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Recursion-theoretic approaches
I One works over W =< ε, S0, S1 >.
I Class of initial functions I:

I ε, S0 and S1 (the constructores of the algebra);
I P (predecessor);
I C (case distinction);
I πn

j (projections).
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I f = COMP[g , h̄] i.e. f (x̄) = g(h̄(x̄)).



Bounded recursion-theoretic approach: FPtime

FPtime = [ I; COMP,BR ] (Cobham 1964)

BR (Bounded recursion over W):

f (ε, x̄) = g(ε, x̄)

f (y0, x̄) = h(y0, x̄ , f (y , x̄))|t(y0,x̄)

f (y1, x̄) = h(y1, x̄ , f (y , x̄))|t(y1,x̄)

t is a bounding function , i.e. t is explicitly definable from ε, S0, S1,
string concatenation and string product.
x|y denotes x truncated to the length of y .
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I String concatenation: ⊕(y , x) = xy , | ⊕ (x , x)| = 2|x |;
I String product: ⊗(y , x) = x · · · x︸ ︷︷ ︸

|y |−times

, | ⊗ (x , x)| = |x |2.

Example: For p(X ) = X 2 + X + 1, consider the bounding
function t(x) = S1(⊕(x ,⊗(x , x))). One has |t(x)| = p(|x |).

For every polynomial p, there exists a bounding function t
such that |t(x)| = p(|x |). And, vice-versa. <<
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Exercises

1. For p(X ) = X + 1, describe two different bounding
functions t0 and t1, such that |t0(x)| = |t1(x)| = p(|x |).

2. Define ⊕ in the Cobham’s algebra [ I; COMP,BR ].
3. Define ⊗ in the Cobham’s algebra [ I; COMP,BR ].


