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Abstract Inteins are internal protein elements that self-
excise from their host protein and catalyze ligation of the
flanking sequences (exteins) with a peptide bond. They are
found in organisms in all three domains of life, and in viral
proteins. Intein excision is a posttranslational process that
does not require auxiliary enzymes or cofactors. This self-
excision process is called protein splicing, by analogy to the
splicing of RNA introns from pre-mRNA. Protein splicing
involves only four intramolecular reactions, and a small
number of key catalytic residues in the intein and exteins.
Protein-splicing can also occur in trans. In this case, the
intein is separated into N- and C-terminal domains, which
are synthesized as separate components, each joined to an
extein. The intein domains reassemble and link the joined
exteins into a single functional protein. Understanding the
cis- and trans-protein splicing mechanisms led to the
development of intein-mediated protein-engineering appli-
cations, such as protein purification, ligation, cyclization,
and selenoprotein production. This review summarizes the
catalytic activities and structures of inteins, and focuses on
the advantages of some recent intein applications in
molecular biology and biotechnology.
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Introduction

Inteins were identified 20 years ago, when two groups
reported an in-frame insertion in the VMA1 gene, which
encodes a vacuolar membrane H+-ATPase of the yeast
Saccharomyces cerevisiae (Hirata et al. 1990; Kane et al.
1990). The nucleotide sequence of the VMA1 gene predicts a
polypeptide of 1,071 amino acids with a calculated molecular
mass of 118 kDa, but the size of the VMA1 protein, as
estimated from sodium dodecyl sulfate-polyacrylamide
(SDS-PAGE) gels, is only 67 kDa. Furthermore, the N- and
C-terminal regions of the deduced sequence were shown to
be very similar to the catalytic subunits of vacuolar
membrane H+-ATPases of other organisms, while an internal
region of 454 amino acid residues displayed no detectable
sequence similarity to any known ATPase subunits. Instead,
the internal sequence exhibits similarity to an S. cerevisiae
endonuclease encoded by the HO gene. The in-frame
insertion was found to be present in the mRNA, translated
with the Vma1 protein, and excised posttranslationally (Kane
et al. 1990). By analogy to pre-mRNA introns and exons, the
segments are called intein for internal protein sequence, and
extein for external protein sequence, with upstream exteins
termed N-exteins and downstream exteins called C-exteins.
The post-translational process that excises the internal region
from the precursor protein, with subsequent ligation of the N-
and C-exteins, is termed protein splicing (Perler et al. 1994).
The products of the protein splicing process are two stable
proteins, the mature protein and the intein (Fig. 1). According
to accepted nomenclature, intein names include a genus and
species designation, abbreviated with three letters, and a host
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gene designation. For example, the S. cerevisiae VMA1
intein is called Sce VMA1. Multiple inteins from one protein
are numbered with Arabic numerals (Perler 2002). Large-
scale genome sequencing approaches have identified inteins
in all three domains of life, as well as in phages and viruses.
By the end of 2009, the intein registry InBase at http://www.
neb.com/neb/inteins.html (Perler 2002) listed more than 450
inteins in the genomes of Eubacteria, Archaea, and Eukarya.
In prokaryotes, intein sequences often reside within proteins
involved in DNA replication, repair, or transcription, such as
DNA and RNA polymerases, RecA, helicases, or gyrases,
and in the cell division control protein CDC21. Others are
located in metabolic enzymes including ribonucleoside
triphosphate reductase, and UDP-glucose dehydrogenase
(Perler 2002; Starokadomskyy 2007). Eukaryotic inteins are
encoded in the nuclear genes of fungi, and in the nuclear or
plastid genes of some unicellular algae. In fungi, intein
sequences are found in homologs of the S. cerevisiae VMA1
gene or in the prp8 genes, but they are also found in genes
encoding glutamate synthases, chitin synthases, threonyl-
tRNA synthetases, and subunits of DNA-directed RNA
polymerases (Elleuche and Pöggeler 2009; Poulter et al.
2007). In green and cryptophyte algae, inteins reside within
the chloroplast ClpP protease, the RNA polymerase beta
subunit, the DnaB helicase and the nuclear RNA polymerase
II (Douglas and Penny 1999; Luo and Hall 2007; Turmel
et al. 2008; Wang and Liu 1997).

Most genes encode only one intein, and inteins found at
the same insertion site in homologous extein genes are
considered intein alleles (Perler et al. 1997). In rare cases,

genes encode more than one intein, such as the ribonucleotide
reductase gene of the oceanic N2-fixing cyanobacterium
Trichodesmium erythraeumsome, which encodes four inteins
(Liu et al. 2003).

Structure of mini-inteins and large inteins

Inteins are classified into two groups, large and minimal
(mini) (Liu 2000). Large inteins contain a homing endonu-
clease domain that is absent in mini-inteins. Homing
endonucleases are site-specific, double-strand DNA endonu-
cleases that promote the lateral transfer between genomes of
their own coding region with flanking sequences, in a
recombination-dependent process known as “homing.”
Usually, homing endonucleases are encoded by an open
reading frame within an intron or intein (Belfort et al. 2005;
Chevalier and Stoddard 2001). Large inteins are bi-
functional proteins, with a protein splicing domain, and a
central endonuclease domain. Splicing-efficient mini-inteins
have been engineered from large inteins by deleting the
central endonuclease domain, demonstrating that the endo-
nuclease domain is not involved in protein splicing (Chong
and Xu 1997; Derbyshire et al. 1997; Shingledecker et al.
1998). The splicing domain is split by the endonuclease
domain into N- and C-terminal subdomains, which contain
conserved blocks of amino acids, with blocks A, N2, B, and
N4 in the N-terminal subdomain, and blocks G and F in the
C-terminal subdomain (Perler et al. 1997; Pietrokovski 1994,
1998) These domains can also be identified in mini-inteins
(Fig. 2). The three-dimensional structures of naturally
occurring mini-inteins and engineered mini-inteins reveal
that the N- and C-terminal splicing domains form a common
horseshoe-like 12-β-strand scaffold termed the Hedgehog/
Intein (HINT) module (Ding et al. 2003; Hall et al. 1997;
Klabunde et al. 1998; Koonin 1995; Perler 1998; Sun et al.
2005; Van Roey et al. 2007).

All known inteins share a low degree of sequence
similarity, with conserved residues only at the N- and C-
termini. Most inteins begin with Ser or Cys and end in His-
Asn, or in His-Gln. The first amino acid of the C-extein is an
invariant Ser, Thr, or Cys, but the residue preceding the intein
at the N-extein is not conserved (Perler 2002). However,
residues proximal to the intein-splicing junction at both the
N- and C-terminal exteins were recently found to accelerate
or attenuate protein splicing (Amitai et al. 2009).

Cis- and trans-splicing mechanisms of inteins

Protein splicing is a rapid process of four nucleophilic
attacks, mediated by three of the four conserved splice
junction residues. In step 1, the splicing process begins with
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Fig. 1 Protein splicing. The intein coding sequence is transcribed into
mRNA and translated to a nonfunctional protein precursor, which then
undergoes a self-catalyzed rearrangement in which the intein is
excised and the exteins are joined to yield the mature protein
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an N−O shift if the first intein residue is Ser, or N−S acyl
shift, if the first intein residue is Cys. This forms a (thio)
ester bond at the N-extein/intein junction. In step 2, the
(thio)ester bond is attacked by the OH- or SH-group of the
first residue in the C-extein (Cys, Ser, or Thr). This leads to
a transesterification, which transfers the N-extein to the
side-chain of the first residue of the C-extein. In step 3, the
cyclization of the conserved Asn residue at the C-terminus
of the intein releases the intein and links the exteins by a
(thio)ester bond. Finally, step 4 is a rearrangement of the
(thio)ester bond to a peptide bond by a spontaneous S−N or
O−N acyl shift (Fig. 3). Details of the chemical process
involved in protein splicing of standard (class I inteins)
have been comprehensively described and reviewed
(Gogarten et al. 2002; Liu 2000; Noren et al. 2000; Paulus
2000; Saleh and Perler 2006; Starokadomskyy 2007; Tori
et al. 2010). In addition to the standard protein splicing
pathway, new classes of inteins performing an alternative
splicing process have been described recently. These inteins
lack the N-terminal Ser or Cys residue and are classified as
class 2 and class 3 inteins (Southworth et al. 2000; Tori
et al. 2010). Both cannot perform the acyl shift that initiates
the splicing reaction in class 1 inteins. In class 2 inteins,
present in archaeal KlbA proteins, the first residue of the
C-extein (nucleophile Cys) directly attacks the amide bond
at the N-terminal splice site junction to form a standard
branched intermediate (Johnson et al. 2007; Southworth
et al. 2000). In the class 3 intein of the mycobacteriophage
Bethlehem DnaB protein, a Cys residue of the conserved
block F attacks the peptide bond at the N-terminal splice
site junction, forming a branched intermediate with a labile
thioester linkage. The N-extein is then transferred by a
transesterification to the first residue of the C-extein (Thr),

which results in the formation of a standard branched
intermediate as in class 1 inteins (Tori et al. 2010).

Site-specific cleavage of the intein−extein junctions in
class 1 inteins can be achieved by mutation of the
conserved intein residues. Mutation of the Asn residue at
the intein C-terminus abolishes steps 3 and 4 of the splicing
reaction and results in N-terminal cleavage. Since step 1
still occurs, the (thio)ester bond can spontaneously hydro-
lyze, separating the N-extein from the intein/C-extein
portion. Mutation of the conserved first residue of the
intein abolishes steps 1, 2, and 4 of the splicing reaction
and leads to C-terminal cleavage. In such a mutated intein,
Asn cyclization (step 3) still occurs, to separate the C-extein
from the N-extein/intein portion. Controllable cleavage of
modified cis-splicing inteins has been adapted for a wide
range of useful applications in molecular biology and
biotechnology (see below).

Interestingly, inteins can also exist as two fragments
encoded by two separately transcribed and translated genes.
These so-called split inteins self-associate and catalyze
protein-splicing activity in trans. The first native split intein
capable of protein trans-splicing was identified in the
cyanobacterium Synechocystis sp. strain PCC6803. The
N- and C-terminal halves of the Synechocystis catalytic
subunit alpha of DNA polymerase III DnaE are encoded by
the dnaE-n and dnaE-c genes, which are more than 700 kb
apart (Wu et al. 1998).

Split inteins have been identified in diverse cyanobacteria
and archaea (Caspi et al. 2003; Choi et al. 2006; Dassa et al.
2007; Liu and Yang 2003; Wu et al. 1998; Zettler et al.
2009), but have not been found in eukaryotes thus far.
Recently, a bioinformatic analysis of environmental meta-
genomic data revealed 26 different loci with a novel genomic
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Fig. 2 Structure of large and mini-inteins. Conserved elements in a
large intein and mini-intein are indicated. The white and grey areas A,
N2, B, N4, C, D, E, H, F, and G are conserved intein motifs identified
by Pietrokovski (1994, 1998) and Perler et al. (1994). The exteins are

illustrated in black and the intein sequence in blue. The site of
insertion of the homing endonuclease in large inteins is indicated by
the dark vertical line. Conserved amino acid residues of the intein and
the C-extein are indicated below
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arrangement. At each locus, a conserved enzyme coding
region is interrupted by a split intein, with a free-standing
endonuclease gene inserted between the sections coding for
intein subdomains. This fractured gene organization appears
to be present mainly in phages (Dassa et al. 2009).

Trans-splicing of inteins can also be artificially engi-
neered from cis-splicing bacterial and fungal inteins
(Elleuche and Pöggeler 2007; Mills et al. 1998; Mootz
and Muir 2002; Southworth et al. 1998). This is achieved
mainly by separating naturally or artificially split inteins
between motifs B and F, resulting in N-terminal intein
fragments (IN) of 70−110 amino acids, and C-terminal
intein fragments (IC) of ∼40 amino acids. Inteins can also
be artificially split at other sites. The Ssp DnaB mini-intein
can be split at different loop regions between β-strands, yet
still maintain the ability to splice in trans. Even an intein
split into three pieces can function in protein trans-splicing,
even if one piece is only an 11-amino acid IN (Sun et al.

2004). Naturally split inteins and engineered split inteins
can be used in various applications. In the following
sections, we will briefly summarize some of the many uses
of inteins as molecular biology and biotechnology tools.

Applications of inteins in biotechnology

Inteins are valuable tools in a wide range of biotechnological
applications. The ligation of peptides and proteins using the
natural splicing activity of inteins is known as intein-mediated
protein ligation (IPL), or expressed protein ligation (EPL), and
is already well established in molecular biology and biotech-
nology methods (Evans et al. 1999; Muir et al. 1998;
Severinov and Muir 1998). Furthermore, inteins have been
used for segmental labeling of proteins for NMR analysis,
cyclization of proteins, controlled expression of toxic proteins,
conjugation of quantum dots to proteins, and incorporation of
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non-canonical amino acids (Arnold 2009; Charalambous
et al. 2009; Oeemig et al. 2009; Seyedsayamdost et al.
2007; Züger and Iwai 2005). In basic research studies,
they have been used to monitor in vivo protein−protein
interactions, or specifically translocate proteins into
cellular organelles (Chong and Xu 2005; Ozawa and
Umezawa 2005; Ozawa et al. 2003, 2005). Most of the
inteins used in biotechnology are derived from prokaryotic
organisms, or are engineered variants of the S. cerevisiae
VMA1-intein.

Intein-mediated protein purification

Isolation of large amounts of highly purified proteins is a
major task in biotechnology. The development of a wide range
of affinity tags has greatly simplified the separation of
recombinant proteins from crude extracts. Conventional
affinity tags are fused as a tag sequence at the DNA level.
Originally developed to isolate proteins on affinity columns or
beads, and to detect proteins by Western blot, the fusion of
different tag proteins and peptides can also improve the
solubility and folding of the target protein (Terpe 2003;
Waugh 2005). Furthermore, N-terminal tags have the
advantage of enabling the efficient translation of a recombi-
nant protein, by providing a reliable ribosome initiation site.
A drawback of this approach is that the affinity tag often
needs to be cleaved off the fusion protein by proteolysis with
a site-specific endoprotease. For industrial applications, the
removal of the affinity tag by endoproteases is the most
costly step in protein production, and can interfere with the
biological activity of the purified component (Wood et al.
2005). Therefore, intein-mediated bioseparation has become
an excellent vehicle for affinity-tag-based protein purification
techniques, and is an alternative to conventional cleavage by
site-specific endoproteases.

The potential of intein-facilitated purification for a
variety of proteins has been described in dozens of reports
(Bastings et al. 2008; Chong et al. 1997; Gillies et al. 2008;
Liu et al. 2008; Sharma et al. 2006; Singleton et al. 2002;
Srinivasa Babu et al. 2009; Zhao et al. 2008).

Intein-mediated protein purification began in 1997 as a
new field in biotechnology, when the Sce VMA1 intein was
engineered to be used in purification of several prokaryotic
and eukaryotic proteins (Chong et al. 1997). In principle,
the exteins of an engineered intein are exchanged between
the purification tag and the target protein. As described
above, complete splicing of the intein can be inhibited by
mutation of conserved residues at the splice junction fused
to the affinity tag. This results in site-specific cleavage only
at the intein−target protein border.

The immature precursor protein is usually produced in a
heterologous host, and protein crude extracts are loaded on

an affinity column. After immobilization of the engineered
protein and washing, the N- or C-terminal cleavage reaction
is induced by either a strong nucleophile such as dithio-
threitol (DTT) for the N-terminal cleavage, or a pH or
temperature shift for the C-terminal cleavage (Chong et al.
1997; Mathys et al. 1999; Wood et al. 1999).

The intein-mediated purification with affinity chitin-
binding tag (IMPACT) system is commercially available
from New England Biolabs. This system uses a modified
Sce VMA1 intein, fused at its C-terminus to the chitin-
binding domain (CBD), and at its N-terminus to the protein
of interest (Chong et al. 1997) (Fig. 4). Mutation of the
C-terminal reactive Asn to Ala in the intein blocks the
splicing reaction after the N−S acyl shift, and prevents
C-terminal cleavage. The fusion protein accumulates as an
unspliced precursor, and is purified by absorption to a
chitin resin. After the addition of thiols, which serve as
reactants for the transesterfication reaction, N-terminal
cleavage is initiated. This leads to release of the target
protein with an activated thioester at the C-terminus, while the
intein-CBD remains bound to the column. A new version of
the IMPACT system (IMPACT CN) allows the fusion of a
self-cleavable intein tag to either the C-terminus or the N-
terminus of a target protein. In contrast to the first generation
IMPACT-vectors, pTWIN-vectors (New England Biolabs)
contain two inteins that can be used separately for protein
purification, either by fusing the protein of interest to the C-
terminus of one intein, or to the N-terminus of a second intein.
The inteins can also be used in combination to purify a single
protein by independent regulation of the cleavage reactions of
intein 1 and intein 2. This method has been demonstrated
using green fluorescent protein (Zhao et al. 2008).
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protein intein
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Fig. 4 Intein-mediated protein purification. Expression and purifica-
tion of a protein fused to the N-terminus of a mutated intein variant.
The intein is further fused to a chitin binding domain (CBD) at its C-
terminus. Purification of the fusion construct is accomplished by the
utilization of a chitin column. The intein is mutated at the C-terminus
(Asnn), so that cleavage only occurs at the N-terminus, which results
in the release of the target protein from the column while the intein-
CBD tag remains bound to chitin
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Intein-mediated protein purification using
non-chromatographic tags

An alternative to classical tagging systems that does not
require expensive affinity resins is intein-mediated protein
purification with new tags developed for non-chromatographic
purification techniques.

One example is the combination of elastin-like polypep-
tides (ELP) and self-splicing inteins (Wu et al. 2006). Intein-
independent protein purification methods using ELP were
developed more than 10 years ago (Meyer and Chilkoti
1999). Under high-salt conditions at about 30 °C, ELP
reversibly self-associates and forms insoluble aggregates that
can be precipitated by centrifugation (Wu et al. 2006). A
target protein fused to an intein−ELP fusion can be separated
from a crude protein extract by repeated aggregation and
centrifugation cycles. Finally, inducible intein cleavage
enables recovery of the target protein from the intein−ELP
moiety, leading to a highly pure elution fraction (Wu et al.
2006). The aggregation characteristics of ELP can be
controlled by temperature, concentration, type of salt, or
polypeptide length (Floss et al. 2009; Fong et al. 2009). The
intein−ELP approach was recently demonstrated to be a low-
cost, convenient, and potential way of generating small
antimicrobial peptides (Shen et al. 2010).

Another non-chromatographic purification approach
takes advantage of a multiple phasin tag, produced by
bacterial species like Cupriavidus necator (formerly known
as Alcaligenes eutrophus and Ralstonia eutropha), that
specifically binds to polyhydroxybutyrate granules (PHB)
in Escherichia coli (Banki et al. 2005; Wieczorek et al.
1995). Polyhydroxyalkanoic acids are naturally produced as
a wide range of storage polymers, by several bacterial
species. Their biosynthesis genes can be heterologously
expressed in E. coli, producing polymeric granules that can
be used in place of classical affinity resins for protein
purification (Choi et al. 1998). The co-production in E. coli
of phasin-tagged proteins and PHB granules enables the easy
separation of the tagged target protein from crude extract, after
cell lysis and centrifugation. In an impressive advancement of
this system, inducing cleavage of an engineered intein releases
the untagged target protein from an intein−phasin moiety, and
from the bound PHB granules (Banki et al. 2005; Georgiou
and Jeong 2005). In a system invented by Wood and
coworkers, a pH- or temperature-inducible Mtu RecA intein
from Mycobacterium tuberculosis is used for phasin tag-
mediated protein purification in E. coli, and the authors note
that the system is easily applicable to a wide range of host
systems (Banki et al. 2005; Gillies et al. 2009).

The ELP and PHB systems are both highly flexible, and
function efficiently with a variety of proteins, under many
different conditions (Banki et al. 2005; Ge et al. 2005; Wu
et al. 2006). Furthermore, both systems have been adapted

for the Gateway cloning system (Invitrogen), for rapid and
easy characterization of a gene product using different
vector systems (Gillies et al. 2008). The Gateway system
generates a single Entry clone, from which the gene of
interest is introduced directly, by simple recombination,
into a number of different vectors. In addition to intein-
mediated ELP and phasin fusion-protein purification, the
Gateway system has been adapted for intein-mediated
protein purification using classical affinity tags like maltose
binding protein and CBD (Gillies et al. 2008).

Intein-mediated protein purification in large-scale
processes

The use of intein-mediated procedures in bioseparation is well
established at the laboratory scale and is attracting increasing
interest in biotechnology. The potential of these protein
purification techniques for large-scale protein production is
clear, but intein-mediated protein purification systems under
industrial, scaled-up conditions must be developed. The
simplicity of intein-mediated protein purification, with its
few purification steps and low requirement for agents,
suggests that scale-up approaches have the potential to be
economical in the future. Since intein-mediated cleavage does
not require further downstream processing, it reduces the costs
from expensive protease enzymes. Wood and co-workers
designed a hypothetical scale-up method based on the DTT-
inducible IMPACT system, and identified the Tris−HCl
reaction buffer and the thiol compound to be the most costly
ingredients in this process. They suggested exchanging the
buffer system with a cheaper phosphate buffer. Cleavage
induction by chemical compounds could be circumvented
using inteins that are induced by physical changes (Wood et al.
2005). Furthermore, the use of non-chromatographic affinity
tags could eliminate the need for expensive columns, and
may also be easy to scale up. The development of recently
published vectors based on Invitrogen's Gateway cloning
system will facilitate production of a target protein fused to
four different protein tags. Using this system, a target protein
can be easily tested with different tags in a high-throughput
manner (Gillies et al. 2008). In a recent review, Fong et al.
(2010) describe various non-chromatographic self-cleaving
purification tags and their potential industrial applications.

Self-circularization by inteins

The generation of cyclic peptides is a rapidly growing field in
molecular biology and chemistry. Several methods have been
established producing cyclic proteins that are exceptionally
stable to chemical, thermal, or enzymatic degradation, and
exhibit a higher specific activity in circular form. Increased
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stability is achieved from the resistance to exoproteases,
which are not capable of degrading cyclic peptides. A variety
of organisms produce circular peptides with a variety of
bioactivities, including anti-bacterial, uterotonic, haemolytic,
and cytotoxic activity (Craik 2006). For example, the
filamentous ascomycete Tolypocladium inflatum produces
the well-known cyclosporin A, which has long been used as
an immunosuppressive drug (Thali 1995). Cyclosporin A
and other known cyclic peptides are small rings of fewer
than a dozen amino acids, and are produced by multidomain
enzymes called peptide synthetases (Billich and Zocher
1987; Weber et al. 1994). However, many other circular
proteins are synthesized as linear chains of amino acids, with
the amino terminus of one residue linked to the carboxyl
terminus of the next. These include cyclotides, a family of
bioactive proteins from plants that contain a head-to-tale
backbone and a knotted arrangement of three disulfide bonds
(Craik et al. 1999).

Generally, cyclic antibiotics display an increased activity
and stability in comparison to their linear analogs. Increased
stability is derived from the resistance to exoproteases, which
are not capable of degrading cyclic peptides. Furthermore,
precisely designed small cyclic peptides can have similar
specificity as endogenously produced antibiotics (Cheriyan
and Perler 2009).

Inteins play a growing role in the production of cyclic
peptides through the aforementioned IPL technique (Evans
et al. 1999). The protein of interest is fused through its
C-terminus, to the N-terminus of an intein, in which the
C-terminal Asn has been mutated to be incapable of
cleaving the C-terminal binding tag. The N-terminus of
the target protein is altered so the second residue after the
Met is a Cys. After purification of the target protein, the N-
terminal Met is removed using methionyl-aminopeptidase
from E. coli, resulting in an N-terminal Cys residue
(Sancheti and Camarero 2009; Tavassoli et al. 2005). After
purification, including elution from the column by thiol-
induced N-terminal cleavage of the intein, the linear peptide
contains a C-terminal thioester and a Cys at its N-terminus
that can react to form a new peptide bond.

The pTWIN vector of the TWo INtein system contains
two engineered inteins (Evans and Xu 1999). The mutated
Synechocystis sp. Ssp DnaB intein allows C-terminal
cleavage, while Mycobacterium xenopy Mxe GyrA intein
undergoes N-terminal cleavage. The combination of both
proteins fused to the N- and C-terminal ends of a target
protein enables the production of an N-terminal Cys residue
and an activated thioester at the C-terminus, which react,
resulting in cyclization (Fig. 5a). A disadvantage to this
method is the low cleavage efficiency of the Ssp DnaB
intein, which is influenced by the second and third amino
acid residues following the required Cys at the N-terminus
of the target protein. The introduction of a non-native linker

sequence improves cleavage efficiency, but also has the
potential to interfere with the biological activity of the
cyclic protein. Another problem is the possibility of
polymerization instead of cyclization by activated peptides
(Xu and Evans 2001).

Split inteins have also been applied in the generation of
cyclic proteins and peptides. The very timely and elegant
Split Intein-mediated Ciruclar Ligation Of Peptides a
ProteinS (SICLOPPS) system uses the naturally split
Synechocystis sp. Ssp DnaE intein, which is fused in a
rearranged order (IC–target protein–IN), allowing the effi-
cient cyclization of the target protein by reconstitution of
the Ssp DnaE intein (Fig. 5b). Using this method, it was
possible to generate cyclic peptides that are short as eight
amino acid residues. SICLOPPS has been used in inhibitor
studies for the rapid synthesis of very large cyclic peptide
libraries that are superior to the traditional chemically
generated libraries, and which can be screened in vivo for
new potent therapeutic drugs (Scott et al. 1999; Tavassoli and
Benkovic 2007). In recent years, SICLOPPS has been
impressively used, for instance, to identify several inhibitors
for the dimerization of ribonucleotide reductase and 5-
aminoimidazole-4-carboxyamide-ribotide transformylase
(for a recent review, see Cheriyan and Perler 2009).

Inteins in selenoprotein production

The 21st amino acid selenocysteine (Sec) is encoded by a
UGA codon in several prokaryotic and eukaryotic proteins.
Sec is incorporated during translation in a process known as
recoding (Driscoll and Copeland 2003). Many selenopro-
teins are selenoenzymes with a single Sec residue in the
active site. Since prokaryotes and eukaryotes have different
UGA recoding machineries, producing selenoproteins and
analyzing the characteristics of selenoenzymes in heterol-
ogous hosts is challenging (Hondal 2009). The first
attempts to produce Sec-containing mammalian thioredoxin
reductase (TrxR) heterologously, were undertaken in E.
coli. In the heterologous host, UGA codes for Sec only
when a specific stem-loop structure called the selenocys-
teine insertion sequence element (SECIS) is present in the
mRNA template in close proximity to UGA, and the trans-
acting factors SelA-D is also synthesized in the cell. Since
the Sec residue of mammalian TrxR is close to the C-
terminus, a SECIS element was cloned at the 3′-end of the
mammalian gene (Arnér et al. 1999).

Incorporation of internal Sec residues into heterologous
proteins is achieved using native chemical ligation (NCL),
the related IPL, or chemical conversion of reactive Ser
residues. The NCL technique facilitates the synthesis of
moderately sized proteins by ligation of a peptide with a
reactive thioester at the C-terminus, and a second peptide
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Fig. 5 Self-circularization of
peptides. a Self-circularization
of proteins using the TWIN-
system. A target protein is
embedded between two intein
sequences, which are modified
for N- or C-terminal cleavage,
respectively. The inducible
splicing reaction of the inteins
leads to the generation of an
activated thioester residue and
an N-terminal Cys for the
spontaneous circularization of
the linear peptide. b Utilization
of the Split Intein-mediated
Ciruclar Ligation Of Peptides a
ProteinS (SICLOPPS) also
enables the circularization of
peptides. In this system, the
order of the naturally split
Synechocystis sp. Ssp DnaE
intein is inverted (IC–target
protein–IN), and the reconstitu-
tion of the Ssp DnaE intein
allows the efficient cyclization
of the target protein

N-Extein PRP8-Intein C-Extein

RNA: 5' 3'

transcription

DNA: SECISTGA

SECISUGA

translation

Sec

Sec

protein splicing

Fig. 6 Intein-mediated produc-
tion of Sec-containing proteins.
A UGA-codon is translated to
a Sec, when a SECIS element
is in close proximity at the
N-terminal part of the modified
fungal Pch PRP8-intein. The
incorporation of the Sec residue
followed by the protein splicing
process leads to the production
of a mature Sec-containing
protein
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containing a Cys or a Sec at the N-terminus (Dawson and
Kent 2000; Hondal 2009). For IPL, the Sec-containing
module is synthetically produced, while the Sec-less protein
moiety is synthesized as a recombinant protein in a
heterologous host, and is purified and activated by intein-
mediated protein purification (Hondal 2009).

A new invention in Sec-protein production named sectein
has recently been patented by the Arner group (Arnér et al.
2009). The sectein system couples expression of an intein
sequence with a bacterial SECIS element and combines the
advantages of SECIS elements with protein splicing, for a
process that is independent of the Sec position or selenopro-
tein size (Fig. 6). Unlike the IPL method, chemical
production of a Sec moiety is not required. The N-terminus
of a selenoprotein containing the UGA Sec codon at its 3′-end
acts as an N-extein. It is fused to the Penicillium chrysoge-
num Pch PRP8 intein containing a SECIS element at its 5′-
end (Arnér et al. 2009; Elleuche et al. 2006). The SECIS
element directs the incorporation of Sec into the peptide
during translation. The C-terminus of the selenoprotein acts as
the C-extein and is fused to the C-terminus of the intein. After
translation, the precursor protein has a Sec residue in the N-
extein, directed by SECIS element in the intein. Through
protein splicing, the Sec-containing N-extein is fused to the
C-extein and a mature selenoprotein is formed. The SECIS
element is excised with the intein (Arnér et al. 2009).

Outlook

Since their discovery 20 years ago, the application of
natural and artificial inteins has become a new and rapidly
growing field in molecular biology. Protein splicing not
only enriches the possibilities of posttranslational process-
ing, but also has many prospects for applications. The
protein splicing process as a protein engineering tool will
become more widespread in industrial applications. The
challenge is to scale up and optimize intein-mediated
techniques, making them applicable and economically
attractive for biotechnological processes.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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