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Introduction

Best linear unbiased prediction (BLUP, Henderson 1973) of breeding values based on phe-
notypic measurements and additive genetic relationships between individuals is a well es-
tablished methodology in animal breeding (Robinson, 1991). With the availability of high-
throughput genotyping facilities, genotypes for massive numbers of single nucleotide poly-
morphisms (SNPs) are available. Meuwissen et al. (2001) suggested to include SNP informa-
tion in a statistical model of prediction. In geostatistics, the prediction of a spatial variable in
any point of the considered space based on a given limited set of measurements is of interest.
A standard approach in this case is “kriging” whose application is naturally limited to two,
three or four dimensions.
We suggest the application of a high-dimensional kriging-extension to the genomic prediction
problem, where one dimension reflects a genotype realization at one SNP. Our model for ge-
nomic data combines a polygenic effect and a general function of SNP genotypes. We present
two kriging variants using the Matérn covariance function to reflect the functional dependency
of the covariances from the distance of genotypes. Finally, we compare their predictive per-
formance to a common genomic BLUP as a reference method in a simulation study.

Material and methods

Kriging. “Kriging” is used whenever spatial prediction of a so-called regionalized variable
has to be performed based on a few, isolated measurements of the quantity. To this end, it
is assumed that the regionalized variable is a realization of a random function with a certain
covariance structure which is described by a parameterized covariance function. The “kriging”
approach consists of two steps: (i) estimation of the unknown parameters and hidden variables
(in particular by ML) and (ii) best linear unbiased prediction (BLUP) of the regionalized
variables under the auxiliary assumption that the quantities estimated in step (i) are the true
ones. Many variants of this unique kriging principle have been published (Cressie, 1993).

The model for polygenic and genomic data. We assume to have q animals with pedigree
information, n of them having genotypic and phenotypic measurements (n � q). We use
y = Wβ+Zu+ g(x) + e as a model for the given data, where y is a n-vector of phenotypes,
β is a f -vector of nuisance location parameters and xi is a (p × 1)-vector of dummy SNP
instance variates (genotype) observed on animal i. Let {g(xi), xi ∈ Rp} be a Gaussian zero-
mean random field with covariance structure given by the Matérn covariance function
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Here, ‖ · ‖ is the Euclidean norm, ν > 0 is a smoothness parameter, h is a scale parameter,
σ2
K is the variance parameter and Kν(·) is the modified Bessel function of the second kind

of order ν. Let K = K(xi, xj)1≤i,j≤n and let g(x) = (g(x1), . . . , g(xn))
T . Furthermore,

let u ∼ N(0, σ2
uA) be a (q × 1)-vector of additive genetic effects of q individuals, where σ2

u

is the additive genetic variance due to unmarked polygenes and A is the additive relationship
matrix. Let e ∼ N(0, σ2

eI) be a n-vector of environmental residual effects. We assume that u,
e and g(x) are independent. W is a (n× f)- and Z is a (n× q)-incidence matrix.

Two kriging approaches and one reference model. We consider two kriging approaches for
predicting the total genetic breeding value (BV) zT0 u + g(x0) of a certain genotyped animal
indexed by 0. The two approaches differ in the sets of quantities that are estimated and subse-
quently used for predictions. The reference model is a common genomic BLUP approach.

Model 1: Universal Kriging. We use y ∼ N(Wβ, σ2
uZAZ

T +K+σ2
eI) and estimate the pa-

rameters σu, σe, ν, h and σK by maximizing log(fy) of the corresponding density function fy .
Then we predict g(x0) via ĝ(x0) = aTg y where ag is chosen such that the prediction is a best
linear unbiased one, i.e. we apply the BLUP principle and minimize E(ĝ(x0)− g(x0))2 with
ĝ(x0) = aTg y under the condition aTgW = 0. Note that the condition assures that ĝ(x0) is un-
biased. This approach is called “universal kriging”. Let K0 = (K(x1, x0), . . . ,K(xn, x0))T .
Minimizing the Lagrange functional E(ĝ(x0) − g(x0))2 + 2aTgWλ with respect to ag and λ
yields the linear system[
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0 WT

]
·
[
λ
ag

]
=

[
K0

0

]
.

Analogously, zT0 u can be predicted by universal kriging.

Model 2: Simple Kriging. We consider the joint density function fy,u,g of y, u and g in
order to estimate the parameters σu, σe, ν, h and σK and the hidden variables u and g(x).
Maximizing J = log(fy,u,g) with respect to β, u and g(x) is equivalent to solvingW
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By re-employing the resulting estimators for β, u and g(x) into J , one can calculate J for fixed
σu, σe, ν, h and σK . Thus, J can be maximized with respect to these parameters by repeating
this procedure iteratively. After convergence, we have estimators for σu, σe, ν, h, σK , u and
g(x). Now, we perform a BLUP of g(x0) via ĝ(x0) = aTg g(x) by minimizing E(ĝ(x0) −
g(x0))2. This approach is called “simple kriging”. Note that ĝ(x0) is always unbiased. The
solution is ĝ(x0) = KT

0 K
−1g(x).

Model 3: Genomic BLUP. Based on the model y = Wβ + Zu + Xg + e, we perform a
genomic BLUP and obtain the MMEW
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In contrast to the initial model, it is g ∼ N(0, σ2
gG) with G being a genomic relationship

matrix calculated using the approach of VanRaden (2008). The matrixX is a known incidence
matrix.

Simulation. We use the software “LDSO” (Ytournel, 2008). The base generation (1000 unre-
lated animals) is followed by 1001 generations (1000 animals each, random mating, sex ratio
1 : 1 up to generation 1021). Then, the population size is gradually reduced, kept constant at
100 in generations 1011–1016 and is gradually increased to 500 in generation 1021, followed
by 10 generations, each composed of 50 males and 450 females (random mating). The initial
genomic data consists of 30’000 evenly spaced biallelic SNPs in linkage equilibrium on three
chromosomes (1M length each, initial allele frequency of 0.5). In generation 1021, 100 SNPs
are randomly chosen to act as QTL (MAF > 0.05), whose allele substitution effects are gamma
distributed Γ(0.42, 5.4). We randomly choose 1000 SNPs per chromosome (MAF > 0.05) to
make up the final map. In generation 1027, we choose σ2

poly = 0.5σ2
QTL and σ2

e = 3.5σ2
QTL

for the environmental variance to get a heritability of h2 = 0.3. The polygenic effects in gen-
eration 1027 are normally distributed N(0, σ2

poly). From generation 1028 on, the polygenic
effect u of an offspring is 0.5(udam+usire)+m, wherem is a normally distributed Mendelian
sampling term. BVs are obtained as the sum of polygenic effects and additive QTL-effects.
Phenotypic values are the sum of the BVs and the environmental effects e ∼ N(0, σ2

e). Fi-
nally, one dataset consists of 5500 animals (generations 1021–1031), the last 5000 of them
having pedigree information and the last 2000 of them being geno- and phenotyped.

Statistical analyses. All approaches are implemented in R. For each method, we predict the
BVs of the last generation. Parameters and hidden variables are estimated with the infor-
mation on 1500 animals (generations 1028 – 1030). The ML estimation of the parameters
and hidden variables for the kriging-approaches is done using the R-package “RandomFields”
Version 2.0.23 (cf. Schlather, 2001) and its function “fitvario”. For the estimation of the
variance components for the genomic BLUP we use “ASReml” (Gilmour et al., 2002). For
each method, we compute the correlation between the predicted BVs and the true BVs in the
estimation set (1500 animals) and in the prediction set (500 animals). The ultimate goal of
animal breeding is to identify the genotypically best animals as parents of the next generation.
Therefore, we calculate the average true BV of the 50 animals with the highest predicted BVs.
We perform 100 independent simulations and summarize the results by calculating averages.

Results and discussion

The results are shown in Table 1. As can be seen, all models yield very similar correlations
between predicted and true simulated BVs, in both the estimation and the validation set. This
also holds for the average true BV of the best (according to their estimated BV) 10 percent of
animals in the validation set.
The conceptual equivalence of kriging with BLUP has already been described by Wahba
(1990). The idea of kriging in a space spanned by genomic data was first mentioned by
Piepho (2009). The results demonstrate that our suggested kriging variants with the param-
eterized Matérn covariance function are able to compete with the common genomic BLUP.
This also highlights the flexibility of the basic kriging principle, which is shown to work well
even in an extension from 3 or 4 to 3000 dimensions.



Table 1: Average correlations between predicted and true BVs and average true BVs of
the predicted best 10 percent of animals.

Model / Approach cor(pred.BV, true.BV)a av. true BVb

validation set estimation set best 50
1 Universal Kriging 0.5929± 0.0048 0.7061± 0.0039 33.51± 2.33
2 Simple Kriging 0.5841± 0.0049 0.7182± 0.0028 33.52± 2.34
3 Genomic BLUP 0.5954± 0.0048 0.7280± 0.0025 33.62± 2.31

aaverage correlation between true BVs and predicted BVs with corresponding standard error
baverage true BV of the 50 animals with the highest predicted BVs (averaged over all datasets) with standard error

The application of kriging in the suggested high-dimensional setup has additional conse-
quences: distances between genotypes range within values that are clearly distinct from 0.
In the simulated situation with 3000 genotypes coded as 0, 1, or 2, the average Euclidean dis-
tance in a typical replicate of the simulated data is 47.142±0.001 with range [25.120, 57.758].
In the low-dimensional geostatistical modeling, distances are often close to zero.
The general approach of basing the prediction on a covariance function offers a number of
possibilities for more differentiated modeling. In spatial statistics, the use of the Euclidean
distance is a natural choice. In a genomic context, other distance metrics may be more ade-
quate. With dense marker maps it is found that the genome is structured in haplotype blocks
within which the loci are in high linkage disequilibrium. Hence, it might be adequate to ac-
count for this non-independence in the definition of the scale. A further option is to implement
a feature selection which could give a higher weight to SNPs in genomic regions which are
found to be relevant for the physiological pathways underlying the studied trait complex.
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