, hybrid or diesel. We �nd

li�le evidence for unobserved heterogeneity in the random coe�cient logit models, as most

estimated standard deviations do not signi�cantly di�er from zero and are quite small. �is

indicates that valuation of certain car characteristics seems to vary li�le between households.

Our detailed data also allows us to control for observed heterogeneity between households.

We �nd signi�cant income heterogeneity in terms of price sensitivity. �e coe�cients of the

interaction terms between price and income groups are positive and increase with higher in-

come quartiles. �is translates into lower price sensitivities for households in higher income

brackets. Furthermore, bigger households value larger cars to a stronger extent, as all interac-

tion e�ects are positive and signi�cantly di�erent from zero. Similarly, younger agents prefer

more powerful cars.

We also estimate various interaction e�ects of socio-economic characteristics with EV

dummies, to gain a be�er understanding of EV adoption pa�erns. We control for the den-

sity of charging stations, and �nd signi�cant positive e�ects. Households are more likely to

buy an EV if there are more charging stations in the vicinity. Home ownership and solar panel

ownership also feature positive and signi�cant coe�cients. �is indicates three potential bar-

riers for adoption. In order to acquire an EV, an agent needs access to a charging point. With

an improved public charging infrastructure availability, households are more likely to adopt

EVs, which is in line with previous research (i.e. (Springel 2021, Delacrétaz, Lanz, Van Dijk,

et al. 2020)). However, the availability of charging infrastructure is not only a public but also

a private issue. Households living in their own dwelling can easily install a charging point in

their own garage, and thus depend to a lower extent on public charging networks. In addition,

households owning a solar panel are signi�cantly more likely to adopt an EV as well. In our

opinion, potential synergies between cost e�cient self-produced electricity and EV owner-

ship are the likely explanation for this pa�ern. Moreover, the EV ba�ery as a potential storage

device may be another reason for higher adoption probabilities. As suggested by Figure 1, a

car registered in 2019 is more likely an EV, than a car purchased in 2017 or 2018, which is

con�rmed by the statistically signi�cant positive e�ect of the interaction term. We �nd no

evidence of a peer e�ect, as households that live closer to someone owning an EV do not have

a signi�cantly higher probability than other agents to purchase an EV. �ere is no evidence

for signi�cant urbanity pa�erns in terms of EV adoption, which is in line with the graphical

analysis in Figure 2.

It is important to assess whether our results depend on model speci�cation or assumptions.

We therefore conduct a number of robustness checks. We mainly focus on the identi�cation

strategy and the calculation of the future variable costs.
35

Table 12 in the Appendix presents

the six di�erent robustness checks. Columns Sens (1) to Sens (4) correspond to sensitivity anal-

35
We also test a number of additional technical assumptions. �e mainly unchanged results, are available upon

request. Further estimations include the following: Estimation with 200 instead of 100 Halton draws, re-de�ning

of EV and Hybrid into the overall category ’alternative fuel vehicle’, estimation with bootstrapped standard errors

to correct for the double use of data in the control function approach.
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Table 3: Regression results

(CL) (RCL) (RCL-FE) (RCL-Cont) (RCL-Cont II)

Car price (log) −0.682 ∗ ∗∗ −0.682 ∗ ∗∗ −0.481 ∗ ∗∗ −2.719 ∗ ∗∗ −2.482 ∗ ∗∗
(0.04) (0.04) (0.04) (0.04) (0.11)

Variable costs (log pv) −0.624 ∗ ∗∗ −0.626 ∗ ∗∗ −0.439 ∗ ∗∗ −0.327 ∗ ∗∗ −0.324 ∗ ∗∗
(0.08) (0.08) (0.10) (0.10) (0.10)

Engine power (KW) 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001∗ 0.009 ∗ ∗∗ 0.008 ∗ ∗∗
Car height 0.459 ∗ ∗∗ 0.462 ∗ ∗∗ 0.502 ∗ ∗∗ −1.668 ∗ ∗∗ −1.445 ∗ ∗∗
Car weight 0.000 0.000 −0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗
Hybrid engine −0.851 ∗ ∗∗ −0.846 ∗ ∗∗ −0.562 ∗ ∗∗ −0.273 −0.341∗
Electric engine −2.637 ∗ ∗∗ −2.627 ∗ ∗∗ −1.97 ∗ ∗∗ −1.840 ∗ ∗∗ −1.852 ∗ ∗∗
Diesel engine −0.762 ∗ ∗∗ −0.7625 ∗ ∗∗ −0.729 ∗ ∗∗ −0.560 ∗ ∗∗ −0.575 ∗ ∗∗
Car size −0.032 −0.032 0.067 ∗ ∗ 0.082 ∗ ∗∗ 0.076 ∗ ∗
Price heterogeneity
2

nd
inc. quartile 0.319 ∗ ∗∗ 0.318 ∗ ∗∗ 0.321 ∗ ∗∗ 0.313 ∗ ∗∗ 0.314 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
3

rd
inc. quartile 0.594 ∗ ∗∗ 0.594 ∗ ∗∗ 0.589 ∗ ∗∗ 0.590 ∗ ∗∗ 0.58 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
4

th
inc. quartile 1.272 ∗ ∗∗ 1.272 ∗ ∗∗ 1.274 1.278 ∗ ∗∗ 1.259 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
Size heterogeneity
2 Persons 0.037 ∗ ∗∗ 0.037∗ 0.048 ∗ ∗ 0.048 ∗ ∗ 0.052 ∗ ∗
3 Persons 0.124 ∗ ∗∗ 0.145 ∗ ∗∗ 0.172 ∗ ∗∗ 0.175 ∗ ∗∗ 0.186 ∗ ∗∗
4 Persons 0.324 ∗ ∗∗ 0.324 ∗ ∗∗ 0.371 ∗ ∗∗ 0.369 ∗ ∗∗ 0.380 ∗ ∗∗
5+ Persons 0.527 ∗ ∗∗ 0.528 ∗ ∗∗ 0.595 ∗ ∗∗ 0.589 ∗ ∗∗ 0.599 ∗ ∗∗
KW heterogeneity
40-60 years old −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗
60+ years old −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗
EV e�ects
EV agglomeration 0.159 0.147 0.114 0.148 0.143
EV rural −0.09 −0.118 −0.136 −0.102 −0.122
Distance to EV −0.019 −0.02 −0.052∗ −0.02 −0.016
Nb. Charging (5km) 0.008 ∗ ∗ 0.008∗ 0.001 0.008∗ 0.008∗
EV - Homeowner 0.839 ∗ ∗∗ 0.854 ∗ ∗∗ 0.765 ∗ ∗∗ 0.826 ∗ ∗∗ 0.801 ∗ ∗∗
EV - Solar panel HH 2.437 ∗ ∗∗ 2.456 ∗ ∗∗ 2.42 ∗ ∗∗ 2.429 ∗ ∗∗ 2.40 ∗ ∗∗
EV - 2018 0.133 0.134 0.04 0.147 0.12
EV - 2019 1.357 ∗ ∗∗ 1.351 ∗ ∗∗ 1.254 ∗ ∗∗ 1.360 ∗ ∗∗ 1.306 ∗ ∗∗
Rand. Coe�cients
Car Price −0.001 −0.001 −0.001 0.0004
Variable costs 0.006
Height 0.001 0.003 0.004 0.0006
Weight 0.000 0.000 0.000
Hybrid 0.005
Diesel 0.007

Observations 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000
Nr. of cases 23, 074 23, 074 23, 074 23, 074 23, 074
Log Likelihood −135, 444.9 −135, 444.9 −133, 974.2 −133, 693.1 −133, 696.7
Car type fe No No Y es Y es Y es
Car brand (country) No No Y es Y es Y es
Control function No No No Y es Y es

* p<0.05; ** p<0.01; *** p<0.001

Coe�cients based on estimated mixed logit models. Estimated standard errors in parentheses for selected coe�cients, but mainly suppressed to save

space in the table. Model (1) features no random coe�cients. Coe�cients in Model (4) and (5) are based on the control function approach with estimation

of the pricing equation in a separate model based on cost shi�ers in a �rst step.

ysis of the variable cost calculation. In column Sens (1) we apply a lower discount rate of 2%,

since nominal interest rates were mostly close to zero or even negative between 2017-2019. In

column Sens (2) and Sens (3) we calculate the net present value of future variable costs based

21



on alternative holding periods. For column Sens (2) we employ a holding period of 6 years

which corresponds to the average holding period of new vehicle buyers according to a Swiss

survey and column Sens (3) employs the expected vehicle maximum lifetime of 25 years used

in the literature (e.g. Huse & Koptyug (2021)). In column Sens (4) we use constant annual

kilometre consumption instead of the imputed values. We employ a mileage of 16,000 km and

12,000 km for diesel and non-diesel cars respectively.
36

�e results vary between the di�er-

ent speci�cations but are mainly consistent in terms of signi�cance, sign and magnitude. �e

undervaluation of variable costs persists and varies between 7% and 17% with the baseline es-

timate at 13%. Other coe�cients do not change between the di�erent models. In columns Sens
(5) and Sens (6) we conduct robustness checks with respect to the identi�cation strategy. Sens
(5) uses the lagged equally distributed penalty as well as the BLP instruments as cost shi�ers

in the control function approach to address potential concerns of strategic import behaviour

described in Section 3. In column Sens (6) we only use the typical BLP style instruments as cost

shi�ers. �e results vary slightly, as the coe�cients of price and future variable costs di�er,

but the pa�ern of stronger up-front cost sensitivity continues to hold. Hence, we apply the co-

e�cients of our preferred speci�cation RCL Cont II in column (5) of Table 3 in the subsequent

analysis.

First, we estimate the average predicted probability of a household to choose a certain

car type based on the preferred control function speci�cation. We determine the average

predicted probability by fuel type and income quartile. Table 4 depicts the results. Overall, we

predict 2 out of 3 chosen cars to be gasoline driven. �e share of electric and hybrid vehicles is

comparably low with 1.77% and 4.73% respectively. �ere is quite substantial heterogeneity in

terms of the income groups. A household in the highest income bracket is almost 10 percentage

points less likely to buy a gasoline driven car than a household in the lowest income bracket.

For the other fuel types, the pa�ern is reversed. With increasing income, households are more

likely to buy a non-gasoline driven car. �e di�erence in probability between the lowest and

highest income bracket is around 1.8 percentage points for electric cars, 2 percentage points

for hybrid cars and almost reaches 5 percentage points for diesel cars.

We apply a chi-square goodness of �t tests to evaluate how well the model �ts the data.

Since we do not apply alternative speci�c constants,
37

the model does not perfectly represent

the observed shares in the data. Based on chi-square tests we compare the model predictions

with the observed shares in the data. Table 13 in the Appendix presents the results. �e model

�ts the data quite well with a chi-square test statistic of 3.17, if we test the model �t based on

fuel types without di�erentiating between income quartiles. Hence, we can not reject the null

hypothesis that the model prediction is signi�cantly di�erent from the observed shares in the

population with 99% con�dence. Furthermore, we evaluate how well we predict the fuel types

based on the average predicted probabilities for each car combination and each income quar-

tile. Our model captures the trend that lower income households are more likely to purchase

gasoline vehicles, but not to a full extent. We slightly underestimate the share of gasoline

driven cars in the �rst income quartiles. For the remaining income groups the predictions for

36
�is values were taken over from (Alberini & Bareit 2019) which are based on survey results for Switzerland

37
Alternative speci�c constants would entail estimation of an additional 488 coe�cients while also absorbing

most variation in our data.
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Table 4: Predicted probabilities

Overall 1
st

inc. quartile 2
nd

inc. quartile 3
rd

inc. quartile 4
th

inc. quartile

Gasoline 69.56 73.51 70.86 68.69 65.17

Diesel 23.95 21.65 23.44 24.61 26.11

Electric 1.77 .98 1.36 1.91 2.82

Hybrid 4.73 3.86 4.35 4.79 5.9

Notes: 1
st

quartile: income< 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile:

93.7<= income<131.9 kCHF and 4
th

quartile: income <= 131.9 kCHF. Estimation based on

sample and speci�cation (5) of Table 3.

gasoline cars work quite well and we cannot reject the null hypothesis that predicted numbers

and observed numbers are signi�cantly di�erent from each other at the 1% level. �e model

�t is slightly less accurate for electric vehicles. While the adoption rates are quite well esti-

mated for the lowest income quartile, we overestimate the adoption in the second and third

income quartiles and underestimate the adoption rate for the highest income group. �e main

explanation for the comparably high chi-square statistics stems from the lowest and highest

income quartiles, where deviations between predicted and observed variables are higher. In

conclusion, our model �ts the overall data quite well and there is no signi�cant di�erence

between the observed and the predicted overall market shares. However, if we di�erentiate

between income groups, we slightly underestimate the emerging pa�ern of higher (lower)

gasoline adoption in the lower (higher) income groups and lower (higher) adoption rates of

non-gasoline vehicles in the lower (higher) income groups.

In addition, we compute mean own and cross-price elasticities for the whole sample as well

as per income quartile. �is allows us to compare our results to the relevant literature and to

be�er understand the substitution pa�erns between the di�erent vehicles and fuel categories.

Table 5 presents the overall elasticities. All cross-price elasticities are smaller than -1 and vary

between -1.55 and -2.13 with a mean of -1.87. It is important to note that initial probabilities of

the four fuel types are quite heterogeneous. Furthermore, the number of options within one

fuel type also di�ers. For instance, households can choose between more than 200 gasoline cars

whereas the choice set contains only 20 EVs. �e elasticities re�ect the relative substitution

pa�erns. For instance, a 1% price increase leads to a decrease in adoption probability of 1.9% for

gasoline driven cars and just 1.7% for electric cars. Furthermore, relative substitution between

the fuel types seems to be quite similar, albeit of small magnitude. �ese values are slightly

lower than corresponding values from the literature. For example, Xing et al. (2021) estimate

an own-price elasticity of 2.6 and Muehlegger & Rapson (2018) �nd EV own-price elasticities

of -3.2 to -3.4. With respect to cross-price elasticities, Xing et al. (2021) estimate a gasoline

to EV (to gasoline) average cross-price elasticity of 0.028 (0.029), whereas our estimates are

smaller with 0.005 (0.006). Nevertheless, in line with Xing et al. (2021), we also �nd that EV

buyers tend to have a distinct preference for EVs and thus display a substantially higher cross-
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price elasticity relative to EVs than to other fuel types. �ese di�erences in both own- and

cross-price elasticity estimates have a number of explanations. First, our analysis focuses on

new car buyers in a relatively higher income environment in Switzerland.
38

Furthermore, Xing

et al. (2021) use data from 2014 and hence, we believe that the interchangeability between the

di�erent fuel types has further grown during more recent years (2017-2019) that are featured

in our data. In addition, EV and hybrid car prices have further decreased over time. Range

anxiety has also decreased over time and is less of a concern in Switzerland, as public charging

network density is comparably high and average daily travel distance is comparably low.
39

An important feature of our data is that it allows us to calculate the own- and cross-price

elasticities also di�erentiated by income quartile, which is a novelty compared to existing pa-

pers. �e results are depicted in Table 14 in the Appendix. We �nd quite substantial di�erences

between income quartiles with an average own-price elasticity of -2.18 (-1.37) for the lowest

(highest) income quartile. Lower income groups are substantially more price elastic with re-

spect to combustion engine vehicles and less inelastic for alternative fuel vehicles (EVs and

HEVs), whereas for higher income groups the own price elasticity is higher for EVs than for

fossil fuel driven vehicles. �e pa�ern of EV buyers having quite persistent preferences and

mainly substituting to other EVs is observed for all income groups with higher cross-price

elasticity estimates for EV-EV substitution in every income group. �e lower own-price elas-

ticities for fossil fuel cars in the higher income groups translate into lower within fuel group

cross-price elasticities, meaning that the increase in the price of a speci�c gasoline driven

car, leads to a lower substitution towards other gasoline cars, while most other cross-price

elasticities do not change.

Table 5: Implied substitution patterns and elasticities

Own Cross Gasoline Cross Diesel Cross Electric Cross Hybrid

Gasoline -1.896 .006 .005 .005 .005

Diesel -1.867 .003 .003 .002 .003

Electric -1.739 .001 .001 .005 .002

Hybrid -1.802 .002 .002 .002 .002

Notes: Estimations based on sample and speci�cation (5) of Table 3. �e table presents

the estimated elasticities based on a 1% price increase, which corresponds to the mean

own and cross-price elasticities. All measures are in percentages.

38
Our estimates of own-price elasticities are close to Train & Winston (2007), who also focuse on buyers of

new cars. Muehlegger & Rapson (2018) speci�cally focus on low- and middle income households.

39
According to the most recent survey estimate from 2015, the average daily distance travelled by car amounts

to 24 km.
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6 Welfare and Counterfactuals
We simulate two policy changes based on the estimated coe�cients. �ese two policies,

namely an increase in the fossil fuel levy and an up-front price subsidy for EVs are com-

mon instruments policy makers have introduced in various countries to address the negative

environmental externalities from the road transport sector. However, these policies also have

heterogeneous e�ects across the income distribution as well as implications for the revenue

raised to �nance the road infrastructure. We assume that the annual number of private reg-

istered cars amounts to 9,230 in the Canton of Bern,
40

and assess the changes in tax revenue

as well as emissions and the particular implications of each policy change. A major concern

related to the spread of fuel e�cient cars in general and EVs in particular, relates to the missing

tax revenue to �nance the road infrastructure. �is is the case, since these type of cars bene�t

from generous motor vehicle tax reductions (Davis & Sallee 2020) and also consume less or

no fossil fuel and thus pay less or even no fuel taxes. Hence, besides assessing the e�ects on

emissions, we also compute the change in consumer surplus and the revenue e�ects of these

policies.

Following Small & Rosen (1981), we de�ne consumer surplus as:

CSi =
1

ai
max
j
uij (12)

where ai is the marginal utility of income for household i (Train 2009). �e researcher only

observes the deterministic part of utility Vij and hence expected consumer surplus can be

de�ned as

E(CSi) =
1

ai
E[max

j
(Vij + εij)] (13)

Assuming an iid extreme value distribution of the error term Small & Rosen (1981) have shown

that the expected consumer surplus can be computed as

E(CSi) =
1

ai
log(

J∑
j=1

eVij) + C (14)

with C representing an unknown constant. Since we allow for heterogenous deviations from

the mean valuation of certain characteristics, the above formula is slightly adapted since the

unobserved random terms are integrated out (Train 2015). �e change in consumer surplus

following a policy change can be expressed as

∆E(CSi) =

∫
1

ai
[log(

J1∑
j=1

eV
1
ij)− log(

J0∑
j=1

eV
0
ij)]f(α, β)dαdβ (15)

where 1 and 0 represent the time period a�er and before the policy change respectively. �e es-

timated price coe�cient is usually employed as an estimate for the marginal utility of income,

40
We calculate this number based on our sample and registrations in the last 3 years.
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based on the assumption that an increase in the price leads to a decrease in the consumer’s

available income to purchase other goods (Train 2009). We allow for heterogeneity in the price

sensitivity as described in Section 3 and thus the marginal utility of income is:

ai = −∂uij
∂pj

=
1

pj
(αi +

∑
l=2−4

φld
l
i) (16)

where l ∈ [2, 3, 4] and dli is a dummy variable indicating whether or not a household

belongs to a particular income quartile.

We assume that household characteristics and the choice set remain the same for both sim-

ulated policy changes. Furthermore, we assume that annual mileage is inelastic with respect

to vehicle economy (i.e. West et al. (2017)). Similar to Grigolon et al. (2018), households do not

change kilometres driven, when variable costs change. Hence, we argue that our approach is

an estimate of an upper bound in terms of revenue and a lower bound in terms of CO2 reduc-

tion. Even if households are not perfectly inelastic in their mileage demand, the e�ects of the

simulated policies still take place. Agents who reduce their mileage demand as a reaction to

higher driving costs, may substitute at a slightly lower rate than our model predicts, but the

predicted e�ects of lower emissions or higher tax revenue still occur.

To assess the overall welfare impact of potential policy changes we �rst calculate the net

present value of the annual emission savings and changes in public tax revenue over the as-

sumed vehicle holding period of ten years and apply the discount rate of 6%. Second, we

compute the sum of the monetary equivalents of the three welfare components - consumer

surplus, change in emissions and public revenue. �e change in consumer surplus is de�ned in

Equation 15, the change in public revenue constitutes the net present value of the sum of fossil

fuel tax, vehicle registration tax and vehicle tari�s as well as the additional income generated

by the levy or subsidy outlays. Carbon emission reductions are expressed in monetary terms

using a social cost of carbon (SCC) of CHF 175.
41

41
We acknowledge that this is a comparably high value, as for instance US policy currently employs USD 30

as social cost of carbon (SCC). In our opinion, the higher charge is justi�ed on several grounds. First, combustion

fuel engines produce additional harmful emissions that are not measured in our data and hence not accounted

for (i.e. PM or NOx). A higher SCC captures these e�ects as well. Second, Switzerland currently charges CHF

96 per t CO2 for heating fuels and is about to increase the charge to CHF 120. �ird, more recent research

emphasises that IAM models may underestimate the true social costs of emissions. Carleton & Greenstone

(2021) estimate a SCC of USD 125 a�er adjusting discount rates, and point out several additional damages

that currently are unaccounted for in the standard models. Pindyck (2019) uses a survey based calculation

to estimate a SCC. �e mean estimate on expert answers from economists is USD 171. Natural scientists

estimate an even higher SCC, which is consistent with recent research. Ricke, Drouet, Caldeira, & Tavoni (2018)

estimate the country level median SCC to USD 417. To assess the external costs of Swiss road tra�c in 2015, the

government employed a SCC of CHF 132.8 with a lower and upper bound of CHF 75.7 and CHF 233.7 respectively

(https://www.are.admin.ch/are/de/home/mobilitaet/grundlagen-und-daten/
kosten-und-nutzen-des-verkehrs.html). �e German environmental agency suggests an SCC

of EUR 199 for 2020 (https://www.umweltbundesamt.de/daten/umwelt-wirtschaft/
gesellschaftliche-kosten-von-umweltbelastungen#gesamtwirtschaftliche
-bedeutung-der-umweltkosten). In our opinion, the SCC of CHF 175 re�ects the more recent

developments in the literature. It may be slightly higher, but it also accounts for unmeasured local air pollution

e�ects.
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6.1 Fuel Tax
Switzerland already levies a CO2 tax (’Mineralölsteuer’). Imports of gasoline and diesel are

subject to this levy which constitutes an important part of the end user fossil fuel price. Fur-

thermore, gas importers are required to compensate a substantial amount of fossil fuel based

carbon emissions with di�erent projects. In September 2020, the revision of the CO2 law

envisaged further increases in those compensation schemes.
42

Pass through of CO2 compen-

sation was meant to be capped at CHF 0.12 per litre and constitutes our main policy scenario.

We also simulate the welfare e�ects of an increase up to CHF 0.25/l.

Table 6 presents the changes in adoption probabilities for the four fuel categories and the

distribution across the income quartiles. Perhaps surprising, the likelihood to choose a diesel

driven car increases, despite higher diesel prices. �is e�ect arises as people substitute from

gasoline to diesel driven cars, since the relative increase in driving costs is lower for the la�er

as these are usually more fuel e�cient. Overall, the adoption probability of electric and hybrid

cars increases by 0.03 and 0.02 percentage points respectively. �is increase is slightly more

pronounced for EVs and slightly less pronounced for hybrids in the case of richer households.

Households substitute away from gasoline driven cars, but the reaction is less than 0.1 percent-

age points overall, with higher income households more likely to substitute, but at comparable

low levels. Overall, the response to the hike in fuel taxes is extremely low, as households value

future driving costs to a low extent.

Table 6: CO2 levy - Change in probabilities

Overall 1
st

inc. quartile 2
nd

inc. quartile 3
rd

inc. quartile 4
th

inc. quartile

Gasoline -.0693 -.0552 -.0631 -.0719 -.0869

Diesel .0253 .0273 .0268 .025 .0219

Electric .0279 .0163 .0221 .0305 .0429

Hybrid .0161 .0116 .0142 .0164 .0222

Notes: 1
st

quartile: income< 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile:

93.7<= income<131.9 kCHF and 4
th

quartile: income <= 131.9 kCHF. Estimation based on

sample and speci�cation (5) of Table 3. �ese numbers re�ect percentage point changes.

In Table 7 we summarise the welfare implications of this counterfactual scenario. �e

fuel levy leads to a decline in consumer surplus of CHF 3.06 millions in absolute terms or

approximately 0.12% relative to the status quo. �e decrease in both absolute as well as relative

terms is stronger for higher income households. We calculate the changes in public revenue

accounting for the additional CO2 levy and the changes in vehicle registration taxes, fuel

levies and vehicle tari�s for the hypothetically newly purchased cars. Vehicle registration tax,

fossil fuel tax and vehicle tari� revenue slightly decrease, as consumers shi� to relatively more

42
�e actual referendum did not pass the public vote in June 2021, such that the implementation of further

policy changes is uncertain.
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e�cient models. �eCO2 levy is regressive since lower income households pay a higher share

of their income in terms of levies, even though in absolute terms we �nd li�le heterogeneity

between income groups. Nevertheless, we should note that in reality, the CO2 levy would

be charged to any existing vehicle in the car �eet and not only to newly purchased vehicles.

�us, the additional tax revenue is signi�cantly higher than the CHF 760,000 projected here.

On average, the policy change leads to a very small 0.05% drop in the new car �eet’s annual

CO2 emissions. �e decrease is stronger among wealthier households. Overall, the welfare

e�ect of the policy change is positive with an estimated NPV e�ect of around CHF 2.6 millions.

As the achieved emission reductions from the new car �eet are very small, the overall e�ect

stems from the fact that additional tax revenue outweighs reductions in consumer surplus,

especially for lower income households.

Table 7: CO2 levy - Welfare

1
st

inc. quartile 2
nd

inc. quartile 3
rd

inc. quartile 4
th

inc. quartile Overall

Cons. surplus (kCHF) -490.249 -576.05 -704.013 -1,292.58 -3,062.89

Change Cons. surplus (%) -.078 -.093 -.112 -.21 -.123

CO2 levy (kCHF p.a.) 192.727 190.765 199.342 198.978 782.351

Levy incidence (%) .201 .106 .078 .038 .074

Fuel levy (CHF p.a) -404.682 -513.027 -686.387 -958.25 -2,576.72

Car registration taxes (CHF p.a) -113.396 -165.081 -236.63 -362.973 -878.534

Vehicle tari�s (CHF) -170.42 -434.249 -876.195 -1,952.29 -3,436.61

CO2 change (t p.a.) -1.179 -1.524 -2.072 -2.94 -7.76

CO2 change (%) -.031 -.041 -.053 -.075 -.05

CO2 change (CHF) 206.385 266.699 362.544 514.556 1,358.08

Overall Welfare e�ect (kCHF) 925.772 824.532 758.161 164.027 2,676.41

Welfare incidence (%) .131 .062 .04 .004 .034

Notes: 1
st

quartile: income < 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile: 93.7<= income<131.9

kCHF and 4
th

quartile: income <= 131.9 kCHF. Estimation based on sample and speci�cation (5) of Table 3. Consumer

surplus based on Equation 15. Welfare impact assumes a vehicle lifetime of 10 years and discount rate of 6% to calculate

the NPV of public revenue changes and emission reductions. Global social cost of carbon applied is CHF 175 per t CO2.

In a next step we simulate how a variation in theCO2 levy a�ects the outcomes of interest.

We increase the levy progressively from 0 to CHF 0.25/l of fossil fuel and present the average

reactions by income quartiles in Figure 3. As expected, the higher the levy, the higher the

emission reduction (upper le� panel). Wealthier households react stronger to changes in vari-

able costs and the recorded emission reductions within this group is higher. In contrast, public

revenue increases linearly and changes are evenly distributed between the income groups as

presented in the lower le� panel. As the upper right panel in Figure 3 shows, consumer sur-

plus is negatively a�ected by the increase in fossil fuel levies with higher income households

exhibiting the most pronounced loss. Overall, the additional public revenue raised outweighs

the consumer surplus and emission reduction and hence welfare, de�ned as the sum of the

three components, increases. However, the contribution to public revenues increases homo-

geneously across income quartiles. �is re�ects the regressivity of the levy, as lower income
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households pay a higher share of their income in terms of taxes.

Figure 3: CO2 levy - Welfare simulation

(a) CO2 emissions change (b) Consumer surplus change

(c) Public revenue change (d) Welfare change

Notes: 1
st

quartile: income< 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile: 93.7<= income<131.9 kCHF and 4
th

quartile:

income <= 131.9 kCHF. Estimation based on sample and speci�cation (5) of Table 3.

�is analysis shows that increasing fossil fuel levies is a viable way to secure road infras-

tructure �nancing, but has li�le impact on a hypothetical new car �eet’s carbon emissions.

However, the emission reduction may be higher than estimated if the elasticity of driving is

di�erent from zero (Gillingham 2014). Furthermore, increasing fuel levies may lead to earlier

retirement of old, fuel-ine�cient cars. However, such dynamics are not part of our analysis of

new vehicle purchase decisions and are not captured by our estimates.

6.2 Subsidy
�e results of the empirical analysis in Section 5 reveal that households are more sensitive

with respect to vehicle up-front prices than variable costs. In this counterfactual we simulate
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the e�ects of an EV up-front price subsidy that could complement the existing support mech-

anisms in the Canton of Bern. �e most generous subsidies in Switzerland are paid in the

Canton of Ticino and amount to CHF 4,000 per EV purchase.
43

Furthermore, it is important

to properly account for the substitution pa�erns induced, as they may involve windfall gains

for households that would have purchased a relatively fuel e�cient vehicle anyway (Xing et

al. 2021, Chen et al. 2021).

Table 8 presents the changes in probabilities, following the introduction of the subsidy.

�e likelihood to acquire an EV increases by 0.34 percentage points overall, whereas all other

fuel types are less likely chosen. �e substitution mainly stems from gasoline vehicles that

have a 0.24 percentage point lower probability of being chosen. Households belonging to the

highest and lowest income quartile feature slightly lower adoption probability changes. �is

is due to the higher price sensitivity of lower income households and the already substantially

higher EV adoption rates of highest income households. Albeit a relatively weak reaction, it is

important to keep in mind the low base level of EV adoption. Our model predicts an average

probability of 1.77%. An increase by 0.34 percentage points translates into an average predicted

probability of 2.11%, which corresponds to an EV market share increase of almost 20%. Our

�ndings show that the subsidy leads to adoption probability increases across all income groups

and not only for richer households.

Table 8: EV subsidy - probabilities

Overall 1
st

inc. quartile 2
nd

inc. quartile 3
rd

inc. quartile 4
th

inc. quartile

Gasoline -.2417 -.2294 -.2525 -.2754 -.2097

Diesel -.0775 -.0625 -.0774 -.0912 -.0787

Electric .3359 .304 .3455 .3861 .308

Hybrid -.0167 -.0121 -.0156 -.0194 -.0196

1
st

quartile: income< 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile: 93.7<=
income<131.9 kCHF and 4

th
quartile: income<= 131.9 kCHF. Estimation based on sample and

speci�cation (5) of Table 3. All changes depicted in percentage points.

Table 9 presents the counterfactual welfare e�ects. �e subsidy leads to a slight increase in

consumer surplus of 0.027% relative to the status quo. Overall the subsidy costs around CHF

776,000 with a fairly heterogenous distribution between the income quartiles. Agents in the

highest income quartile receive more than twice the subsidy payments compared to the ones in

the lowest income quartile, because wealthier households have an initially higher propensity

to purchase an EV. At the same time, the changed composition of the hypothetical new car �eet

decreases vehicle registration tax revenue by a negligible amount of CHF 9,400. In contrast,

43
An overview of further support mechanisms can be found here: https://www.swiss-emobility

.ch/de/elektromobilitaet/Foerdermassnahmen/#anchor b8547d00 Accordion
-Kantone. Similar subsidies are also in place in the Cantons of Valais and �urgau, but to a slightly smaller

extent.
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CO2 emissions of the new car �eet are 0.34% lower and the decrease is distributed evenly

between the income groups. �e subsidy accounts for a decrease of 52 tons of CO2 annually,

which corresponds to a monetary value of almost CHF 9,200 applying the social cost of carbon

of CHF 175/tCO2. �e public budget changes contain the net present value of reductions in

annual vehicle registration taxes as well as fossil fuel tax revenues, but also the one-o� subsidy

payments and reduction in vehicle tari� income.
44

�e overall welfare impact amounts to CHF

-283,273 and is the sum of consumer surplus changes, NPV of emission reductions and NPV

of public budget changes. �us, similar to the fossil fuel levy counterfactual, public revenue

changes dominate both consumer surplus increases and annual emission reductions.

Table 9: EV subsidy - Welfare

1
st

inc. quartile 2
nd

inc. quartile 3
rd

inc. quartile 4
th

inc. quartile Overall

Cons. surplus (kCHF) 92.973 124.538 174.326 270.7 662.537

Change Cons. surplus (%) .015 .02 .028 .044 .027

Total subsidy (kCHF) 118.709 157.095 211.54 288.739 776.515

Fuel levy (CHF p.a) -3,628.67 -4,086.55 -4,796.65 -3,852.28 -16,362.7

Car registration taxes (CHF p.a) -1,981.71 -2,340.03 -2,730.89 -2,366.78 -9,421.43

Vehicle tari�s (CHF) -8,977.79 -11,084.3 -13,628.4 -13,382 -47,086.4

CO2 change (t p.a.) -11.598 -13.091 -15.387 -12.384 -52.457

CO2 change (%) -.306 -.348 -.391 -.314 -.34

CO2 change (CHF) 2,029.68 2,290.98 2,692.69 2,167.28 9,180

Overall Welfare e�ect (kCHF) -61.069 -74.08 -86.427 -61.242 -283.273

Welfare incidence (%) -.009 -.006 -.005 -.002 -.004

Notes: 1
st

quartile: income < 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile: 93.7<= income<131.9

kCHF and 4
th

quartile: income <= 131.9 kCHF. Estimation based on sample and speci�cation (5) of Table 3. Consumer

surplus based on Equation 15. Welfare impact assumes a vehicle lifetime of 10 years and discount rate of 6% to calculate

the NPV of public revenue changes and emission reductions. Global social cost of carbon applied is CHF 175 per t CO2.

In Figure 4 we depict the e�ects by varying the subsidy from zero to CHF 10,000. With

higher subsidies, the emission reductions grow exponentially, suggesting that higher subsi-

dies lead to higher EV adoption probabilities at an increasing rate, especially for middle in-

come brackets. Consumer surplus increases non-linearly with a more pronounced reaction for

higher income groups. At the same time, revenues raised from the di�erent taxes
45

decreases

non-linearly and at a higher rate for higher income households. �is heterogeneous e�ect is

mainly driven by the higher propensity to purchase EVs by high income households, which

makes them more likely to collect subsidy payments. �e lower reduction in public revenues

(lower le� panel of Figure 4) for the lower income groups, indicates that the contribution to

road �nancing from lower income households changes less, while they simultaneously receive

less subsidy payments. Hence, the subsidy also raises redistributive concerns. One should note

44
Revenues from vehicle tari�s are also lower since EVs are exempt from the 4% tari� and due to the subsidy

now more likely to be bought.

45
�e curve depicts the sum of the one-time subsidy payment and reduction in vehicle tari� income as well as

the net present value of the annual reduction in fossil fuel and vehicle registration tax income.
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however, that in absolute terms the contribution of higher income agents is still higher, since

they tend to have more expensive, heavier and less-fuel e�cient vehicles leading to higher

overall public revenue contributions. In total the subsidy features negative welfare e�ects

since the negative repercussions on public revenue outweigh changes in emissions and con-

sumer surplus.

Figure 4: EV subsidy - Welfare simulation

(a) CO2 emissions change (b) Consumer surplus change

(c) Public revenue change (d) Welfare change

Notes: 1
st

quartile: income< 62.9 kCHF, 2
nd

quartile: 62.9<=income< 93.7 kCHF, 3
rd

quartile: 93.7<= income<131.9 kCHF and 4
th

quartile:

income <= 131.9 kCHF. Estimation based on sample and speci�cation (5) of Table 3. Subsidy increased from 0 to CHF 10,000.

However, in terms of emission reduction of the new car �eet the subsidy is relatively more

e�ective than the increased fuel levy, as households react stronger to up-front vehicle prices

than to variable costs. For instance, the simulated carbon emission reduction of roughly 8 t

CO2 with the CHF 0.12 fossil fuel levy would be achieved by a subsidy as low as CHF 700.

Nevertheless, subsidies require additional government outlays and come at relatively high

costs. Abatement costs amount to CHF 2,011 per t CO2 if only emission reductions are taken

into account. If all public revenue changes and consumer surplus changes are accounted for,
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the abatement costs are considerably lower at CHF 908, which is comparable to the costs

implied by the income tax credit in California (Xing et al. 2021) but still substantially higher

than for example EU ETS prices, which amounted to EUR 25 in 2019.
46

Furthermore, subsidies

have redistributive implications, as higher income households are the main bene�ciaries, due

to their higher initial propensity of EV adoption. Furthermore, the increased electri�cation of

the vehicle �eet leads to lower public revenues, as the annual overall fossil fuel consumption

decreases, which also decreases annual fuel tax income (Davis & Sallee 2020).
47

6.3 Optimal policy under constraints
�e two instruments involve trade-o�s with regard to potential policy goals such as achiev-

ing emission reductions while safeguarding road infrastructure �nancing and accounting for

equity concerns. Hence, we compute the optimal subsidy-fuel levy combination from the per-

spective of a social planner that maximises welfare subject to achieving a pre-speci�ed EV

registration share and securing enough revenue to �nance the road infrastructure. Further-

more, we also account for potential equity concerns by assigning a higher welfare weight to

consumer surplus changes of lower income households. To be more speci�c, we solve the

following optimization problem under various constraints:

max
τgj ,η

g
j

=
N∑
i=1

(
1

yi

)κ ∫
1

ai
[log(

J1∑
j=1

eV
1
ij)− log(

J0∑
j=1

eV
0
ij)]f(α, β)dαdβ (17)

where τ gj denotes the level of fossil fuel levy for vehicle j of fuel type g and ηgj is subsidy

for vehicle j of fuel type g. yi is household i’s income in CHF and κ ∈ [0; 1] indicates whether

the social planner cares about redistribution (κ = 1) or not (κ = 0) (Saez 2002). We maximise

the (un-)weighted sum of consumer surplus changes of all households N ,
48

choosing from all

vehicles j as a function of the subsidy ηgj and the fossil fuel levy τ gj , in comparison to the status

quo (state 0), where both parameters (ηgj , τ
g
j ) are equal to zero. Both policy instruments are

constrained at zero and capped at CHF 10,000 for the subsidy and CHF 0.25/l for the fossil fuel

tax. Policies are simulated in increments of CHF 100 for the subsidy and CHF 0.01 for the tax

respectively. �ese range constraints ensure that we do not extrapolate too far away from the

actually observed variation in our estimates and thus we stipulate realistic policy boundaries.

Additionally, two formal constraints represent policy targets and restrict the set of potential

optimal policy combinations.

First, we set an environmental target as an EV market share, which corresponds to o�en

stipulated and communicated policy targets or milestones.
49

�e share of electric vehicles in

46
�ese numbers correspond to the simulated subsidy of CHF 4,000 and emission abatement of 52 t CO2

47
�is e�ect is stronger for higher income households, as they are the major EV adopters and thus the main

bene�ciaries of car taxes and tari� rate reductions and fossil fuel tax exemptions.

48
N denotes the number of households purchasing a new car in a given year. As previously N thus is 9,230. As

we observe choices over several years, individual outcomes are calculated and averaged to then being assessed

for the hypothetical �eet. In terms of consumer surplus all household’s are weighted equally but the outcome is

reduced to the hypothetical �eet size.

49
Another potential target are �eet wide average emissions, such as the o�cial Swiss target of 130g CO2/km
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new car registrations for a given year s is a function of vehicle type adoption probabilities Pij
(as de�ned in Equation 10). Hence,

SEVs =
1

N

N∑
i=1

K∑
j

1g=EV Pij (18)

N denotes the sample size and 1g=EV is equal to 1 for BEVs and zero otherwise. K denotes

the set of available vehicles.

�e Swiss ’Roadmap Elektromobilität’ stipulates that 15% of newly registered vehicles

should be EVs in 2022.
50

�is target also includes plug in hybrids. �us if we only consider

ba�ery electric vehicles (BEVs) the target amounts to 8.25%.
51

Such a BEV registration share

in 2022 is a�ainable with an annual registration share growth rate of 0.43. However, in most

recent years, growth has been smaller. �us, to a�ain the 2022 policy goal of 8.25% and assum-

ing a constant growth rate
52

, the target of EVs in newly registered cars is set to 2.31% for the

year 2018. In other words, if the share of EVs in newly registered cars was 0.0231 in 2018, and

registration shares continued to grow at the observed average growth rate of 0.375, the goal

of 8.25% share of BEVs in annual registrations is met in 2022. Formally, the �rst constraint

stipulates that:

SEV
1

2018 ≥ 0.0231 (19)

Second, we formulate a public revenue target. One main goal of Swiss road transport policy

is to secure stable road infrastructure �nancing through bene�t taxation. Hence, the second

constraint requires non-decreasing public revenues. Formally, we de�ne ∆Ts as the di�erence

between the net present value of public revenue in the presence of subsidies and additional

CO2levies(T
1
s) and in the status quo (T 0

s ). Hence, the public revenue target is speci�ed as:

∆Ts = T 1
s − T 0

s ≥ 0 (20)

with

T cs =
N∑
i=1

K∑
j=1

Pij{−ηgj1g=EV + 1g 6=EV pjτ
imp
j + ρ[tj +mijej(τ

g
j + ψgj )]} (21)

Pij represents household i’s predicted probability to purchase vehicle j. ηgj , τ impj , τ gj ,ψgj and

tj denote the EV subsidy, vehicle import tari�,CO2 levy, fossil fuel tax and vehicle registration

in 2019. However, this target is o�en not met by importers and they opt to pay �nes instead. Furthermore, in our

opinion, the EV target is a more appropriate indicator, since in reality up-front subsidies are mostly paid out in

particular to EVs and not to fuel e�cient cars in general.

50
More information can be found here: https://www.weu.be.ch/de/start/themen/

energie/energiestrategie.html. Overall, the Swiss mobility roadmap stipulates that at least

10% of the overall vehicle �eet should possess a non-fuel combustion engine in 2035 with the intermediary

milestone for 2023 set at 3.6%.

51
Assuming that BEVs continue to represent 55% (average) of the newly registered electric vehicles (BEVs +

plug-in’s) as it has been the case during 2016-2018 in Switzerland. We furthermore estimate a scenario with

a stricter environmental target assuming BEVs represent a share of 64% (maximum). Results are not further

discussed but available upon request.

52
We set the growth rate to 0.375 which corresponds to the observed values for 2013 to 2018.
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tax respectively. 1 is an indicator function and is equal to 1 if the respective condition is met

and zero otherwise. �is is important since only EVs bene�t from subsidies and they are also

exempt from the import tari�. �e discount factor ρ is de�ned in Equation 4 and translates

annual tax and levy payments into the corresponding net present value
53

In contrast to the previous sections we also allow for non-zero mileage elasticities. Hence,

household mileage is no longer constant between options, but now expressed as mij in Equa-

tion 20. Choice probabilities and consumer surplus are also now computed accounting for

elastic mileage. We allow households to reduce the number of kilometers driven a�er the im-

plementation of higher levies. We estimate three scenarios. �e status quo assumes a mileage

elasticity of 0. Furthermore, we follow the literature and employ a low elasticity of 0.1 and a

higher elasticity of 0.3. �e literature review by Gillingham, Rapson, & Wagner (2020) shows

that most elasticities lie between 0.05 and 0.4 and a more recent study for Denmark estimates

a medium-run average elasticity of 0.3 (Gillingham & Munk-Nielsen 2019).

Table 10: Optimal policy outcomes

Inelastic mileage Low elasticity (0.1) High elasticity (0.3)
κ = 0 κ = 1 κ = 0 κ = 1 κ = 0 κ = 1

Overall e�ects
Subsidy level (CHF) 9,600 6,500 10,000 6,300 10,000 6,800

CO2 levy (CHF / l) 0.07 0.04 0.08 0.04 0.09 0.05

Consumer Surplus (kCHF) 281.50 166.02 377.25 223.46 632.60 380.08

CO2 reduction (t p.a.) 173.12 98.95 261.05 133.28 442.06 248.82

CO2 reduction (% p.a.) 1.12 0.64 1.69 0.86 2.87 1.61

Public revenue change (kCHF) 0.64 23.97 52.95 9.40 63.10 31.25

CO2 levy (kCHF p.a.) 451.45 259.23 512.97 258.65 570.20 320.87

Subsidy paid (kCHF) 2,541.0 1,437.26 2,714.26 1,377.82 2,710.74 1,526.55

EV share (%) 2.867 2.396 2.941 2.37 2.937 2.432

Distributive e�ects
Subsidy share 1

st
inc. quartile (%) 17.89 16.34 18.12 16.25 18.12 16.47

Subsidy share 4
th

inc. quartile (%) 32.67 35.30 32.31 35.46 32.31 35.06

CO2 levy share 1
st

inc. quartile (%) 24.66 24.66 24.65 24.66 24.65 24.66

CO2 levy share 4
th

inc. quartile (%) 25.50 25.47 25.50 25.47 25.51 25.48

Notes: 1
st

quartile: income < 62.9 kCHF and 4
th

quartile: income >= 131.9 kCHF. Estimation based on sample

and speci�cation (5) of Table 3. Results of constrained maximisation of Equation 17 with constraints Equation 19

and Equation 20. Consumer surplus based on Equation 15. We assume a vehicle lifetime of 10 years and a discount

rate of 6% to calculate the NPV of public revenue changes. κ indicates if welfare function is income weighted (=1)

or not (=0).

Table 10 presents the results of the optimisation exercise. �e table distinguishes between

the di�erent driving elasticities and the two welfare goals of weighted (κ = 1) or unweighted

(κ = 0) changes in consumer surplus. Overall, a pa�ern of high subsidies and moderate fossil

53
We continue to assume a vehicle holding period of 10 years and a discount rate of 6%.
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fuel levies emerges. In the absence of equity concerns (κ = 0), the optimal subsidy is set

at or close to the maximum of CHF 10,000. In the presence of equity concerns (κ = 1) and

inelastic mileage the optimal subsidy is considerably lower, but also requires a lower fossil fuel

levy to achieve revenue neutrality. �e lowest increase in consumer surplus is recorded in a

scenario with equity concerns and inelastic driving with subsidies set at CHF 6,500 and levies

at CHF 0.04/l. Emission reductions of the new car �eet are also the lowest in this scenario

at approximately 99 tons per year or 0.6% relative to the baseline scenario. Although the

overall amount of subsidies paid is more than 1 million lower than in the scenario without

equity concerns, the share of payments to high income agents is actually higher with 35.3%

compared to 32.6% in the optimal outcome absent equity concerns.

Allowing for an elastic driving behaviour has two consequences. �e emission reductions

are substantially larger, as households not only buy more fuel-e�cient cars but also use them

less. However, in order to be able to �nance the high subsidies, also higher fossil fuel levies

are necessary. Absent equity concerns, the maximum subsidy of CHF 10,000 is paid out, but

requires a higher tax rate of CHF 0.08 in the low elasticity case and even CHF 0.09 in the higher

elasticity case indicating that the public revenue target becomes more stringent if households

adapt their driving behaviour.

In most scenarios, an EV share of around 2.4% to 2.9% is a�ained. Absent equity concerns

the environmental target is surpassed by almost 0.7 percentage points. �ese results illustrate

that a combination of high subsidies for BEVs and moderate additional levies on fossil fuels

can a�ain emission reductions without jeopardizing revenues required to �nance the road

infrastructure. �e emission reductions are a manifold of the ones achieved if solely a fossil

fuel levy or a subsidy is implemented. If the social planner caters to equity concerns, optimal

subsidies and fuel levies tend to be lower. Interestingly the relative share of subsidy payments

received by the lowest income group is higher absent equity concerns. �is illustrates that

up front vehicle prices represent a more substantial EV adoption barrier for lower income

households. Implementing a higher subsidy leads to relatively more additional adopters among

the lower income groups.

7 Conclusion
�e increasing CO2 emissions from the road transport sector and the still rather cautious

uptake of fuel-e�cient cars call for an in depth analysis of factors that may foster or hinder

their adoption. In comparison to previous research we have access to a perfect match between

households and their newly purchased vehicles. Using random coe�cient models and ac-

counting for possible price endogeneity, our �ndings reveal that households are considerably

more sensitive with respect to the purchase price than with respect to future variable costs.

Furthermore, we �nd substantial di�erences in price sensitivity between income groups with

lower income households featuring a considerably higher price elasticity. We �nd comparably

low own price elasticities of 1.9 for gasoline and 1.7 for EVs with again substantial income

heterogeneity. Similar to previous �ndings, we can con�rm that EV preferences tend to be

persistent, as EV buyers display higher cross-price elasticities relative to other EVs than to
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di�erent fuel types. Richest households are more than 2.5 times likelier to purchase an EV

than the poorest. Lower income households feature an almost 10 percentage points higher

likelihood to buy a gasoline driven car compared to households in the highest income bracket.

We simulate two counterfactual policy experiments based on the estimated demand model.

First, we vary an additional CO2 levy on fossil fuels up to CHF 0.25/l. �is scenario leads to

overall li�le substitution between di�erent fuel types and negligible emission reductions of the

new car �eet but secures the revenue for road infrastructure �nancing. For instance, a CHF

0.12/l levy reduces annual carbon emissions by only 7.7 tons. �e net welfare impact is positive

and the fuel tax is regressive. Second, we simulate the introduction of EV price subsidies up

to CHF 10,000. EV adoption probabilities signi�cantly increase leading to more pronounced

decreases in annual CO2 emissions of the new car �eet. Overall, the subsidy introduction has

negative welfare e�ects, as reductions in public revenue outweigh the positive impact derived

from consumer surplus increases and emission reductions.

�ese counterfactual exercises illustrate a number of challenges and important trade-o�s

that policy makers face. On the one hand, increasing adoption of EVs can be supported through

pricing carbon or through price subsidies. Higher EV adoption leads to lower CO2 emis-

sions. On the other hand, an increased adoption of fuel e�cient vehicles erodes public rev-

enue needed to �nance the road infrastructure. Furthermore, carbon tax instruments usually

exhibit regressive features, causing higher relative costs for lower income households. At the

same time, upfront subsidies are more likely paid to higher income households, due to their

higher initial adoption probability and higher propensity to act on the new vehicle market,

which exacerbates the redistributive concerns of environmental policies.

�us, we also compute the optimal policy mix from a social planner perspective maximis-

ing overall consumer surplus subject to achieving a pre-speci�ed EV share in new vehicle

registrations and raising enough revenue to �nance the road infrastructure. We also allow the

social planner to take equity concerns into account. We �nd that high subsidies paired with

relatively modest additional CO2 levies are the optimal policy mix to substantially increase

EV shares while generating su�cient revenue to �nance the road infrastructure in the absence

of equity concerns. �e optimal subsidy-levy combination is lower in the presence of equity

concerns illustrating that higher income households are more likely to be the main bene�-

ciaries of subsidy payments. At the same time, achieved emission reductions are lower when

equity is taken into consideration. Furthermore, emission reductions vary signi�cantly based

on assumed mileage elasticity. �is suggests that additional fossil fuel levies rather in�uence

driving behaviour than the choice of more fuel e�cient cars. Our analysis comes with a few

caveats. We focus on new car registrations only, thus ignoring policy impacts on second-hand

vehicle markets and distributional consequences for the poorest households that may be less

likely to purchase new vehicles frequently. Our estimates, nevertheless, indicate potential

hurdles and avenues to higher electric vehicle adoption and reductions in overall private road

transport carbon emissions. We take both redistribution and concerns about su�cient public

budget for road infrastructure into account on a micro level. We can thus illustrate a path

for policy makers to accommodate the trade-o� between environmental and equity concerns

without jeopardizing the �nancing of the road infrastructure.
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Appendix

Figure 5: Map of electric and hybrid cars
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Table 11: Control functions

(1) (2) (3) (4) (5)

lPrice lPrice lPrice lPrice lPrice

Equal �ne 0.000 ∗ ∗
(0.00)

Equal �ne (lag) 0.000 ∗ ∗
(0.00)

Fine formula 0.000 ∗ ∗∗
(0.00)

Fine deviation 0.000∗
(0.00)

Fine deviation (lag) 0.000
(0.00)

Engine power (KW) 0.004 ∗ ∗∗ 0.003 ∗ ∗∗ 0.003 ∗ ∗∗ 0.004 ∗ ∗∗ 0.003 ∗ ∗∗
(0.00) (0.00) (0.00) (0.00) (0.00)

Car height −0.468 −0.533 −0.452 0.115 −0.549
(0.50) (0.50) (0.49) (0.72) (0.50)

Car weight 0.000 0.000 0.000 0.000 0.000
(0.00) (0.00) (0.00) (0.00) (0.00)

Car size −0.118 −0.113 −0.109 −0.186∗ −0.134
(0.08) (0.08) (0.08) (0.09) (0.09)

Variable driving costs −0.023 ∗ ∗∗ −0.021 ∗ ∗ −0.045 ∗ ∗∗ −0.020 ∗ ∗ −0.022 ∗ ∗
(0.01) (0.01) (0.01) (0.01) (0.01)

Diesel engine 0.076 ∗ ∗∗ 0.077 ∗ ∗∗ 0.059 ∗ ∗∗ 0.078 ∗ ∗∗ 0.076 ∗ ∗∗
(0.02) (0.02) (0.02) (0.02) (0.02)

Electric engine 0.152 ∗ ∗ 0.160 ∗ ∗∗ 0.056 0.166 ∗ ∗∗ 0.163 ∗ ∗∗
(0.05) (0.05) (0.06) (0.05) (0.05)

Hybrid engine 0.217 ∗ ∗∗ 0.217 ∗ ∗∗ 0.181 ∗ ∗∗ 0.219 ∗ ∗∗ 0.224 ∗ ∗∗
(0.02) (0.02) (0.03) (0.03) (0.03)

BLP instruments Y es Y es Y es Y es Y es
Registration year Y es Y es Y es Y es Y es

Observations 1240 1240 1240 1122 1201
R2 .9038 .9039 .9042 .9031 .9024
AIC −786.3626 −787.1741 −790.5846 −718.8084 −741.8232
Brand country Y es Y es Y es Y es Y es
Car type Y es Y es Y es Y es Y es
Environmental category Y es Y es Y es Y es Y es

+p<0.1; * p<0.05; ** p<0.01; *** p<0.001

Coe�cients based on pricing Equation 11. Dependent variable is the natural logarithm of price. Estimated standard errors in parentheses.

Di�erent speci�cations based on di�erent calculations methods for the CO2 standard penalties for vehicle importers. For details of the

penalty calculation see Section 3. All �rst stage F-test statistics exceed 200.
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Table 12: Regression results - Sensitivity

(RCL-Cont II) (Sens (1)) (Sens (2)) (Sens (3)) (Sens (4)) (Sens (5)) (Sens (6))

Car price (log) −2.482 ∗ ∗∗ −2.481 ∗ ∗∗ −2.484 ∗ ∗∗ −2.499 ∗ ∗∗ −2.483 ∗ ∗∗ −2.412 ∗ ∗∗ −2.541 ∗ ∗∗
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)

Variable costs (log pv) −0.324 ∗ ∗∗ −0.283 ∗ ∗ −0.194∗ −0.430 ∗ ∗∗ −0.266 ∗ ∗∗ −0.352 ∗ ∗∗ −0.424 ∗ ∗∗
(0.10) (0.09) (0.09) (0.10) (0.09) (0.10) (0.10)

Engine power (KW) 0.008 ∗ ∗∗ 0.008 ∗ ∗∗ 0.008 ∗ ∗∗ 0.009 ∗ ∗∗ 0.008 ∗ ∗∗ 0.008 ∗ ∗∗ 0.009 ∗ ∗∗
Car height −1.445 ∗ ∗∗ −1.446 ∗ ∗∗ −1.447 ∗ ∗∗ −1.442 ∗ ∗∗ −1.446 ∗ ∗∗ −1.455 ∗ ∗∗ −1.470 ∗ ∗∗
Car weight 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗ 0.001 ∗ ∗∗
Hybrid engine −0.341∗ −0.346∗ −0.352∗ −0.323∗ −0.347∗ −0.376∗ −0.316∗
Electric engine −1.852 ∗ ∗∗ −1.846 ∗ ∗∗ −1.839 ∗ ∗∗ −1.869 ∗ ∗∗ −1.845 ∗ ∗∗ −1.823 ∗ ∗∗ −1.878 ∗ ∗∗
Diesel engine −0.575 ∗ ∗∗ −0.571 ∗ ∗∗ −0.560 ∗ ∗∗ −0.584 ∗ ∗∗ −0.568 ∗ ∗∗ −0.579 ∗ ∗∗ −0.591 ∗ ∗∗
Car size 0.076 ∗ ∗ 0.075 ∗ ∗ 0.073 ∗ ∗ 0.078 ∗ ∗∗ 0.074 ∗ ∗ 0.086 ∗ ∗∗ 0.087 ∗ ∗∗
Price heterogeneity
2

nd
inc. quartile 0.314 ∗ ∗∗ 0.314 ∗ ∗∗ 0.319 ∗ ∗∗ 0.323 ∗ ∗∗ 0.315 ∗ ∗∗ 0.253 ∗ ∗∗ 0.328 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
3

rd
inc. quartile 0.58 ∗ ∗∗ 0.581 ∗ ∗∗ 0.585 ∗ ∗∗ 0.588 ∗ ∗∗ 0.582 ∗ ∗∗ 0.528 ∗ ∗∗ 0.593 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
4

th
inc. quartile 1.259 ∗ ∗∗ 1.259 ∗ ∗∗ 1.264 ∗ ∗∗ 1.265 ∗ ∗∗ 1.260 ∗ ∗∗ 1.221 ∗ ∗∗ 1.273 ∗ ∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Size heterogeneity
2 Persons 0.052 ∗ ∗ 0.052 ∗ ∗ 0.051 ∗ ∗ 0.051 ∗ ∗ 0.051 ∗ ∗ 0.052 ∗ ∗ 0.051 ∗ ∗
3 Persons 0.186 ∗ ∗∗ 0.185 ∗ ∗∗ 0.186 ∗ ∗∗ 0.187 ∗ ∗∗ 0.186 ∗ ∗∗ 0.183 ∗ ∗∗ 0.187 ∗ ∗∗
4 Persons 0.380 ∗ ∗∗ 0.380 ∗ ∗∗ 0.380 ∗ ∗∗ 0.380 ∗ ∗∗ 0.380 ∗ ∗∗ 0.381 ∗ ∗∗ 0.382 ∗ ∗∗
5+ Persons 0.599 ∗ ∗∗ 0.599 ∗ ∗∗ 0.599 ∗ ∗∗ 0.601 ∗ ∗∗ 0.599 ∗ ∗∗ 0.590 ∗ ∗∗ 0.605 ∗ ∗∗
KW heterogeneity
40-60 years old −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗ −0.006 ∗ ∗∗
60+ years old −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗ −0.008 ∗ ∗∗
EV e�ects
EV agglomeration 0.143 0.145 0.148 0.138 0.146 0.152 0.135
EV rural −0.122 −0.119 −0.115 −0.130 −0.119 −0.111 −0.134
Distance to EV −0.016 −0.014 −0.009 −0.021 −0.012 −0.015 −0.022
Nb. Charging (5km) 0.008∗ 0.009 ∗ ∗ 0.010 ∗ ∗ 0.008∗ 0.009 ∗ ∗ 0.007∗ 0.008 ∗ ∗
EV - Homeowner 0.801 ∗ ∗∗ 0.805 ∗ ∗∗ 0.811 ∗ ∗∗ 0.790 ∗ ∗∗ 0.806 ∗ ∗∗ 0.814 ∗ ∗∗ 0.784 ∗ ∗∗
EV - Solar panel HH 2.40 ∗ ∗∗ 2.401 ∗ ∗∗ 2.402 ∗ ∗∗ 2.399 ∗ ∗∗ 2.401 ∗ ∗∗ 2.399 ∗ ∗∗ 2.292 ∗ ∗∗
EV - 2018 0.12 0.11 0.125 0.115 0.123 0.136 0.096
EV - 2019 1.306 ∗ ∗∗ 1.309 ∗ ∗∗ 1.313 ∗ ∗∗ 1.303 ∗ ∗∗ 1.310 ∗ ∗∗ 1.300 ∗ ∗∗ 1.312 ∗ ∗∗
Rand. Coe�cients
Car Price 0.000 0.001 0.001 0.000 0.000 0.000 0.000
Variable costs 0.006 0.003 0.004 0.007 0.006 0.001 0.007
Height 0.001 0.001 0.001 0.000 0.001 0.000 0.001
Hybrid 0.005 0.002 0.002 0.006 0.005 0.000 0.006
Diesel 0.007 0.002 0.002 0.007 0.007 0.001 0.008

Observations 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000 9, 816, 000
Nr. of cases 23, 074 23, 074 23, 074 23, 074 23, 074 23, 074 23, 074
Log Likelihood −133, 696.7 −133, 699.22 −133, 702.68 −133, 688.21 −133, 700.52 −133, 745.36 −133, 710.54
Car type fe Y es Y es Y es Y es Y es Y es Y es
Car brand (country) Y es Y es Y es Y es Y es Y es Y es
Control function Y es Y es Y es Y es Y es Y es Y es

* p<0.05; ** p<0.01; *** p<0.001

Coe�cients based on estimated mixed logit models. Estimated standard errors in parentheses for selected coe�cients, but mainly suppressed to save space in the table. Model (1) corresponds to the preferred

speci�cation in Column (5) of Table 3. Sens (1) to Sens (4) have di�erent calculations of the future variable costs: Sens(1) corresponds to a discount rate of 2%, Sens (2) to a shorter holding period of 6 years,

Sens (3) to a longer holding period of 25 years and Sens (4) to constant mileage consumption of households (12,000 km p.a. for non-diesel households and 16,000 km p.a. for diesel households). Sens (5) and

Sens (6) are robustness checks for the identi�cation strategy. Sens (5) corresponds to the lagged equally distributed carbon penalty as marginal cost shi�er in combination with the BLP style instruments

and Sens (6) employs just the BLP style instruments as cost shi�ers in the control function.
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Table 13: Prediction evaluation

Income Gas predicted (N) Gas actual (N) EV predicted (N) EV actual (N)

Overall 16,049 16,005 408 380

1
st

inc. quartile 4,241 4,450 57 52

2
nd

inc quartile 4,087 4,045 78 55

3
rd

inc quartile 3,963 3,853 110 68

4
th

inc quartile 3,759 3,648 163 205

Income Diesel predicted (N) Diesel actual (N) Hybrid predicted (N) Hybrid actual (N)

Overall 5,527 5,601 1,091 1,088

1
st

inc. quartile 1,249 1,080 223 187

2
nd

inc quartile 1,352 1,375 251 272

3
rd

inc quartile 1,419 1,559 276 289

4
th

inc quartile 1,506 1,587 340 340

Overall �t χ2
3 3.170

Gas by quartile χ2
3 16.6 EV by quartile χ2

3 44.6

Diesel by quartile χ2
3 43.54 HEV by quartile χ2

3 9.14

All income quartile: χ2
15 113.92

Notes: 1
st

quartile: income < 62.9 kCHF, 2
nd

quartile: 62.9>=income< 93.67 kCHF, 3
rd

quartile: 93.67>=
income<131.7 kCHF and 4

th
quartile: income >= 131.7 kCHF. Predictions based on sample and speci�cation (5)

of Table 3. �e critical values are 24.996, 7.815 and 3.841 for the χ2
15, χ2

3 and χ2
1 with a 95% signi�cance level and

30.578, 11.345 and 6.635 with a 99% signi�cance level respectively.
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Table 14: Implied substitution patterns and elasticities

(a) Mean Elasticities - 1
st

income quartile

Own Cross Gasoline Cross Diesel Cross Electric Cross Hybrid

Gasoline -2.376 .008 .007 .004 .006

Diesel -2.117 .003 .003 .002 .002

Electric -1.397 .001 .001 .002 .001

Hybrid -1.796 .002 .002 .001 .001

(b) Mean Elasticities - 2
nd

income quartile

Own Cross Gasoline Cross Diesel Cross Electric Cross Hybrid

Gasoline -2.087 .006 .006 .005 .006

Diesel -2.051 .003 .003 .002 .003

Electric -1.665 .001 .001 .003 .001

Hybrid -1.844 .002 .002 .001 .002

(c) Mean Elasticities - 3
rd

income quartile

Own Cross Gasoline Cross Diesel Cross Electric Cross Hybrid

Gasoline -1.862 .005 .005 .006 .005

Diesel -1.93 .003 .003 .003 .003

Electric -2.018 .002 .002 .006 .002

Hybrid -1.901 .002 .002 .002 .002

(d) Mean Elasticities - 4
th

income quartile

Own Cross Gasoline Cross Diesel Cross Electric Cross Hybrid

Gasoline -1.26 .003 .004 .005 .004

Diesel -1.373 .002 .002 .003 .002

Electric -1.874 .002 .002 .008 .002

Hybrid -1.668 .001 .001 .002 .002

Notes: Estimations based on sample and speci�cation (5) of Table 3. All elasticities

are mean own- and cross-price elasticities presented in percent. Results based on sim-

ulated price increase of 1%. Sample distinguished into 4 income groups. 1
st

quartile:

income< 62.9 kCHF, 2
nd

quartile: 62.9>=income< 93.67 kCHF, 3
rd

quartile: 93.67>=
income<131.7 kCHF and 4

th
quartile: income >= 131.7 kCHF.
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