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Do Lead-Lag Effects Affect Derivative Pricing?

Abstract

In this paper we address the implementation of pricing models for deriva-

tives whose prices depend on the covariance between asset returns. We show

that lead-lag effects can have a strong impact on correlation-dependent deriv-

atives. Simple adjustments to the annualized variance-covariance matrix of

finite holding-period returns are derived that account for predictability. As an

illustration, we apply our results to the valuation of index-linked stock option

plans.
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At first glance, the predictability of an asset’s return has no impact on prices of

derivatives written on that asset. In the continuous-time, no-arbitrage pricing frame-

work pioneered by Black and Scholes (1973) and Merton (1973), the drift rate of

the asset price process under the physical measure does not enter pricing formulae.

Predictability1, however, is usually expressed through a particular drift specification.

Lo and Wang (1995) argue forcefully that predictability and drift specification do

matter. For a fixed unconditional variance of finite holding-period asset returns, they

show that changes in predictability alter the value of the infinitesimal or instanta-

neous variance parameter σ2. As σ2 enters option pricing formulae, predictability

has an impact on the option price. Lo and Wang demonstrate that this impact

can be strong for realistic return autocorrelations. Their findings have important

consequences for the implementation of option pricing models. Predictability must

be taken into account when volatility is estimated from a time series of discretely

1There are various possible reasons for predictability. In any case, predictability can be perfectly

consistent with market efficiency (see e.g. LeRoy (1989)). This issue was also discussed in the

context of co-integration (see e.g. Dwyer and Wallace (1992)).



sampled asset prices. In particular, the annualized sample variance of finite holding-

period returns is not a consistent estimator of the instantaneous variance parameter.

Consistency requires an autocorrelation adjustment, which Lo and Wang derive for

their reference model, the trending Ornstein-Uhlenbeck (O-U) process.

The main contribution of our paper is an investigation into the impact of pre-

dictability on derivatives whose prices depend on the covariance between asset

returns. There is a growing market for such correlation products (see Mahoney

(1995)) and we think that the issue of predictability is even more important for

these derivatives than for options written on a single asset. There are two main

reasons for this importance. First, implied covariance parameters are rarely avail-

able due to the lack of other covariance dependent derivatives. Therefore, we have

to rely on time series estimates, where the issue of predictability steps in. Sec-

ond, we show that there is a close link between the instantaneous covariance and

the cross-autocorrelation of finite holding-period returns. Because lead-lag effects,

i.e. non-zero cross-autocorrelations, appear frequently2, predictability affects many

covariance dependent derivatives.

The starting point of our analysis in Section 1 is the question of how to obtain the

relevant input parameters for derivative pricing. As far as time series estimation is

concerned, we have to know how the desired instantaneous parameters are related

to the properties of finite holding-period returns. To answer this question, we need

a model of the asset price dynamics which is flexible enough to explain important

characteristics of asset returns, in particular the commonly observed lead-lag pat-

terns. Section 2 presents such a model. To capture realistic lead-lag relations, we

generalize the bivariate trending O-U process proposed by Lo and Wang (1995) in

a way that allows for general feedback. We also introduce an alternative parame-

trization of the model, which helps us to address the issues of stationarity, non-

2Lead-lag patterns of financial asset returns have been documented in many studies. Cross-

autocorrelations between different stocks or stock portfolios are reported by e.g. Lo and MacKinlay

(1990), Conrad, Kaul and Nimalendran (1991) and Badrinath, Kale and Noe (1995). Studies which

find lead-lag patterns for international stock markets include Eun and Shim (1989), Arshanapalli

and Doukas (1993), Richards (1995), Soydemir (2000), and Masih and Masih (2001). Lead-lag

relations between stock indices and stock index futures are investigated by e.g. Kawaller, Koch

and Koch (1987), Stoll and Whaley (1990), and Chan (1992). Kwan (1996) documents that stock

returns lead yield changes of bonds issued by the same firm. Baillie and Bollerslev (1989) find a

co-integration vector in a set of exchange rates, which also implies some form of lead-lag relation.
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stationarity, and co-integration. Based on the model presented in Section 2, we

derive the relation between the instantaneous variance-covariance parameters and

the variance-covariance matrix of finite holding-period returns in Section 3. The

understanding of this relation is useful for two reasons. First, we can investigate if

and how instantaneous parameters and derivatives’ prices are affected by different

lead-lag patterns for otherwise fixed moments of finite holding-period returns. In

particular, such an analysis helps us to identify and understand situations when price

effects are very large. Second, we can analyze how the bias of the annualized sample

variance-covariance matrix as an estimator of the instantaneous parameters alters

with changing lead-lag patterns. The latter point raises the question of whether ad-

justments to the annualized sample variance-covariance matrix exist that use only

autocorrelations and cross-autocorrelations and are therefore easy to implement. In

Section 4, we derive such adjustments for three cases. Section 5 deals with an appli-

cation of our analysis, the valuation of index-linked stock option plans. We provide

numerical examples and a case study that stress the importance of lead-lag effects

for derivative pricing. In Section 6 we summarize the main results and give our

conclusions.

1 Derivative Pricing and Variance-Covariance Pa-

rameters

If we assume competitive, frictionless, and arbitrage-free markets, in which securities

trade in continuous time, we can easily derive a valuation equation for the price F

of a derivative instrument whose pay-off depends solely on asset prices and time t.

Let P and S be the prices of two traded assets whose log-price processes satisfy the

following bivariate stochastic differential equation:

d log(P (t)) ≡ dp(t) = µp(·) dt + σp dWp

d log(S(t)) ≡ ds(t) = µs(·) dt + σs dWs.
(1)

The drift coefficients µp(·) and µs(·) can be functions of P, S, t, or the prices of other

traded assets.3 The diffusion coefficients σp ≥ 0 and σs ≥ 0 are constants, and Wp

3Restrictions are imposed only by the regularity conditions which ensure the existence of a

solution to the stochastic differential equation (1).
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and Ws are two standard Wiener processes such that dWp dWs = ρpsdt. Let us

further assume a known, constant, risk-free interest rate r.

Under our assumptions, we know from the Black-Scholes analysis that F = F (P, S, t)

is the solution to the partial differential equation

∂F

∂t
+ rP

∂F

∂P
+ rS

∂F

∂S
+

1

2
σ2

p P 2∂2F

∂P 2
+

1

2
σ2

sS
2∂2F

∂S2
+ σpσsρpsPS

∂2F

∂P∂S
= rF, (2)

subject to some appropriate terminal and boundary conditions. Of the coefficients

in equation (1), only the variances σ2
p, σ2

s , and the covariance σpσsρps seem to affect

derivatives’ prices, since the drift coefficients do not appear in the valuation equa-

tion. If we know σ2
p, σ2

s , and σpσsρps, we can solve for F , depending on the pay-off

structure of the derivative instrument, either analytically or numerically. However,

an important question is how to obtain the parameter values.

In principle, there are two estimation approaches. The first one is to imply the

variance-covariance parameters from other derivative prices. This approach is not

feasible if there are no liquid markets for other derivatives whose theoretical prices

also depend on σ2
p, σ

2
s , and σpσsρps. In particular, implied estimates of the covariance

will often not be available.

In the following analysis, we concentrate on the second approach, which is to esti-

mate the parameters from time series data of asset prices. Assume that we observe

prices P and S at n equally spaced intervals of length τ over the period [0, T ].

Hence, we observe P (lτ), S(lτ), with l = 0, . . . , n and T = nτ . Let us further

define continuously compounded returns as ∆pk ≡ log
(
P (kτ)/P ((k − 1)τ)

)
and

∆sk ≡ log
(
S(kτ)/S((k− 1)τ)

)
, k = 1, . . . , n. A natural, easily calculable estimator

of σ2
p, σ2

s , and σpσsρps is the sample variance-covariance matrix of returns, divided

by τ .

σ̂2
p ≡

1

nτ

n∑

k=1

(∆pk −
1

n

n∑

j=1

∆pj)
2

σ̂2
s ≡

1

nτ

n∑

k=1

(∆sk −
1

n

n∑

j=1

∆sj)
2 (3)

̂σsσpρps ≡
1

nτ

n∑

k=1

(∆pk −
1

n

n∑

j=1

∆pj)(∆sk −
1

n

n∑

j=1

∆sj).

The estimator defined by equations (3) is the maximum likelihood estimator if the

vectors (∆pk, ∆sk), k = 1, . . . , n, are IID normal random variables. The latter
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condition holds by construction when τ → 0. It also holds for an arbitrary interval

length τ if the drift coefficients µp(·) and µs(·) in equation (1) are constant over

time, i.e. the log-price process follows a bivariate Brownian motion with drift.

However, the bivariate Brownian motion model is not compatible with both lead-

lag effects and autocorrelated returns. If we observe lead-lag patterns between finite

holding-period returns, it is unclear how the estimates obtained from equations (3)

relate to the desired parameters. In order to analyze this relation and to derive

simple modifications to estimator (3), we have to specify a more flexible reference

model of the price dynamics.

2 A Two-Factor Linear Diffusion Model

A reference model of price dynamics should be sophisticated enough to generate

realistic lead-lag patterns, while being simple enough to be analytically tractable.

The following variant of model (1), with explicit drift specification, is a natural

candidate:
dp(t) = (−αpp(t) − αss(t)) dt + σp dWp

ds(t) = (−βpp(t) − βss(t)) dt + σs dWs.
(4)

where αp, αs, βp, and βs are constant parameters.4

Model (4) is a bivariate extension of the univariate trending O-U log-price process

analyzed by Lo and Wang (1995). It encompasses familiar models as special cases.

For example, with αp = αs = βp = βs = 0, we obtain a (correlated) bivariate

Brownian motion with drift. Two (correlated) trended O-U processes result if αs =

βp = 0, αp > 0, and βs > 0. In general, we allow for feedback between p(t)

and s(t) through the drift specification, i.e. both αs and βp can be non-zero.5 As

the special cases show, model (4) generates both difference-stationary and trend-

stationary processes, depending on the parameter values.

4Equations (4) should be understood as the detrended versions of the more general trending

bivariate O-U log-price process. For our purposes it suffices to look at the detrended process, as

a deterministic time trend has no impact on return variances, covariances, autocorrelations, and

cross-autocorrelations.
5Model (4) is more general than the bivariate trending O-U process of Lo and Wang (1995), in

which only one of the parameters can be non-zero.
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The stochastic differential equations of model (4) are not well defined for all values

of the parameters αp, αs, βp, and βs. For example, when αs = βp = βs = 0, we

require αp ≥ 0, since the p(t) process is otherwise explosive.

In order to characterize the range of sensible parameter values, we express the

processes p(t) and s(t) as linear combinations of two simpler processes, x(t) and

y(t):

p(t) ≡ x(t) + a · y(t)

s(t) ≡ b · x(t) + y(t),
(5)

where a and b are scalars with a · b 6= 1. The latter condition excludes the trivial

case that p(t) and s(t) are identical up to a scale factor. x(t) and y(t) satisfy the

following stochastic differential equations:

dx(t) = −γxx(t) dt + σx dWx

dy(t) = −γyy(t) dt + σy dWy,
(6)

with γx ≥ 0, γy ≥ 0, σx ≥ 0, σy ≥ 0, and dWxdWy = ρxydt. Thus, the x(t) and y(t)

processes are either O-U processes for positive γ-parameters or Brownian motions

for zero γ-parameters.

From representation (5) of p(t) and s(t), we can directly exclude explosive processes

by demanding γx ≥ 0 and γy ≥ 0. When γx > 0 and γy > 0, both p(t) and s(t) are

stationary. When γx = γy = 0, both p(t) and s(t) are non-stationary. For γx = 0,

γy > 0, and b 6= 0, the bivariate system is co-integrated, because both p(t) and

s(t) are non-stationary due to the Brownian motion component, but bp(t) − s(t)

is stationary.6 Therefore, representation (5) allows us to address how stationarity,

non-stationarity, and co-integration of asset prices impacts the lead-lag structure of

returns, variance-covariance parameter estimation, and derivatives’ prices.

As we show in Appendix 1, imposing the restrictions γx ≥ 0 and γy ≥ 0 on the

system of equations (6) translates into the following restrictions on αp, αs, βp, and

βp:

(αp − βs)
2 + 4αsβp ≥ 0 (7)

(αp + βs) −
√

(αp − βs)2 + 4αsβp ≥ 0. (8)

6Duan and Pliska (2004) note that the formulation of co-integrated diffusion systems is not

obvious. However, in our common-factor representation (5) the notion of co-integration becomes

straightforward.
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Equations (7) and (8) show that the product αs βp must not be too large in absolute

terms. It follows from equation (8) that a necessary condition for non-explosive

processes is αp + βs ≥ 0. When either αs or βp is zero, both αp and βs must be

non-negative.

In the analysis that follows we can either work with the parameter set

{αp, αs, βp, βs, σp, σs, ρps} or the parameter set {a, b, γx, γy, σx, σy, ρxy}.
7 The ad-

vantage of the former set is the more intuitive parameter interpretation. However,

the latter parametrization leads to more parsimonious expressions for the moments

of the processes p(t) and s(t).

As model (4) is the reference point for our study of the relation between lead-

lag effects, variance-covariance estimation and derivative prices, some insight into

the kind of lead-lag patterns it generates might be helpful. Figure 1 shows four

examples of the unconditional first order return cross-autocorrelations as functions

of the holding period τ , measured in years. All examples use the common parameter

values σ2
p = σ2

s = 0.3 and ρps = 1/3. The drift parameters αp, αs, βp, and βs take

either the values 10, -10, or 0. In the first example, αp = 10, αs = 0, βp = 0, and

βs = 10. This choice of parameters implies that p(t) and s(t) are (correlated) O-U

processes. Since both αs and βp equal zero, there is no feedback in the drift. The

second example uses αp = 0, αs = −10, βp = 0, and βs = 10. This parameter

set describes a situation where s(t) is an O-U process but p(t) is a non-stationary

process. The third example, αp = 10, αs = −10, βp = 0, and βs = 0, can be

interpreted as a situation with partial feedback: s(t) is a Brownian motion, but

p(t) adapts to s(t) because of the error-correction term −10(p(t) − s(t)). The two

processes are co-integrated. In the last example, with αp = 10, αs = −10, βp = −10,

and βs = 10, the processes s(t) and p(t) are also co-integrated, but the adaptation

is symmetric. We refer to this case as "full symmetric feedback".

[Figure 1 about here.]

The upper half of the figure depicts ρ∆
p
−1s ≡ Cor(∆p−1, ∆s), and the lower half

ρ∆
ps

−1
≡ Cor(∆p, ∆s−1). Note that from now on we will skip the index k when

we deal with unconditional moments, as the unconditional return distribution is

identical for all k ∈ (1, . . . , n).

7The formal relation between the two parameter sets is elaborated in Appendix 1.
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In the "no feedback" case, both cross-autocorrelations are negative due to the

positive instantaneous correlation and the negative autocorrelations of the O-U

processes. When τ goes to infinity, values of −1/6 are reached, which is the limit of

the autocorrelations multiplied by ρps. In the second example, with one O-U process

and one non-stationary process, p(t) has a stochastic drift rate of 10s(t). This fea-

ture explains the positive correlation between ∆s−1 and ∆p. In the third case of

co-integration and partial feedback, s(t) is a Brownian motion and ρ∆
p
−1s = 0. The

positive lead of the s(t) process is due to the error-correction term −10(p(t)− s(t)).

Finally, for the case with full symmetric feedback we see that cross-autocorrelations

are positive in general. The examples show that very different cross-autocorrelation

patterns can result from model (4), and that all combinations of signs are possible.

3 Drift Specification and Variance-Covariance Pa-

rameters

We are now prepared to analyze the relation between the instantaneous variance-

covariance parameters σ2
p, σ2

s , σpσsρps, the estimates obtained from equations (3),

and the variance-covariance matrix of finite holding-period returns. If more and

more data points become available8, estimator (3) converges to the unconditional

variances V ar[∆p], V ar[∆s] and the covariance Cov[∆p, ∆s], divided by τ . Thus,

if we establish the link between the unconditional moments of finite holding-period

returns and the instantaneous variance-covariance parameters under the price dy-

namics (4), we cannot only study the impact of different lead-lag patterns on the

instantaneous variance-covariance parameters, but also on the asymptotic behavior

of estimator (3).

Equations (5) lead to



V ar[∆p]

V ar[∆s]

Cov[∆p, ∆s]


 =




1 a2 2a

b2 1 2b

b a (1 + ab)







V ar[∆x]

V ar[∆y]

Cov[∆x, ∆y]


 , (9)

where V ar[∆x] and V ar[∆y] are the unconditional variances of changes of x and

y, respectively, over an interval of length τ , and Cov[∆x, ∆y] is the corresponding

8Formally, we lengthen the data period [0, T ], but fix the length of the sampling interval τ .

Hence, the number of observations n increases.
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covariance. In the following analysis, A = A(a, b) denotes the 3 × 3 matrix on the

right-hand side of equation (9). Under the O-U processes (6), the unconditional

variances and covariance amount to9:

V ar[∆x] = 1−e−γxτ

γxτ
σ2

xτ ≡ gx(γx, τ)σ2
xτ,

V ar[∆y] = 1−e−γyτ

γyτ
σ2

yτ ≡ gy(γy, τ)σ2
yτ,

Cov[∆x, ∆y] = 2−e−γxτ
−e−γyτ

(γx+γy)τ
σxσyρxyτ ≡ gxy(γx, γy, τ)σxσyρxyτ.

(10)

By substituting the expressions on the right hand side of equations (10) for V ar[∆x],

V ar[∆y], and Cov[∆x, ∆y] in equation (9), by using the relation (σ2
x, σ

2
y , ρxyσxσy)

T =

A−1(σ2
p, σ

2
s , ρpsσpσs)

T , and by dividing both sides by τ we obtain:




V ar[∆p]
τ

V ar[∆s]
τ

Cov[∆p, ∆s]
τ


 = A




gx 0 0

0 gy 0

0 0 gxy


 A−1




σ2
p

σ2
s

ρpsσpσs


 . (11)

Equation (11) provides the required relation between the annualized variance-

covariance matrix of finite holding-period returns and the instantaneous variance-

covariance parameters. For fixed variances and covariance of finite holding-period

returns, equation (11) shows how different lead-lag patterns change the instanta-

neous variances and covariance through gx, gy, gxy and A. Therefore, we can study

how derivatives’ prices are affected by predictability.

Moreover, equation (11) shows how the asymptotic properties of estimator (3) are

affected by predictability. As we see from equation (11), the components of estimator

(3) are, in general, linear combinations of all three instantaneous parameters. Thus,

there will be a bias, even asymptotically. This bias disappears only when gx = gy =

gxy = 1, i.e. when the holding period τ tends to zero, or when γx = γy = 0 and model

(4) is reduced to a bivariate Brownian motion with drift. We note that A, gx, gy,

and gxy depend on a, b, γx, γy, and τ only, and are independent of the instantaneous

variance-covariance parameters σp, σs, and ρps themselves.

As an example of the size of potential effects on instantaneous parameter values and

on the asymptotic bias of estimator (3), we compare the Brownian motion model

with the four drift specifications used in Figure 1. Table 1 shows σ2
p, σ

2
s , σpσsρps, ρps,

and the price of an option to exchange one asset (S) for another (P). τ equals

9A derivation can be obtained from the authors upon request.
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1/12, i.e. we use monthly returns. The annualized unconditional return variances

are 0.3, and the covariance is 0.1. Option prices are calculated according to the

pricing formula (12), derived by Margrabe (1978), using the respective instantaneous

variance-covariance parameters, asset prices of P = S = 40, and a time to expiration

T − t of one year.

Option Price = P · N(d1) − S · N(d2), (12)

with

d1 ≡
ln(P/S) + (σ2

p + σ2
s − 2σpσsρps)(T − t)/2

√
(σ2

p + σ2
s − 2σpσsρps)(T − t)

,

d2 ≡ d1 −
√

(σ2
p + σ2

s − 2σpσsρps)(T − t),

and N(·) as the cumulative distribution function of the standard normal distribution.

The parameter values and the option price for the reference case appear in the first

column of Table 1, which corresponds to the Brownian motion model. In this case

we have no lead-lag effects and no asymptotic bias of estimator (3).

In the "no feddback" case with two O-U processes, as shown in the second column,

the correlation is unchanged in comparison to the reference case, but the two instan-

taneous variances and the covariance are higher by the same percentage value. This

result holds in general when γx = γy>0; then the functions gx, gy, and gxy are all

equal to g ≡ 1−e−γxτ

γxτ
< 1 and the instantaneous parameter values are 1

g
multiplied by

the annualized finite holding-period second moments. The parameters σ2
p, σ

2
s , and

ρps are all affected in the case of one O-U process and one non-stationary process,

as shown in the third column. Here, σ2
p is much lower and both σ2

s and ρps are

higher than in the reference case. The results for the case of partial feedback in the

fourth column show that we might obtain the same instantaneous variances, but

much lower covariances than for the Brownian motion model. The last case of full

symmetric feedback points in the same direction, as the correlation parameter is

most severely affected. Correlation drops far below 1/3 and even becomes negative.

The last two cases, where the logs of the asset prices are co-integrated, warn us to

be careful with correlation dependent derivatives. As the last row of Table 1 shows,

there are price differences of up to 40% for a simple exchange option compared with

the case with no lead-lag effects.

[Table 1 about here.]
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4 Some Simple Correction Formulae

The examples in Table 1 show that the drift specification of the asset price processes

can have large effects on option prices and the asymptotic bias of the finite holding-

period annualized variance-covariance matrix as an estimator of the instantaneous

parameters. In the analysis to follow, we derive some simple adjustments for au-

tocorrelations and lead-lag patterns to this estimator. These adjustments provide

easily accessible alternatives to the more demanding estimation of the full model

(4).10 Moreover, as the adjustments depend on return cross-correlations and au-

tocorrelations only, we can gain some insight into the effect of predictability on a

particular derivative pricing problem by simply looking at sample moments.

We first determine the first order autocovariances Cov(∆p, ∆p−1) and

Cov(∆s, ∆s−1), as well as the cross-autocovariances Cov(∆p, ∆s−1) and

Cov(∆s, ∆p−1).

From model (5) it follows




Cov[∆p, ∆p−1]

Cov[∆s, ∆s−1]

Cov[∆p, ∆s−1]

Cov[∆s, ∆p−1]




=




1 a2 a a

b2 1 b b

b a 1 ab

b a ab 1







Cov[∆x, ∆x−1]

Cov[∆y, ∆y−1]

Cov[∆x, ∆y−1]

Cov[∆y, ∆x−1]




, (13)

where Cov[∆x, ∆x−1], Cov[∆y, ∆y−1], Cov[∆x, ∆y−1], Cov[∆y, ∆x−1] are the first

order autocovariances and cross-autocovariances of ∆x and ∆y.

Furthermore, under the O-U processes x and y in equations (6), we can derive the

autocovariances and cross-autocovariances on the right-hand side of equation (13):

Cov[∆x, ∆x−1] = − [1−e−γxτ ]2

2γx

σ2
x

Cov[∆y, ∆y−1] = − [1−e−γyτ ]2

2γy

σ2
y

Cov[∆x, ∆y−1] = − [1−e−γxτ ]2

γx+γy

σxσyρxy

Cov[∆y, ∆x−1] = − [1−e−γyτ ]2

γx+γy

σxσyρxy

(14)

10Model (4) can be estimated by different methods. As the transition density functions are

available in closed form, maximum likelihood estimation is feasible (see Lo (1988) for a discussion).

Alternatively, GMM estimation can be applied based on conditional and unconditional moments

(see e.g. Hansen and Scheinkmann (1995) and Singleton (2001)).
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In general, the four moments on the right hand side of equation (13) depend non-

linearly on the parameter set {a, b, γx, γy, σx, σy, ρxy} and thus also on the parameter

set {αp, αs, βp, βs, σp, σs, ρps}. However, for special cases, we are able to determine

the parameters a, b, γx, and γy explicitly from these moments. Since a, b, γx, and γy

determine gx, gy, gxy, and A, they suffice to construct simple correction formulae for

the usual variance-covariance estimate in terms of “observable” variables.

4.1 No Feedback

The first case we study is the one with feedback parameters αs and βp equal to

zero in model (4). This parameter restriction leads to two correlated O-U processes

without feedback in the drift. We can interpret this case as a simple extension of

the Lo and Wang (1995) univariate trending O-U process to a two-factor model. In

terms of model (5), the restriction αs = βp = 0 means that a = b = 0. Thus, the

matrix A reduces to the identity matrix and the system (p, s) becomes the system

(x, y). Therefore, that γx = αp, γy = βs, σx = σp, σy = σs, and ρxy = ρps holds true.

In order to derive an adjustment to the usual variance-covariance estimate, we ex-

press the mean-reversion parameters αp and βs in terms of the first order return

autocorrelations ρ∆
p ≡ Cov[∆p,∆p

−1]
V ar[∆p]

and ρ∆
s ≡ Cov[∆s,∆s

−1]
V ar[∆s]

. From equations (9), (10),

(13), and (14) it follows that ρ∆
p = −1

2
[1 − e−αpτ ] and ρ∆

s = −1
2
[1 − e−βsτ ], which

simplifies equation (11) to:



σ2
p

σ2
s

ρpsσpσs


 =




ln(2ρ∆
p

+1)

2ρ∆
p

0 0

0 ln(2ρ∆
s

+1)
2ρ∆

s

0

0 0
ln(2ρ∆

p
+1)+ln(2ρ∆

s
+1)

2(ρ∆
p

+ρ∆
s

)







V ar[∆p]
τ

V ar[∆s]
τ

Cov[∆p,∆s]
τ


 . (15)

Equation (15) provides us with a simple correction formula to the usual variance-

covariance estimate for autocorrelations and lead-lag patterns. The adjustment is

only dependent on the asset return autocorrelations ρ∆
p and ρ∆

s . Since the cross-

autocorrelations are completely specified through the autocorrelations in this case,

they do not explicitly enter into the correction formula.

Of course, the adjustment for both volatility parameters σp and σs is exactly the one

derived by Lo and Wang (1995).11 The higher the autocorrelation is in absolute12

11See Lo and Wang (1995), p.95.
12Note that αp and βs must be non-negative in order to ensure that the processes are not
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terms, the higher the adjustment factor. Therefore, the more negatively correlated

asset returns are, the more the true value is understated by the usual variance esti-

mate. If return autocorrelations are equal across the processes, the covariance term

must be adjusted with the same factor as the variance terms. In general, however,

the adjustment to the covariance term depends on both return autocorrelations and

is not a monotone function of ρ∆
p or ρ∆

s .

[Figure 2 about here.]

Figure 2 shows the adjustment factors for the covariance term as well as for the

two variance terms, as a function of the autocorrelation ρ∆
p . For fixed unconditional

variances and covariance of finite holding-period returns, the adjustment factors

show us how to scale these values in order to obtain the required instantaneous

parameters. The first order autocorrelation ρ∆
s is chosen as −0.4, which implies a βs

of 19.3 for monthly returns. For such an autocorrelation, the usual variance estimate

understates σ2
s by 50%, while the adjustment factor for σ2

p increases from 1 for an

autocorrelation ρ∆
p of zero above all bounds when ρ∆

p is approaching -0.5. This course

is well known from Lo and Wang (1995). However, unlike Lo and Wang, we are also

interested in the estimate of the covariance term σpσsρps. As Figure 2 shows, the

usual covariance estimate understates the true value by the same factor as σ2
s when

ρ∆
p is zero. Increasing ρ∆

p leads first to a smaller adjustment factor up to a minimal

value. Thereafter the adjustment increases in ρ∆
p , and for ρ∆

p = ρ∆
s it again becomes

equal to the factor of σ2
s , which also holds for σ2

p in this case. When ρ∆
p increases

further, the usual covariance estimate understates σpσsρps more strongly, although

the adjustment factor in this region is always below that of σ2
p. It can be shown

generally that the adjustment factor is never below one. Thus, as long as at least

one of the two autocorrelations is non-zero, the usual covariance estimate always

understates the true value. Furthermore, the adjustment factor for the covariance

term always lies between the adjustment factors for the two variance terms. From

these results we can conclude that, if the usual variance estimate understates at

least one variance parameter due to autocorrelations, these problems transfer to the

covariance term, even if the second variance parameter can be estimated without

bias.

explosive. Therefore, ρ∆
p

and ρ∆
s

lie in the interval (− 1

2
, 0] in this model.
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4.2 Partial Feedback

The second case that we analyze in more detail is αp > 0, αs < 0, and βp = βs = 0.

Thus, s follows a Brownian motion, while the drift of the p process has an error-

correction term −αp(p(t)−−αs

αp

s(t)). In terms of model (5), these restrictions transfer

to b = 0, γy = 0, γx = αp, and a = −αs/αp, which shows directly that p and s are

co-integrated. In this case, equation (11) reduces to:



σ2
p

σ2
s

ρpsσpσs


 =




1
gx a2(1 − 1

gx ) 0

0 1 0

0 a(1 − 1
gx ) 1

gx







V ar[∆p]
τ

V ar[∆s]
τ

Cov[∆p,∆s]
τ


 . (16)

By stating the standardized cross-autocovariance

ρ∆
xy

−1
≡

Cov[∆x, ∆y−1]

Cov[∆x, ∆y]
=

Cov[∆p, ∆s−1]

Cov[∆p, ∆s] − aV ar[∆s]
(17)

in terms of moments of asset returns we can derive the following expressions for gx

and a:13

gx =
ρ∆

xy
−1

ln(ρ∆
xy

−1
+ 1)

, (18)

a = Cov[∆p,∆p
−1]

Cov[∆p,∆s
−1]

+
√

Cov[∆p,∆p
−1]2

Cov[∆p,∆s
−1]2

− 2Cov[∆p,∆p
−1]Cov[∆p,∆s]

Cov[∆p,∆s
−1]V ar[∆s]

+ V ar[∆p]
V ar[∆s]

. (19)

Equation (16) shows how to adjust the usual variance-covariance estimator for au-

tocorrelation and lead-lag patterns. Through (18) and (19) we are able to express

this adjustment in terms of moments of finite holding-period returns only. First,

we do not need any adjustment for the estimate of the variance σ2
s . This is not

surprising since s follows a Brownian motion. Second, to analyze the adjustment

for the estimate of σ2
p, we rearrange the correction formula to be:

σ2
p =

ln(ρ∆
xy

−1
+1)

ρ∆
xy

−1

V ar[∆p]
τ

+ a2
(
1 −

ln(ρ∆
xy

−1
+1)

ρ∆
xy

−1

)
V ar[∆s]

τ

= V ar[∆p]
τ

+ D
( ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1

− 1
)
,

(20)

where D ≡ V ar[∆p]
τ

− a2 V ar[∆s]
τ

is the difference between the annualized variances of

∆p and a∆s. Since
ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1

− 1 ≤ 0, equation (20) shows that the usual estimate

13See Appendix 2 for a derivation.
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for σ2
p understates the true value when D > 0, but overstates it when D < 0. The

more negative ρ∆
xy

−1
becomes, the more severe the estimation error. A strong lead

of s, and similar values of the variance of ∆s and the covariance between ∆s and

∆p indicate such situations.

We can derive a similar correction formula for the covariance term. Rearranging

equation (16) leads to

ρpsσpσs = a
(
1 −

ln(ρ∆
xy

−1
+1)

ρ∆
xy

−1

)
V ar[∆s]

τ
+

ln(ρ∆
xy

−1
+1)

ρ∆
xy

−1

Cov[∆p,∆s]
τ

= Cov[∆p,∆s]
τ

+ D̄
( ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1

− 1
)
,

(21)

where D̄ ≡ Cov[∆p,∆s]
τ

− aV ar[∆s]
τ

. Again, the above equation shows that the usual

estimate for ρpsσpσs understates the true value when D̄ > 0 and overstates it when

D̄ < 0. As before, the estimation error increases when the standardized cross-

autocovariance ρ∆
xy

−1
becomes more negative.

In contrast to the case with no feedback, an estimation error can occur even though

asset returns are not autocorrelated. To see this, note that two parameter sets can

lead to an autocorrelation ρ∆
p of zero. The first is γx = 0. This means that both

processes follow a Brownian motion and therefore estimator (3) is adequate.

More interesting is the second parameter set, where ρ∆
p becomes zero also for γx > 0.

Then, σx = −2aσyρxy, or equivalently, σp = aσs. In this case, the usual estimate for

σ2
p is adequate, since D in equation (20) equals zero.

However, the usual covariance estimate can seriously differ, even asymptotically,

from the true parameter value. Figure 3 shows the asymptotic limit of the estimator

for the correlation coefficient ρps as a function of ρ∆
xy

−1
. The true parameters are

σ2
p = σ2

s = 0.3, a = 1, and ρps = −1,−0.5, 0, or 0.5. Thus, σp = aσs and the

autocorrelation ρ∆
p is equal to zero, although αp (and therefore γx) is not. Since we

fixed a = 1, we can state the adjustment for the estimate of σpσsρps completely in

terms of ρ∆
xy

−1
.

[Figure 3 about here.]

Due to the lead-lag patterns we obtain an asymptotic bias when estimating the

instantaneous correlation via estimator (3). The stronger the lead-lag relation is,
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the more the estimated correlation coefficient overstates the true value. When ρ∆
xy

−1

converges towards −1, which implies that the error-correction term leads to a very

fast adaptation of p towards s, the estimated correlation coefficient tends towards

1, whatever the true value is. The intuition behind this result is that estimator

(3) does not distinguish between price changes due to the error-correction term and

those which are due to innovations according to the Brownian motion. Therefore, we

erroneously interpret the error correction as a very high instantaneous correlation,

although the true correlation can take any value.

4.3 Full Symmetric Feedback

The third case we consider is αp = βs = −αs = −βp ≡ α > 0. This restriction leads

to a symmetric, co-integrated system where both feedback parameters are non-zero.

In terms of model (5) the parameter restriction implies a = −1, b = 1, γx = 0, and

γy = 2α. Since gx becomes one and gy = gxy, equation (11) leads to




σ2
p

σ2
s

ρpsσpσs


 =

1

4




1 + 3
gy 1 − 1

gy 2 − 2
gy

1 − 1
gy 1 + 3

gy 2 − 2
gy

1 − 1
gy 1 − 1

gy 2 + 2
gy







V ar[∆p]
τ

V ar[∆s]
τ

Cov[∆p, ∆s]
τ


 . (22)

Analogous to the previous case, we derive an expression for gy,

gy =
ρ∆

yx
−1

ln(ρ∆
yx

−1
+ 1)

, (23)

and state ρ∆
yx

−1
in terms of the unconditional moments of the asset returns by in-

verting the systems (9) and (13):

ρ∆
yx

−1
=

−Cov[∆p, ∆p−1] + Cov[∆s, ∆s−1] − Cov[∆p, ∆s−1] + Cov[∆s, ∆p−1]

−V ar[∆p] + V ar[∆s]
.

(24)

Equation (22) in conjunction with equations (23) and (24) provides simple adjust-

ments for autocorrelations and lead-lag patterns. For ρ∆
yx

−1
= 0 the above adjust-

ment reduces to the identity matrix, and thus the usual variance-covariance esti-

mator is adequate. If a lead-lag relation holds, i.e. ρ∆
yx

−1
< 0, the estimator gets

asymptotically biased (either upwards or downwards). Both the estimated instan-

taneous variance and the covariance converge to the same value

1

4

V ar[∆p]

τ
+

1

4

V ar[∆s]

τ
+

1

2

Cov[∆p, ∆s]

τ
=

V ar[∆x]

τ
(25)
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when ρ∆
yx

−1
→ −1. It can be shown that the highest of the three values

{σ2
p, σ

2
s , σpσsρps} must lie above the limiting value in equation (25). Hence, in the

presence of lead-lag patterns, the usual sample variance or covariance is a down-

ward biased estimate of this value. Analogous, the lowest of the three values

{σ2
p, σ

2
s , σpσsρps} lies below the limiting value in equation (25) and therefore the

usual estimate overstates the true value.

Figure 4 shows the asymptotic limits of the estimates for the variances σ2
p and σ2

s ,

as well as the covariance σpσsρps as a function of the first order standardized cross-

autocovariance ρ∆
yx

−1
.

[Figure 4 about here.]

The true parameter values are σ2
p = 0.3, σ2

s = 0.05 and σpσsρps = 0.0612. For a stan-

dardized cross-autocovariance ρ∆
yx

−1
of zero, estimator (3) comes up with the correct

values. The stronger the lead-lag relation, the more the usual estimator understates

σ2
p and overstates σ2

p and σpσsρps. For a perfect lead-lag relation (ρ∆
yx

−1
→ −1), all

three values are estimated as V ar[∆x]/τ = 0.1181.

The analysis of the three cases presented in this section demonstrates that changes

in return autocorrelations and lead-lag patterns clearly affect the instantaneous

variance-covariance parameters. Next, we present an application in order to high-

light the impact on derivatives whose prices depend on the covariance between two

assets’ returns.

5 Application: Stock Option Plans

Derivatives depending on at least two traded assets arise in various contexts. Ma-

honey (1995) provides several common forms of such derivatives. One prominent

example is an index-linked stock option plan for executive or non-executive employ-

ees. An increasing number of firms regards stock option plans as a very flexible,

tax-efficient way to reward employees for performance, and to attract a motivated

staff. Usually, a stock option gives an employee the right to buy a certain number

of company shares at a so-called grant price within a certain time period. In some

plans, the grant price is set equal to the market price of the stock on the date the
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employee receives the options (P (0)). Other plans require that the employee bene-

fits from the plan only if the company’s share price outperforms a certain index.14

A usual way to determine the grant price in the case of an index-linked option plan

is to multiply the share price P (T ) at the exercise date by the ratio of one plus the

percentage index performance and one plus the percentage performance of the own

stock. Thus, when exercising the option in T , the grant price15 is

P (T )
1 + S(T )−S(0)

S(0)

1 + P (T )−P (0)
P (0)

= S(T )
P (0)

S(0)
, (26)

where S(0) and S(T ) denote the index levels at times 0 and T , respectively. For ease

of exposition, assume that the current index level equals the current stock price. In

this case, the exercise value for one share is

max(0, P (T ) − S(T )), (27)

which is exactly the pay-off from the option to exchange one risky asset for another.

5.1 Comparative Static Analysis

First, we provide the results of a comparative static analysis, which shows the quan-

titative effect of different lead-lag patterns on the value of a ‘stylized’ index-linked

employee’s stock option. In order to value such an exchange option, we employ the

option pricing formula derived by Margrabe (1978). Of course, the Margrabe for-

mula does not incorporate many features of specific stock option plans.16 However,

as our focus is on the analysis of the impact of predictability on derivatives whose

prices depend on the covariance between two asset returns, it is a natural first step

to gain some insight from a stylized plan with closed-form solutions. To highlight

the impact of cross-autocorrelations, as opposed to autocorrelations, we chose the

case of partial feedback and a zero return autocorrelation of both processes.

14See e.g. the stock options plans of BASF, Bayer, Henkel, Lufthansa, Münchener Rück or

Vodafone, among many others.
15In some cases, this grant price is adjusted with some prespecified factor.
16Typically, stock options are American type options and the employee is required to hold the

option during the so-called “freeze-out” period before exercising. In addition, dividends must be

considered, as well as a possible dilution from exercising the options. Another aspect that we do

not discuss here is the question of whether the stock option should be worth less than the market

value for the employee, given that he might be unable to hold a well-diversified portfolio or hedge

the option dynamically.
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The three panels of Table 2 show prices of exchange options for times to matu-

rity of one, five, and ten years, respectively. We fixed both the annualized finite

holding-period return variances V ar[∆p∗]/τ and V ar[∆s∗]/τ at the same value of

0.1456. This value was chosen for comparison reasons with Table I of Lo and Wang

(1995). The annualized covariance was fixed at Cov[∆p∗, ∆s∗]/τ = 0.0728, which

implies a correlation of ρ∆
ps = 0.5. Holding these moments fixed, we vary the cross-

autocorrelation of finite holding-period returns ρ∆
ps

−1
within the feasible parameter

range of zero to 0.5. From equations (16),(17), (18), and (19), we then obtain the

instantaneous parameters σ2
p, σ

2
s and ρpsσpσs, which serve as inputs to the pricing

model by Margrabe (1978). Option prices are provided for a current share price of

P (0) = 40 and current index levels S(0) of 40, 45, or 50.

[Table 2 about here.]

We see that for all maturities and all current index levels the option price rises

with the cross-autocorrelation. As we have partial feedback with zero return au-

tocorrelations and equal variances, a =
√

V ar[∆p∗]/
√

V ar[∆s∗] = 1. In this case

we know from Section 4.4.2 that both σ2
p and σ2

s will be unaffected by changes of

ρ∆
ps

−1
. Thus, the lead of ∆s∗ affects option prices solely through the instantaneous

correlation ρps. The last row of the table shows the values of ρps that correspond

to different cross-autocorrelations. Though the correlation of simultaneous finite

holding-period returns is as high as 0.5, the instantaneous correlation can become

negative when the cross-autocorrelation exceeds values of about 0.4. When we look

from the perspective of parameter estimation as in Section 4.4.2, we see again that

the correlation of finite holding-period returns is an estimator of the instantaneous

correlation that might not even give us the correct sign. In this context, we note

that the properties of ρ∆
ps as an estimator of ρps do not depend on the length of the

return interval τ , provided that the annualized variances V ar[∆p∗]/τ , V ar[∆s∗]/τ

and the covariance Cov[∆p∗, ∆s∗]/τ are fixed.

A time to maturity of one year allows us to compare the results with those reported

by Lo and Wang (1995), Table I, p. 98, which looked at the impact of return

autocorrelation on the price of vanilla call options. For at-the-money options (S(0) =

40), a cross-autocorrelation of 0.45 increases the price of an exchange option by more

than 58%, compared with the case of zero cross-autocorrelation. Even for ρ∆
ps = 0.2

we still have a price increase of 12%. Lo and Wang report a price increase of 50%,
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when the autocorrelation is -0.45, and an increase of 11% for an autocorrelation

of -0.2. Therefore, the lead-lag effects are even stronger than the already strong

autocorrelation effects reported by Lo and Wang. When we look at current index

levels of 45 or 50, i.e. the stock has to increase more than the index to receive a

payment from the option plan, the relative impact of cross-autocorrelations on option

prices is even more pronounced than in the base case of at-the-money options.

The results for the more realistic maturities of five and ten years are provided in the

next two panels of Table 2. In absolute terms, the longer the time to expiration, the

more strongly the option prices are effected by cross-autocorrelations. This result is

intuitive, since the option’s “vega” increases with the expiration date. When option

prices are measured in percentage points of the price that prevails under zero cross-

autocorrelation, the price impact of an increasing ρ∆
ps

−1
even declines slightly with

time to maturity.

5.2 The SAP Long Term Incentive-Plan 2000: A Case Study

As a further illustration of our results we look at the stock option plan launched

by the German software firm SAP in 2000. According to this plan, a total amount

of up to 6,250,000 call options on SAP shares17 can be distributed among certain

employees. These options are American type options with a time to expiration of ten

years, but there are freeze-out periods of either two, three, or four years before an

option can be exercised. One option entitles the holder to buy one share for a grant

price, which is equal to the then prevailing share price minus the out-performance of

the SAP share over the GSTI Software Index. The exact terms lead to formula (26)

for the grant price and we can therefore interpret the stock option as an option to

exchange one risky asset (the index) for another (the SAP share), with a normalized

index such that the index level, when converted into Euro, equals the share price at

time 0. Shares needed when options are exercised can either be own shares or new

shares. However, we assume that no new shares are issued, which means that we

need not consider dilution effects. The stock option plan was accepted in a general

meeting of the shareholders on 1/18/2000.

Imagine that, on December 31st 1999, one wanted to value an option according to

17Originally, the options were written on preferred stock, but in 2001 SAP converted all its

preferred stock to common stock.
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the SAP suggestions in order to assist the shareholders with their decision on the

plan and for accounting purposes.18 Furthermore, imagine that one used daily log-

returns of the SAP stock and the GSTI Software Index over the preceding 250-day

period to estimate the instantaneous variances and the correlation. The first column

of Table 3 shows estimation results according to estimator (3). As expected, the

SAP share has a higher variance than the index (σ2
p > σ2

s), and we find a significant

positive correlation coefficient. Given the standard errors of the parameter estimates,

estimation errors seem to be a minor point for a sample size of 250.

Based on these parameter estimates, option prices are provided for freeze-out periods

of two, three, and four years, using the XETRA closing price of e 161, 67 of one SAP

share on 12/31/99. For both the SAP share as well as the GSTI software index, a

constant dividend yield of 1% p. a. is assumed. Due to the American feature of the

options, option prices are obtained numerically. As Table 3 shows, longer freeze-out

periods lower option values only slightly.

[Table 3 about here.]

The results in the first column of Table 3 should be interpreted with caution, as

the simple parameter estimates ignore both autocorrelations and lead-lag effects

of asset returns. Figure 5 presents the estimated return autocorrelations and cross-

autocorrelations for the stock and the index. The horizontal lines provide the bound-

aries of a 95% confidence interval. We find no significant autocorrelations, but a

significant positive lead of the index, i.e. we observe a correlation of 19% between

stock returns and index returns lagged by one day. All other cross-autocorrelations

are insignificant.

[Figure 5 about here.]

Autocorrelations and cross-autocorrelations suggest a situation of partial feedback,

which we analyzed in Section 4.4.2. This finding allows us to apply the correspond-

ing correction formulae (16). We use only significant moments for this correction,

18According to the International Financial Reporting Standard 2 the “ fair value” of a stock

option plan should either be determined from market prices or " using a valuation technique to

estimate what the price of those equity instruments would have been on the measurement date in

an arm´s length transaction between knowledgeable, willing parties. The valuation technique shall

be consistent with generally accepted methodologies for pricing financial instruments ...".
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i.e. all non-significant moments are set equal to zero. The second column of Table 3

shows the corrected variance-covariance parameter estimates and option prices. In

addition, we present the corresponding drift parameters αp and αs.
19 Since we have

no autocorrelation and no lead of the SAP stock, the variances σ2
p and σ2

s remain

unchanged compared to the results of estimator (3). But the instantaneous corre-

lation ρps decreases substantially from 0.315 to 0.19. This bias correction is much

larger than the average sampling error, which is quantified by the standard error of

0.054. Moreover, the bias does not even disappear asymptotically with an increasing

number of daily observations. Due to the lower instantaneous correlation, option

prices increase by about 6.7% from almost e 92 to almost e 98.

In summary, the results of the comparative static analysis and the SAP example

show that substantial errors might occur when we ignore lead-lag effects in the

assessment of a stock option plan. In the example of the SAP plan, such errors are

easily detected and corrected by means of sample moments.

6 Summary and Conclusion

Lo and Wang (1995) have shown that the predictability of an asset’s return has an

impact on derivative prices, since, for a fixed variance of finite-holding period re-

turns, predictability changes the instantaneous variance. We extend Lo and Wang’s

analysis by considering derivatives that also depend on the covariance of two assets’

returns and by looking at lead-lag effects as a frequently observed form of return

predictability.

As a reference point for our analysis, we propose a bivariate linear diffusion model

which generates a variety of lead-lag patterns. The model allows for general feed-

back in the drift terms of the two processes. We suggest a state-space representation,

which shows how the impact of lead-lag patterns on instantaneous parameters is con-

nected to time series properties like stationarity, non-stationarity, and co-integration.

Based on our two-factor diffusion model, we establish the link between the annu-

alized variance-covariance matrix of finite holding-period returns and the instanta-

neous variance-covariance matrix. The former will, in general, be a biased estimate

19As our correction formulae build on a closed form method of moments estimator, we obtain

estimates of all free model parameters and can easily calculate standard errors.
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of the latter. In particular, the correlation between finite holding-period returns

might not even provide the right sign of the instantaneous correlation. To allow for

the effects of return predictability, we derive adjustments to the annualized variance-

covariance matrix of finite holding-period returns. These adjustments only depend

on return variances, covariances, autocovariances, and cross-autocovariances and are

therefore easy to implement.

The link between the finite-holding period and instantaneous variances and covari-

ances is also important for another application. Prices of derivatives have frequently

been used to extract implied volatilities in order to forecast future volatilities. This

idea has been extended to correlation forecasts by Siegel (1997), Campa and Chang

(1998), Bodurtha and Shen (1999), and Walter and Lopez (2000). Our approach

might help to explain why this approach is successful in some markets and fails in

others (e.g. see the results of Walter and Lopez (2000)).

Our results imply that lead-lag effects can have a strong impact on correlation de-

pendent derivatives. As an illustration, we have applied our results to the valuation

of index-linked stock option plans. We have found that for realistic parameter val-

ues, an increase of the first order cross-autocorrelation from zero to 0.45 increases

the option price by more than 50%. This lead-lag effect is even stronger than the

autocorrelation effect documented by Lo and Wang (1995). As a concrete example,

we look at the SAP Long Term Incentive-Plan 2000. The observed lead of the bench-

mark index can be easily captured by one of the derived correction formulae. This

correction leads to a substantial decrease of the estimated instantaneous covariance

and an increase of the option price. In conclusion, we believe that a consideration

of lead-lag patterns is relevant for many markets and many different derivatives.

Appendix 1

In order to see how the restrictions γx ≥ 0 and γy ≥ 0 translate into restrictions

on αp, αs, βp, and βs, we express γx and γy as functions of αp, αs, βp, and βs. Us-

ing matrix notation, we equate the drift rates of p(t) and s(t) given by the two

parameterizations (4) and (5) and obtain

 −αp −αs

−βp −βs





 p(t)

s(t)


 =


 1 a

b 1





 −γx 0

0 −γy





 x(t)

y(t)


 . (28)
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Substitution of the expressions on the right hand side of system (5) for p(t) and s(t)

on the left hand side of equation (28) leads to


 −αp −αs

−βp −βs





 1 a

b 1


 =


 1 a

b 1





 −γx 0

0 −γy


 . (29)

Equation (29) is a non-linear system of equations we have to solve for a, b, γx, and

γy, which can be equivalently written as follows:

−αp − bαs = −γx (30)

βp + b(βs − αp) − b2αs = 0 (31)

−βs − aβp = −γy (32)

αs + a(αp − βs) − a2βp = 0 (33)

From equations (30) to (33) we obtain four solutions (b1, γx1
, a1, γy1

), (b1, γx1
, a2, γy2

),

(b2, γx2
, a1, γy1

), and (b2, γx2
, a2, γy2

), with b1,2, γx1,2
, a1,2, γy1,2

given below for the case

of αs 6= 0, βp 6= 0, and (αp − βs)
2 + 4βpαs ≥ 0:

b1,2 =
βs − αp

2αs

±

√√√√(βs − αp)2

4α2
s

+
βp

αs

(34)

−γx1,2
=

−(αp + βs)

2
±

√
(βs − αp)2

4
+ αsβp (35)

a1,2 =
αp − βs

2βp

±

√√√√(αp − βs)2

4β2
p

+
αs

βp

(36)

−γy1,2
=

−(αp + βs)

2
±

√
(αp − βs)2

4
+ αsβp. (37)

Not all four solutions are appropriate in the sense that they lead to a useful model.

First, consider the case αsβp > 0. In this case we obtain

4a1b1αsβp = [(βs − αp) +
√

(βs − αp)2 + 4αsβp][(αp − βs) +
√

(βs − αp)2 + 4αsβp]

= (βs − αp)(αp − βs) + (βs − αp)
2 + 4αsβp

= 4αsβp ,

which implies a1b1 = 1. Similar calculations show that a2b2 = 1. Thus, only the

solutions (b1, γx1
, a2, γy2

) and (b2, γx2
, a1, γy1

) correspond to a non-degenerate case.

For these solutions it holds that min [2γx1
, 2γy2

] = min [2γx2
, 2γy1

] = (αp + βs) −√
(αp − βs)2 + 4αsβp.
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Second, when αsβp < 0, we find that a1b2 = a2b1 = 1. Consequently, we have

to consider only the solutions (β1, γx1
, α1, γy1

) and (β2, γx2
, α2, γy2

). Since one of

the parameters αs and βp is positive and one is negative, opposite signs in front

of the square root terms in equations (35) and (37) result. This implies that

min [2γx1
, 2γy1

] = min [2γx2
, 2γy2

] = (αp + βs) −
√

(αp − βs)2 + 4αsβp.

Therefore, we have shown that for both γx and γy to be non-negative we require

(αp + βs) −
√

(αp − βs)2 + 4αsβp ≥ 0. (38)

To complete the proof, we note that the same condition (38) must hold when either

one or both parameters αs or βp are zero.

Appendix 2

To express the adjustment function (16) in terms of moments of finite holding-period

returns, we only need expressions for a and gx. First, from the moments in equations

(10) and (14) we obtain:

ρ∆
xy

−1
≡

Cov[∆x, ∆y−1]

Cov[∆x, ∆y]
= −(1 − e−γxτ ) (39)

and

ρ∆
x ≡

Cov[∆x, ∆x−1]

V ar[∆x]
= −

(1 − e−γxτ )

2
. (40)

Therefore,

γx = −
ln(ρ∆

xy
−1

+ 1)

τ
(41)

and

gx =
ρ∆

xy
−1

ln(ρ∆
xy

−1
+ 1)

, (42)

which yields to




σ2
p

σ2
s

ρpsσpσs


 =




ln(ρ∆
xy

−1
+1)

ρ∆
xy

−1

a2(1 −
ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1

) 0

0 1 0

0 a(1 −
ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1

)
ln(ρ∆

xy
−1

+1)

ρ∆
xy

−1







V ar[∆p]
τ

V ar[∆s]
τ

Cov[∆p,∆s]
τ


 .

(43)
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Second, by stating the first order standardized cross-autocovariance

ρ∆
xy

−1
=

Cov[∆p, ∆s−1]

Cov[∆p, ∆s] − aV ar[∆s]
(44)

as well as the first order autocorrelation

ρ∆
x =

Cov[∆p, ∆p−1] − aCov[∆p, ∆s−1]

V ar[∆p] + a2V ar[∆s] − 2aCov[∆p, ∆s]
(45)

in terms of moments of asset returns by inverting the systems (9) and (13), we obtain

the following quadratic equation in a from equations (39) and (40):

Cov[∆p, ∆s−1]

Cov[∆p, ∆s] − aV ar[∆s]
= 2

Cov[∆p, ∆p−1] − aCov[∆p, ∆s−1]

V ar[∆p] + a2V ar[∆s] − 2aCov[∆p, ∆s]
. (46)

Within our model, equation (46) has the unique20 solution

a = Cov[∆p,∆p
−1]

Cov[∆p,∆s
−1]

+
√

Cov[∆p,∆p
−1]2

Cov[∆p,∆s
−1]2

− 2Cov[∆p,∆p
−1]Cov[∆p,∆s]

Cov[∆p,∆s
−1]V ar[∆s]

+ V ar[∆p]
V ar[∆s]

. (47)

20The solution with the negative root is inconsistent with γx > 0.
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Figure 1: Return Cross-autocorrelations.
This figure shows four examples of first order return cross-autocorrelations as functions of
the holding period τ , measured in years. All examples use the common parameter values
σ2

p
= σ2

s
= 0.3 and ρps = 1/3. The drift parameters αp, αs, βp, and βs take either the values

10, -10, or 0. The upper half of the figure depicts ρ∆
p
−1s

, the lower half ρ∆
ps

−1
.
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Figure 2: Adjustment Factors in the Case Without Feedback.
This figure shows the adjustment factors for the usual variance-covariance estimate under
two correlated O-U processes, as a function of the first order autocorrelation ρ∆

p
. The first

order autocorrelation ρ∆
s

is −0.4.
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Figure 3: Estimated Correlation ρps.
This figure shows the asymptotic limit of the usual estimator for the correlation coefficient
ρps under partial feedback as a function of ρ∆

xy
−1

. The chosen parameter values are σ2
p

=

σ2
s

= 0.3, a = 1, and ρps is either −1,−0.5, 0, or 0.5.
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Figure 4: Estimated Variance-covariance Parameters.
This figure shows the asymptotic limits of the estimates for the variances σ2

p
and σ2

s
as well

as the covariance σpσsρps as a function of the first order standardized cross-autocovariance
ρ∆

yx
−1

. The chosen parameter values are σ2
p

= 0.3, σ2
s

= 0.05 and ρps = 0.5.
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Figure 5: Daily Return Autocorrelations and Cross-Autocorrelations of SAP Stocks
and the GSTI Software Index.

This figure shows estimated autocorrelations and cross-autocorrelations based on 250 daily
observations from the period preceding 12/31/99. Autocorrelations are provided for up
to ten lags and cross-autocorrelations for up to five lags. Negative lags for the cross-
autocorrelatons refer to lagged returns of the GSTI Software Index and positive lags to
lagged returns of SAP stocks. The horizontal lines are the boundaries of a 95% confidence
interval.
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Table 1: Instantaneous Variance-covariance Parameters and Price of an Exchange
Option for Different Drift Specifications.

This table shows σ2
p
, σ2

s
, σpσsρps, ρps, and the price of an option to exchange one asset for another. τ equals 1/12. The

return variances are 0.3 and the covariance is 0.1. Option prices are calculated according to the model by Margrabe (1978),
instantaneous variance-covariance parameters, asset prices of P = S = 40, and a time to expiration of one year.

Bivariate No O-U Process Partial
Brownian Motion Feedback Non-stat. Process Feedback
αp = 0 a = 0
αs = 0 b = 0
βp = 0 γx = 0
βs = 0 γy = 0

αp = 10 a = 0
αs = 0 b = 0
βp = 0 γx = 10
βs = 10 γy = 10

αp = 0 a = −1
αs = −10 b = 0
βp = 0 γx = 0
βs = 10 γy = 10

αp = 10 a = 1
αs = −10 b = 0
βp = 0 γx = 10
βs = 0 γy = 0

σ2
p 0.3 0.442 0.063 0.3

σ2
s 0.3 0.442 0.442 0.3

σsσpρps 0.1 0.147 0.147 0.005
ρps 0.333 0.333 0.880 0.017

Option Price 9.927 11.959 7.271 11.959
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Table 2: Option Prices for Different Cross-autocorrelations
This table shows option prices according to the model by Margrabe (1978) as functions of the
finite holding-period return cross-autocorrelation ρ∆

ps
−1

. The current share price is always
P (0) = 40, the current index level S(0) is either 40, 45, or 50, and the time to maturity is
either one year, five years, or ten years. Variances and covariance of finite holding-period
returns are fixed at V ar[∆p∗]/τ = 0.1456, V ar[∆s∗]/τ = 0.1456, and Cov[∆p∗,∆s∗]/τ =
0.0728.

S(0) ρ∆
ps

−1

0 0.05 0.1 0.2 0.3 0.4 0.45
Time to maturity: One year

40 6.052 6.210 6.388 6.828 7.456 8.532 9.590
45 4.230 4.391 4.571 5.019 5.663 6.774 7.873
50 2.922 3.071 3.241 3.667 4.288 5.380 6.477

Time to maturity: Five years
40 13.214 13.542 13.910 14.811 16.078 18.200 20.200
45 11.665 12.010 12.396 13.345 14.680 16.913 19.031
50 10.338 10.693 11.092 12.071 13.453 15.775 17.982

Time to maturity: Ten years
40 18.148 18.571 19.042 20.185 21.763 24.314 26.619
45 16.864 17.310 17.808 19.015 20.683 23.382 25.821
50 15.723 16.188 16.707 17.966 19.709 22.534 25.090

ρps 0.5 0.473 0.442 0.361 0.236 -0.006 -0.279

36



Table 3: Parameter Estimates and Theoretical Values of SAP Stock Options
This table shows parameter estimates resulting from estimator (3), corrected estimates obtained
from equations (16) and the corresponding theoretical prices (in e) of one SAP stock option with
ten years to maturity on 12/31/99, when the stock price was e161, 67. Option prices are given for
freeze-out periods of 2, 3, and 4 years.

Simple Parameter Estimates: Corrected Parameter Estimates:
Equations (3) Equations (16)

(standard errors) (standard errors)
σ2

p 0.253 0.253
(0.034) (0.034)

σ2
s 0.166 0.166

(0.016) (0.016)
ρps 0.315 0.190

(0.054) (0.074)

Option Price 91.80 97.94
2 years

Option Price 91.78 97.92
3 years

Option Price 91.71 97.84
4 years

αp 0 86.734
(32.523)

αs 0 -107.136
(43.030)

βp 0 0

βs 0 0
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