

EGU Generally BG3.1 | EGU23-15628

SIMULTANEOUS O₂ AND CO₂ FLUX MEASUREMENTS WITH CUSTOM-MADE BRANCH CHAMBERS FOR FAGUS SYLVATICA

Alexander Knohl^{1,4}, **Anne Klosterhalfen**¹, Jan Muhr^{1,2}, Emanuel Blei¹, Mattia Bonazza¹, Dietmar Fellert¹, Andrew Manning³, Christian Markwitz¹, Penelope A. Pickers³, Frank Tiedemann¹, Edgar Tunsch¹, Yuan Yan¹

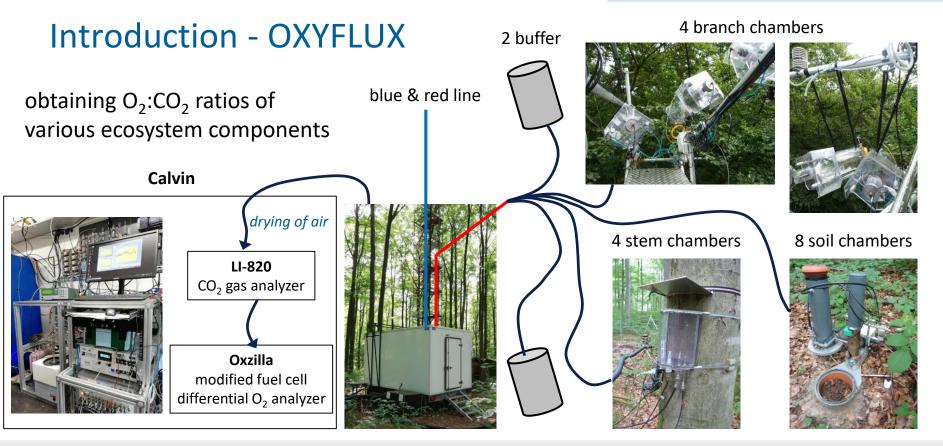
1 Bioclimatology, University of Göttingen, 37077 Göttingen, Germany

2 Laboratory for Radioisotopes, Forest Botany and Tree Physiology, University of Göttingen, 37077 Göttingen, Germany

3 Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom

4 Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, 37073 Göttingen, Germany

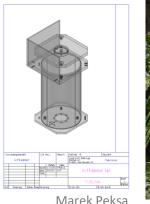
European Research Council Established by the European Commission



Introduction

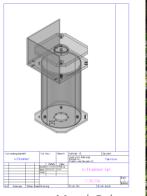
- In terrestrial ecosystems, fluxes of CO₂ and O₂ are typically anti-correlated via the processes of photosynthesis and respiration.
- The molar exchange ratio O₂:CO₂ is widely assumed to be around -1.1 mol mol⁻¹ on larger spatial and temporal scales (KEELING and MANNING 2014).
- However, recent work suggests that individual components of ecosystems have considerable variation in their O₂:CO₂ exchange ratios (temporal and spatial).
- O₂:CO₂ measurements have rarely been performed due to technical challenges of measuring small fluctuations against the large atmospheric background of O₂.

- Leinefelde site in Central Germany:
 - 51°19′41.6″ N, 10°22′04.1″ E
 - pure beech forest, managed
 - even-aged, about 140 years old

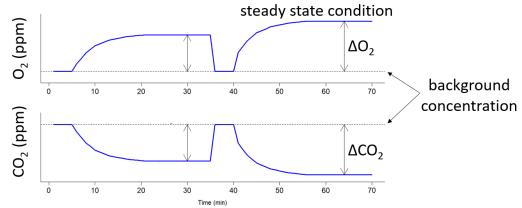


- Leinefelde site in Central Germany:
 - 51°19′41.6″ N, 10°22′04.1″ E
 - pure beech forest, managed
 - even-aged, about 140 years old
- study period:
 - 17 June 08 October 2021

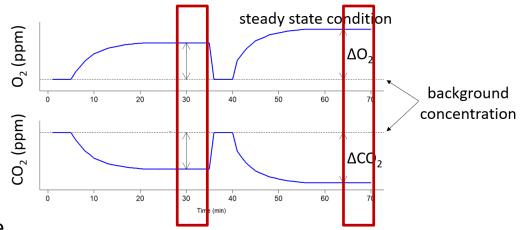
- Leinefelde site in Central Germany:
 - 51°19′41.6″ N, 10°22′04.1″ E
 - pure beech forest, managed
 - even-aged, about 140 years old
- study period:
 - 17 June 08 October 2021
- available data:
 - CO₂, O₂ and H₂O mole fractions for chambers and buffer
 - chamber meteorology: PAR, T, T_{leaf}, RH
 - tower meteorology: SW_IN, T_{air}, RH, P, ...
 - eddy-covariance flux data: NEE, GPP, LE



- Leinefelde site in Central Germany:
 - 51°19′41.6″ N, 10°22′04.1″ E
 - pure beech forest, managed
 - even-aged, about 140 years old
- study period:
 - 17 June 08 October 2021
- available data:
- $1 \min$ CO₂, O₂ and H₂O mole fractions for chambers and buffer
- *1 min* chamber meteorology: PAR, T, T_{leaf}, RH
- 10 min tower meteorology: SW_IN, T_{air}, RH, P, ...
- 30 min eddy-covariance flux data: NEE, GPP, LE



Methods - Data processing


- quality check based on absolute limits and despiking approach
- $\Delta CO_2 = CO_{2, \text{ chamber}} CO_{2, \text{ ref}}$
- ΔO₂ = O_{2, chamber} O_{2, ref}

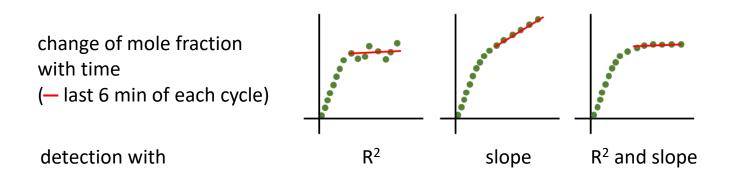
Methods - Data processing

- quality check based on absolute limits and despiking approach
- $\Delta CO_2 = CO_{2, \text{ chamber}} CO_{2, \text{ ref}}$
- $\Delta O_2 = O_{2, \text{ chamber}} O_{2, \text{ ref}}$
- choosing last 7 min of each measurement cycle and discarding very last minute
- calculation of:
 - rate of change of CO₂ or O₂
 - ΔCO_2 and ΔO_2 from 6-min average
 - O₂:CO₂ exchange ratio
 - CO₂ and O₂ fluxes

Methods - Data processing

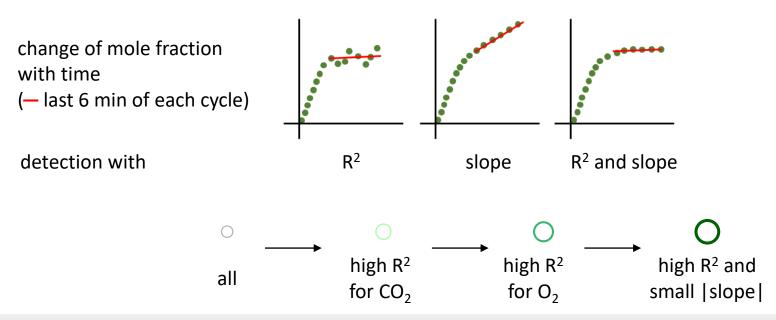
• flux calculation (F_{CO_2} , F_{O_2}) for steady and unsteady state conditions:

$$F_{CO_2} = \frac{\Delta CO_2 \cdot flow - V\rho \frac{dCO_2}{dt}}{S} \qquad F_{O_2} = \frac{\Delta O_2 \cdot flow - V\rho \frac{dO_2}{dt}}{S}$$

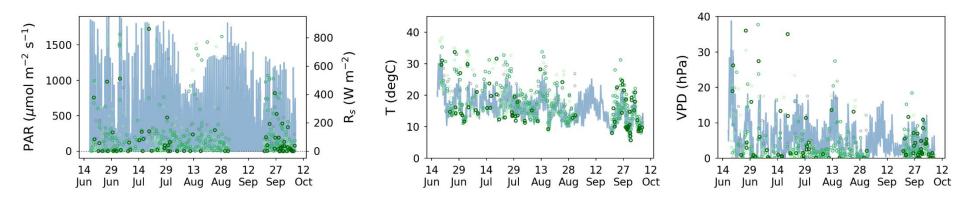

with

 $\begin{array}{lll} \Delta CO_2, \ \Delta O_2 & \mbox{difference between incoming and outgoing CO}_2 \ \mbox{or } O_2 \ \mbox{mole fractions (} \mu \mbox{mol mol}^{-1}\) \\ flow & \mbox{flow rate (mol s}^{-1}\) \\ S & \mbox{leaf area (m}^2\) & \mbox{after Saathoff and Welles et al. (2021),} \\ V & \mbox{chamber volume (m}^3\) & \mbox{after Saathoff and Welles et al. (2021),} \\ \rho & \mbox{air density (mol m}^{-3}\) & \mbox{rate of change of CO}_2 \ \mbox{or } O_2 \ \mbox{mole fractions (} \mu \mbox{mol mol}^{-1} \ \mbox{s}^{-1}\) \end{array}$

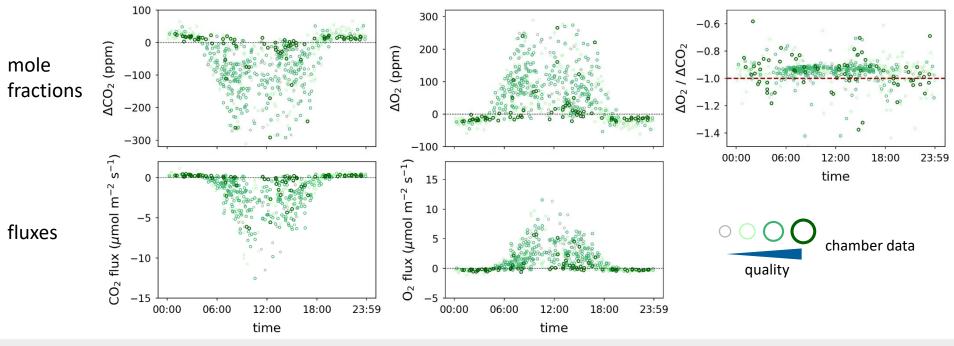
Methods - Data processing

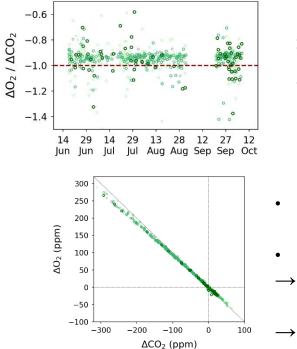

• finding measurement cycles of high quality (steady state):

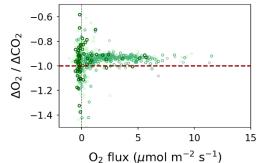
Methods - Data processing


• finding measurement cycles of high quality (steady state):

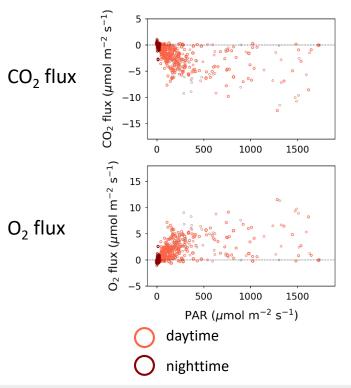
Results - Meteorological conditions



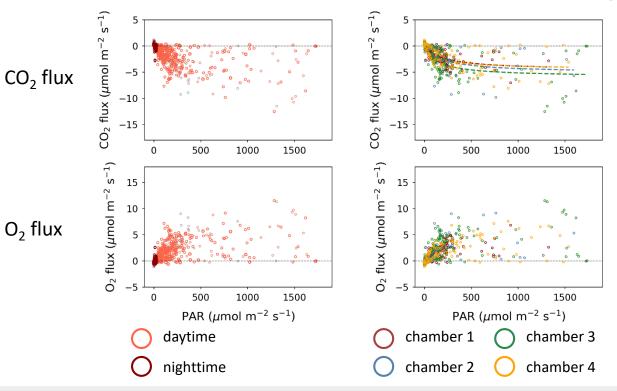

Results - Diel variations


• 632 measurement cycles (425 daytime, 207 nighttime)

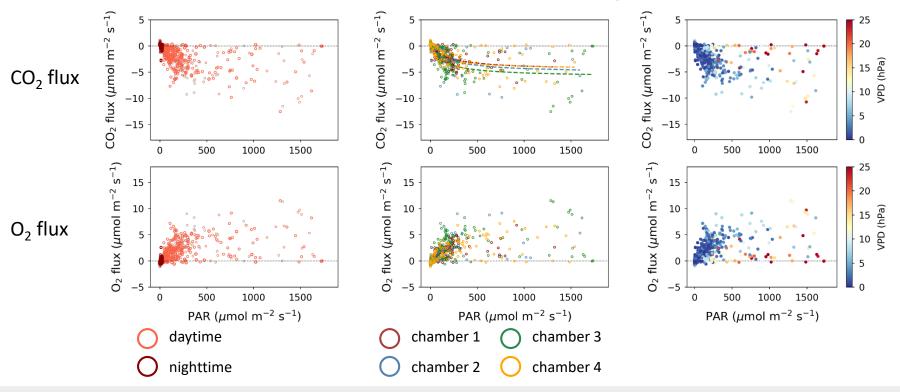
Results - O₂:CO₂ exchange ratio


- exchange ratio between
 -0.9 and -1.0 mol mol⁻¹
- high variation for low flux magnitudes
- → but most 'high quality' conditions
- \rightarrow extra filtering necessary

Yan et al. (2023), Biogeosciences Discussion, doi: 10.5194/bg-2023-30



Results - correlations with meteorological conditions


Results - correlations with meteorological conditions

EGU General Assembly 2023

Results - correlations with meteorological conditions

EGU General Assembly 2023

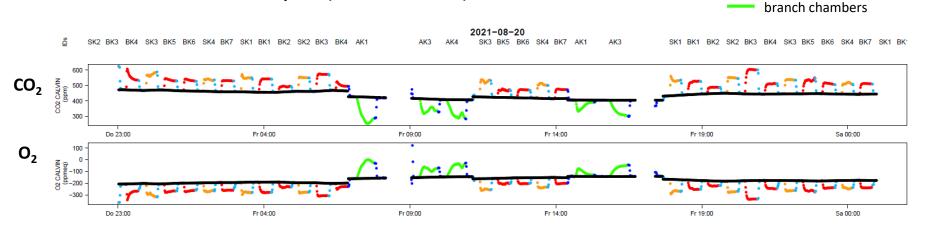
Conclusions and Outlook

- O₂:CO₂ exchange ratio was between -0.9 and -1.0 mol mol⁻¹, but also showed high variation for low flux magnitudes.
- Diel and seasonal cycle was not pronounced during study period.
- Further development of the quality check for chamber data and a comparison of steady and unsteady state conditions are necessary.
- comparison of other flux calculation strategies
- analysis of correlations with meteorological conditions
- development of upscaling procedure of leaf-scale data to ecosystem-scale
- comparison with model simulations

Conclusions and Outlook

- O₂:CO₂ exchange ratio was between -0.9 and -1.0 mol mol⁻¹, but also showed high variation for low flux magnitudes.
- Diel and seasonal cycle was not pronounced during study period.
- Further development of the quality check for chamber data and a comparison of steady and unsteady state conditions are necessary.
- comparison of other flux calculation strategies
- analysis of correlations with meteorological conditions
- development of upscaling procedure of leaf-scale data to ecosystem-scale
- comparison with model simulations

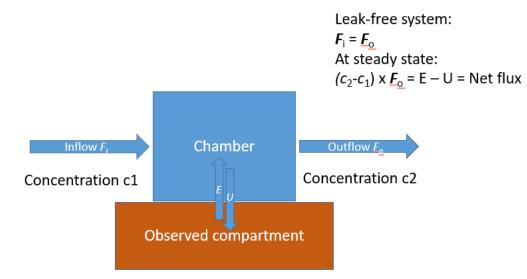
Thank you for your attention!


soil chambers

stem chambers

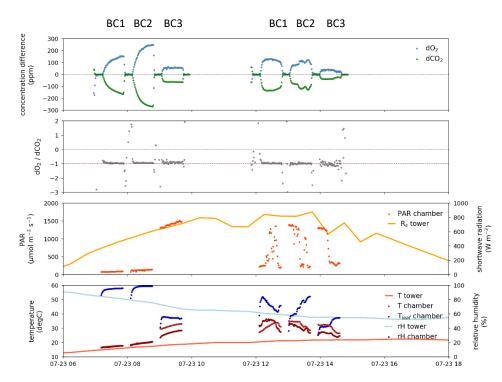
background reference (buffer)

Introduction - Instrumental set-up

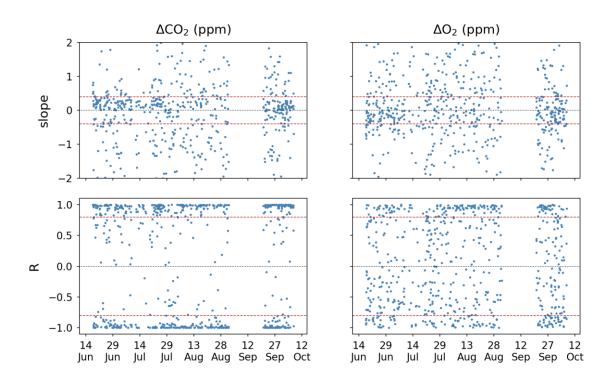

- sequential measurement scheme for 16 chambers
- each measurement cycle (one chamber) for 20-40 minutes

\rightarrow 4 steady-state, open-throughflow branch chambers

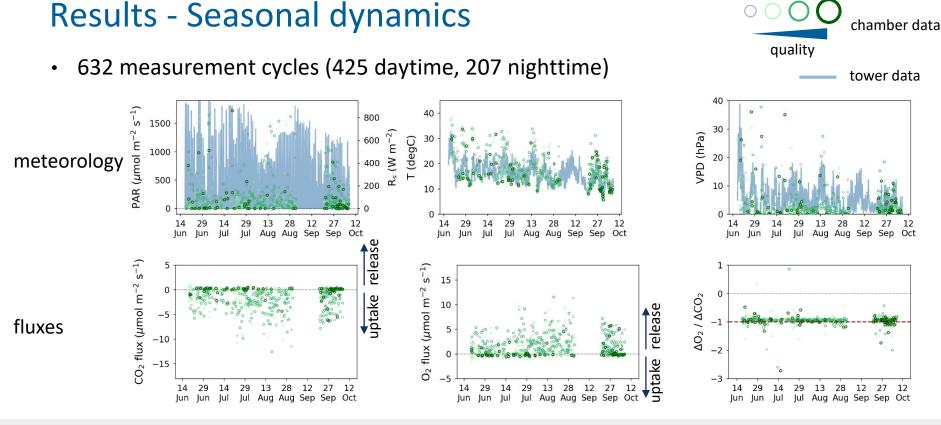
Introduction - Flux calculation

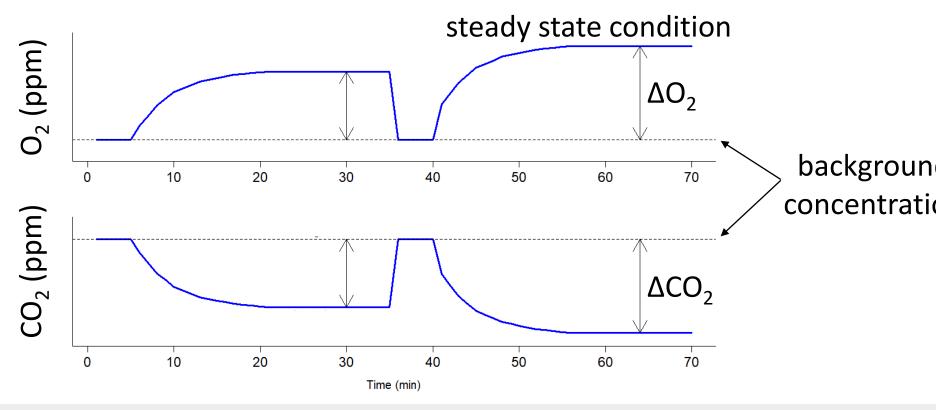

 \Rightarrow Prerequisites for the method to work:

- 1. Steady state in chamber
- 2. Perfect knowledge of all fluxes in and out of the chamber
- 3. Concentration before and after chamber


Methods - Data processing

- quality check based on absolute limits and despiking approach
- $\Delta CO_2 = CO_{2, \text{ chamber}} CO_{2, \text{ ref}}$
- $\Delta O_2 = O_{2, \text{ chamber}} O_{2, \text{ ref}}$
- choosing last 7 min of each measurement cycle and discarding very last minute
- calculation of:
 - rate of change of CO₂ or O₂
 - ΔCO_2 and ΔO_2 from 6-min average
 - O₂:CO₂ exchange ratio
 - CO₂ and O₂ fluxes




Results - Quality check

