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(Some) Motivation for Multi-Agent/Multi-Robot Control
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states



Course Outline

• Introduction to Multi-Agent Control: Motivating Examples. 

• Review on Lyapunov Stability Theory and Switched Systems Theory

• Control Barrier Functions (Lyapunov-like, Zeroing, Reciprocal)

• Introduction to Finite Time Stability (FTS) and Fixed Time Stability (FxTS) Theory

• Synthesis of Safety-Critical and Time-Critical Controllers

• Introduction to Graph Theory

• Graph-Theoretical Representations of Networked Systems

• Fundamental network properties: Connectivity, r-robustness, Strong r-robustness

• Networked Control and Estimation for Security 

• Synthesis of Secure Controllers with Safety Guarantees



 Nonlinear dynamical systems
 Non-negligible dynamics

 Under-actuation
 Fewer controls than d.o.f.
 Nonholonomic constraints

 Perturbations
 Environmental disturbances
 Model uncertainty
 Sensing and communication errors

 Constraints
 Physical obstacles
 Sensing/communication limitations
 Input saturations

 Scalability with the number of agents
 Computationally-efficient solutions

Challenges for Multi-Agent Systems in Safety-Critical Environments
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Lyapunov Theory 

In the IEEE Control Systems Magazine
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Review on Lyapunov Stability Theory
Stability of Equilibrium Point

Then, the equilibrium point  xe is

• Stable if

• Asymptotically stable if it is stable and

• Unstable if it is not stable.    

Exercise: Negate the definition of stable equilibrium 
to obtain the mathematical definition of the unstable 
equilibrium.



Review on Lyapunov Stability Theory
Stability Theorems

Theorem 4.1 [Khalil]

• The function 

• There exists a continuously differentiable function

 Then, the equilibrium point is stable. 

• Moreover, if i) and ii) hold, and iii) is replaced by 

 Then the equilibrium point is asymptotically stable.

Remark: A function                      that satisfies the conditions of the
Theorem is called a Lyapunov function. 



• The function 

• There exists a continuously differentiable function

 Then, the equilibrium point is globally asymptotically stable. 

Review on Lyapunov Stability Theory
Stability Theorems

Theorem 4.2 [Khalil]



• The function 

• There exists a continuously differentiable function

Let and suppose that no other solution can stay 
identically in S other than the trivial solution               .

 Then the equilibrium point is asymptotically stable.

Review on Lyapunov Stability Theory
Stability Theorems

Corollary 4.1 [Khalil]



• The function 

• There exists a continuously differentiable function

Let and suppose that no other solution can stay 
identically in S other than the trivial solution               .

 Then the equilibrium point is globally asymptotically stable.

Review on Lyapunov Stability Theory
Stability Theorems

Corollary 4.2 [Khalil]



Examples



Geometric Representation of Asymptotic Stability

 Tracking the negated gradient of a Lyapunov function V(x)
provides a convergent trajectory x(t) to the equilibrium x = 0.

 How can we construct functions that penalize trajectories 
from entering (or exiting) certain sets of the state space? 



Multi-Agent Coordination 

via 

Lyapunov-like Barrier Functions



 Agent Models: N unicycle robots

 Assumption

 1 Leader, N-1 Followers
 Leader is the agent of highest priority

 Assumption: Leader objectives

• Track a nominal motion plan
• Communicate goal points to followers
• Re-plan if necessary to guide the group
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Multi-Robot Coordination: Modeling and Assumptions 



 Leader-to-Follower broadcast model

 Leader only broadcasts information 

 Broadcast is reliable within a region of radius R0

 Imposes that inter-agent distance  dij < 2 R0

dij

 Followers’ sensing & communication model

 Followers sense agents within distance Rs

 Followers communicate with agents within Rc < Rs

Multi-Robot Coordination: Sensing and Communication Models



Multi-Robot Coordination: Sensing and Communication Models

• The leader agent:

• Reliably broadcasts information to 
agents j lying within distance dLj ≤ 2R0

• This is realized by forcing all agents 
to move in a circular connectivity 
region O of radius R0 centered at 
some point r0. 

• Each follower agent:

• Measures the position rj of agents j
lying within distance dij ≤ Rs

• Receives the orientation θj and linear 
velocity uj of every agent  j lying 
within distance dij ≤ Rc

• Seeks to avoid collisions with every 
agent lying within distance dij ≤ Rz



Multi-Robot Coordination: Sensing and Communication Models

• Each follower (continued):

• To encode that each follower aims to 
avoid only its local neighbors (i.e., the 
agents within its sensing zone), we define 
the function:

where the coefficients have been computed 
such that σij(·) is a C2 function w.r.t. dij



 Agent Models: N unicycle robots

 Assumptions

 Sensing and communication as described 
earlier

 Given: Leader objectives

• Track a nominal motion plan
• Communicate goal points to followers
• Re-plan if necessary to guide the group

 Find: [Followers’ objectives]

• Converge to, or track, the goal points
• Avoid collisions
• Stay close enough (for communication)
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Multi-Robot Coordination: Problem Formulation 



 Agent Models: N unicycle robots

 Assumptions

 Sensing and communication as described 
earlier

 Approach

• Encode the followers’ objectives via 
Lyapunov-like Barrier Functions 

• Design Lyapunov-based controllers

• Lyapunov-like functions penalize the 
violation of the objectives

• Similar in concept to potential functions 
(robotics), penalty functions (optimization).
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Multi-Robot Coordination: Technical Approach 



 Set-theoretic representation of objectives
 Collision avoidance: 

o Constrained set  Ki

 Convergence (close) to destination: 
o Goal set  Gi in Ki

 Problem statement
1. Construct a function  Vi (x) to: 

 Encode the sets  Ki,  Gi

2. Control so that system trajectories xi(t) :
 Always remain in  Ki

 Converge to  Gi

Multi-Robot Coordination: Problem Formulation Revisited

Abstract representation of the collision-free set 
Ki and the goal set Gi for each agent i. The 
agent trajectories should converge to Gi while 
always remaining in Ki



 Logarithmic Barrier Function: bj(x)  =  - ln (cj(x)),     where cj(x) ≥ 0 a state-dependent constraint

 Recentered Barrier Function*:

o Shapes a barrier function  bj (x) so that

o It tends to infinity on the boundary of the constrained set
o It vanishes at a desired point xd

o Encodes that trajectories  x(t) shall lie in the constrained set and converge to the set point xd

( ) ( ) ( ) ( ) ( ) j j j jr b b b= − −∇ −d d dx x x x x x

bj(x) rj(x)

* A. G. Wills and W. P. Heath, “A recentred barrier for constrained receding horizon control” (ACC 2002)

Definition of Lyapunov-like Barrier Functions



Encoding Collision Avoidance and Convergence to Destination

 Collision avoidance of agent i w.r.t. agent  j

 Barrier Function :

o Tends to  +∝ as  cij → 0

 Recentered Barrier Function w.r.t. Destination:

o Vanishes at the destination rid

 Lyapunov-like R. B. F.  w.r.t.  agent  j

 w.r.t. all agents:

( ) 22 2 2· 0ij ij s i j sc dd d− == − − ≥r r

( ) ( )( ), ln ,ij i j ij i jb c= −r r r r

( ) ( ) ( ) ( ) ( )· , , ,  ij ij i j ij id j ij id j i idr b b b= − −∇ −r r r r r r r r


( )col , ,i ij i j id
j i

V V
≠

=∑ r r r

( ) ( )( )2
, ,·ij ij ij i j idV rσ= r r r

dij

rid

i

j

Construction of Lyapunov-like Barrier Functions



 Proximity constraint

 Barrier Function:

• Tends to  +∝ as  ci0 → 0

 Recentered Barrier Function w.r.t. Destination:

• Vanishes at the destination rid

 Lyapunov-like R. B. F. 

( ) ( ) ( )2 2 22 2
0 0 0 0 0 0· 0i i i ic R R x x y y= − − − − ≥− − =r r

( ) ( )( )0 0 0 0lni i i ib c, ,= −r rr r

( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0  ·i i i i id i id i idr b ,b b, ,= − −∇ −r rr rrr r r

( ) ( )( )pro
0 0

2
0 0, ,, ,i i i id i i idV V r= =r r r r r r

rid

i

Encoding Proximity and Convergence to Destination

Construction of Lyapunov-like Barrier Functions



 Agent  i has j neighbors
 j Lyapunov-like barrier functions Vij

 Lyapunov-like barrier function per agent i 
 Scaled approximation of the maximum function

 The scaling is so that  Vi ϵ [0, 1]

 Encodes penalization of constraint violation 
and convergence to goal state 

 Gives rise to gradient-based controllers
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Construction of Lyapunov-like Barrier Functions



Distributed Multi-Robot Coordination 
Control Design and Coordination Protocol

Theorem Each agent  j converges almost surely to its goal destination, avoids 
collisions and remains in the connectivity region under the control law:
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where:   is the set of neighbors of agent  ,j j
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D. P., D. M. Stipanovic and P. G. Voulgaris "Distributed coordination control for multi-robot networks using Lyapunov-like barrier functions", IEEE Transactions 
on Automatic Control

http://www-personal.umich.edu/%7Edpanagou/assets/documents/TAC_Final_single_column.pdf


 We control the speed of agent j w.r.t. an agent k
out of the set of neighbor agents that satisfy
Jk < 0. What is the justification for this choice?

 Recall the collision avoidance constraint:

 From Nagumo’s Theorem, we have:

 We then can define “semi-cooperative” interactions as: 
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Distributed Multi-Robot Coordination 
Control Design and Coordination Protocol



 How do we choose the “worst-case” agent k?

 Recall collision avoidance constraint:

 From Nagumo’s Theorem, we have:

 And we impose that the one who jeopardizes safety (J < 0) needs to resolve the conflict

 Hence the developed controller is “semi-cooperative” in the sense that each agent j 
adjusts its term J to ensure that J+K>0.

 As a result: 
 Not all agents participate in conflict resolution
 Not all agents need to deviate from their nominal plan
 Computational demands are reduced
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Distributed Multi-Robot Coordination 
Control Design and Coordination Protocol



1) Time-scale decomposition into position and orientation subsystems

• Position trajectories  ri (t) are the reduced system (“slow” time scale) 
• Orientation trajectories  θi (t) are the boundary-layer system (“fast” time scale)

2) Nagumo’s theorem for collision avoidance and connectivity maintenance

• System trajectories  ri(t)  starting in the set  Ki always remain in  Ki

• The constrained set  Ki is rendered a positively invariant set

3) Input-to-State Stability for (almost global) convergence to Gi

• Perturbation signal uk vanishes except for trajectories that may get stuck at critical points

• ∇Vi = 0  ⇒ ∑∇rij = 0 , i.e. at least Nc critical points away from the goal destination 

• At best: Tune parameter δ so that the critical points are saddles (unstable equilibria)

( )2
1 1 2tanh max{ }i i i id kk i

V k uµν µ
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( ),  0, ij i j i i
d c
dt

≥ ∀ ∈∂r r r 

Distributed Multi-Robot Coordination 
Guarantees for objectives’ accomplishment – Proof Sketch



Control Barrier Functions



Safety verification via Barrier Certificates

• Safety verification via Barrier Certificates (Prajna et. al., HSCC 2004)

Theorem:
• Suppose there exists a continuously differentiable function                      such that 

 Then, there exists no trajectory of the system contained in       that starts from an 
initial state in        and reaches another state in        (safety is guaranteed). 



Constructive safety via Control Barrier Functions

• Constructive safety via Control Barrier Functions (Wieland and Allgöwer, IFAC 2007)

Definition:

A continuously differentiable function satisfying

is called a Control Barrier Function (CBF). 



Constructive safety via Control Barrier Functions

• Constructive safety via Control Barrier Functions (Wieland and Allgöwer, IFAC 2007)

Theorem:

and a CBF B(x) for the system.

Define

where  

Then:  the set of initial states can be taken as 
the control law  u = k0(x)  is continuous in  x ,
and ensures safety for the closed-loop system 



Set Invariance via Reciprocal Barrier Functions

• Definition of Reciprocal Barrier Functions (Ames et al, TAC 2017)

Definition: Let                      where f is locally Lipschitz, and a closet set defined as

where                        is continuously differentiable.

A continuously differentiable function is called a Reciprocal
Barrier Function (RBF) for the set C if there exist class K functions 
such that for all 



Set Invariance via Reciprocal Barrier Functions

• Set Invariance using Reciprocal Barrier Functions (Ames et al, TAC 2017)

Theorem: Given the set defined as

where                         is continuously differentiable, if there exists a Reciprocal 
Barrier Function                             , then             is forward invariant.   



Set Invariance via Zeroing Barrier Functions

• Definition of Zeroing Barrier Functions (Ames et al, TAC 2017)

Definition: Let                      where f is locally Lipschitz, and a closet set defined as

where                        is continuously differentiable. 

The function is called a Zeroing Barrier Function (ZBF) for the set C
if there exists an extended class K function  
such that for all 

Proposition: If  h  is a ZBF on the set D,  then the set C is forward invariant.  



Reciprocal Control Barrier Functions

• Reciprocal Control Barrier Functions (Ames et al, TAC 2017)

Definition: Let , where 

A continuously differentiable function                             is called a Reciprocal
Control Barrier Function (RCBF) for the set C if there exist class K functions 

such that for all

Let the set
Then any locally Lipschitz                                such that
will render Int(C) a forward invariant set.      



Zeroing Control Barrier Functions

• Zeroing Control Barrier Functions (Ames et al, TAC 2017)

Definition: Let , where 

A continuously differentiable function                       is called a Zeroing
Control Barrier Function (ZCBF) for the set defined as

if there exists an extended class K function 
such that for all



Combining Performance (CLFs) and Safety (CBFs) via QPs

• Let the following CBL-CBF QP

s.t. 

• Theorem 3 [Ames et al, TAC 2017]: Suppose that the following functions 
are all locally Lipschitz: the vector fields f and g in the control system (21), 
the gradients of the RCBF B and CLF V , as well as the cost function terms 
H(x) and F(x) in (CLF-CBF QP). Suppose furthermore that the relative 
degree one condition, LgB(x) = 0 for all x ∈ Int(C), holds. Then the solution, 
u∗(x), of (CLF-CBF QP) is locally Lipschitz continuous for x ∈ Int(C). 
Moreover, a closed-form expression can be given for u∗(x).



o Safety (invariance)
o Trajectories must always remain 

in a safe set

o Performance (attractivity) 
– Trajectories must eventually 

reach desired sets, within 
given/specified time intervals

o Constraints
– Input, state, dynamics

Question: How to synthesize CBFs for spatiotemporal specifications?

Approach: Quadratic Program (QP) that encodes safety and FTS/FxTS

Year 2: Problem Overview

S1

S2

S3

S4 S5

S6

S = { x | h (x) ≤ 0}

Si = { x | hi (x) ≤ 0}

S

Spatiotemporal (Safety- and Time-Critical) Control Synthesis via QPs



• Finite-time (FTS)
– Time of convergence depends 

upon initial condition
• Fixed-time (FxTS)

– Time of convergence independent 
of initial condition, but can not be 
predefined by the user

• Prescribed-time (PTS)
– Time of convergence can be 

predefined by the user

Finite/Fixed/Prescribed-Time Barriers

S1

S2

S3

S4 S5

S6

S = { x | h (x) ≤ 0}

Si = { x | hi (x) ≤ 0}

S

Question: How to synthesize CBFs for spatiotemporal specifications?

Approach: Quadratic Program (QP) that encodes safety and FTS/FxTS

Spatiotemporal (Safety- and Time-Critical) Control Synthesis via QPs



[2] (Polyakov et al, 2012)

[2]

Fixed-time Stability (FxTS)

Finite-time Stability (FTS)

[1] (Bhat et al, 2000)

Finite-Time Stability (FTS) and Fixed-Time Stability (FxTS)

Prescribed-time Stability (PTS)

Let
where  f is continuous,  f (0) = 0



System dynamics:

PTS with Control Barrier Functions

Problem 1: Statement

S1

S2

S3

S4 S5

S6

S = { x | h (x) ≤ 0}

Si = { x | hi (x) ≤ 0}

S

Control Synthesis for Spatiotemporal Specifications



K. Garg, D. Panagou. "Control-Lyapunov and Control-Barrier Functions based Quadratic Program for Spatio-temporal 
Specifications.“ 2019 IEEE Conference on Decision and Control, December 11-13, 2019, Nice, France

Theorem

Control Synthesis for Spatiotemporal Specifications



PTS with Control Barrier Functions
Theorem

Note: QPs can be solved very efficiently, can be used for real-time implementation

45
K. Garg, E. Arabi, D. Panagou. “Prescribed-time control under spatiotemporal and input constraints: A QP based 
approach,” submitted to IEEE TAC, under review.

QP for Min-Norm Control and Spatiotemporal Specifications



Example



Example – Results 
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