Effects of Radio Frequency Heat Treatment on the Postharvest Quality of Rice

Sa-nguansak Thanapornpoonpong¹, Palakon Sumrerath¹, Nattasak Krittigamas¹, Elke Pawelzik², Dieter von Hörsten², Wolfgang Lücke² and Suchada Vearasilp¹

- ¹ Postharvest Technology Research Institute, Chiang Mai University, Chiang Mai, Thailand, 50200
 - ² Department of Crop Science, Faculty of Agriculture, Georg August University of Göttingen, Germany

Background:

- ➤ The drying temperature is the main factor affecting to the yield of head rice.
- Even though, the higher temperature could increase head rice yield, the conventional dryer with high temperature is high energy and time consuming method.
- ➤ The radio frequency (RF) heat treatment is an alternative heating technique which rises temperature rapidly, penetrated deeply in bulk product with low energy consumption.
- ✓ This technique has a possibility to apply in rice postharvest processes.

Radio Frequency

Radio frequency (RF) is a frequency within the range of about 3 Hz to 300 GHz.

27.12 MHz 600 Watt

Radio frequency (RF)

RF heating involves the transfer of electromagnetic energy directly into the product, therefore inducing volumetric heating due to frictional interaction between molecules (Piyasene *et al.*, 2003)

Advantages

- -No need to contact the product
- Penetrate more deeply in the products
- Continuous process is practicable

Ref: www.strayfield.com; www.dielectricsealing.com

Radio frequency VS Hot air drying

	Radio frequency	Hot air
Temperature	stable	unstable
Energy use	50 % lower	100%
Heat transfer efficiency	50-70%	10-30%
Heat transfer technique	conduction	Convection and radiation
Operation time	Short – second, min	Long – hour, days
penetration	9 meters	Low

Radio Frequency Heat Treatment System

RF system

Electrode Plate

PC Controller

Experimental design

A Complete Randomized Design with 4 replications was used.

10 treatments: 1. control

- 2. 70°C 5 min
- 3. 70°C 10 min
- 4. 70°C 15 min
- 5. 85°C 5 min
- 6. 85°C 10 min
- 7. 85°C 15 min
- 8. 100°C 5 min
- 9. 100°C 10 min
- 10. 100°C 15 min

Materials and method

Determinations

Milling degree

- **Moisture content** (AOAC, 2005)
- The color of milled rice (L* and b*) (Colorquset XE Hunter Lab, USA)
- **Brown rice percentage**
- **Head rice yield percentage**
- || Amylose content (Juliano, 1971)

Statistical analysis

Analysis of variance (ANOVA) was performed using SPSS software comparison of means by Duncan's test (p0.05)

Milling process

Color Measurement

Amylose content determination

3

Results

Conclusion

RF treatment can increase milling quality when treating rice under the optimal conditions of 70°C for 15 minutes.

- head rice percentage increased
- color was not changed
- % MC was decreased
- amylose content and % brown rice were not changed