

Tropical Plant Production and Agricultural Systems Modelling (TROPAGS) Georg-August-Universität Göttingen, Department of Crop Science, Grisebachstr. 6, Göttingen

CONTENT

- * Mission
- Team
- ✤ Teaching
- Research

MISSION

Our goal is to conduct research and researchoriented training to further the understanding of the functioning of major tropical plant production systems in a changing environment.

TEAM

TEACHING

- Management of Tropical Plant Production Systems
- Einführung in tropische und internationale Agrarwissenschaft
- Tropical Agroecosystem Functions

TEACHING

- Experimental Techniques in Tropical Agronomy
- Crop Modelling for Risk Management

Measurment of water potential and scarification experiment, summer term 2016 @Photos: E.K-D.,2016

RESEARCH – ANALYTICAL FRAMEWORK

RESEARCH FOCI

Assessment of climate induced risks on crop production and food security

Design of climate adaptation and mitigation options

Utilizing genetic diversity and crop ideotyping to support breeding

RESEARCH FOCI

Design and development of agroecosytem models and modelling platforms

Crop model development and improvement

Integrated analysis of agricultural systems and food security from farm up to global scales

TROLL – PFAFFEN CLIMATE CLASSIFICATION ACCORDING TO THERMAL AND HYGRIC SEASON

TROPAGS WEBPAGE

Head: Prof. Dr. Reimund P. Rötter

Tropical Plant Production and Agricultural Systems Modelling (TROPAGS) Georg-August-Universität Göttingen Grisebachstraße 6 37077 Göttingen Germany

Tel ** 49-(0)551 / 39-33751 Fax **49-(0)551 / 39-33759 rroette@gwdg.de Read more about research and teaching ...

Key publications:

--technological innovations

Hoffmann, M.P., et al. (2016). Journal of Agronomy and Crop Science n/a-n/a. DOI:10.1111/lac.12159

Kassie, B.T., et al. (2014). Field Grops Research 160, 41-53 D01:10.1016(jtp:2014.02.010

--- climate risks

Asseng, S., et al. (2015). Nature Climate Change 5, 143-147. DOI:10.1038/nolimate2470

Rötter, R.P., et al. (2013). Ecol Evol 3, 4197-4214. DOI:10.1002/ece3.782

Google: Uni Göttingen TROPAGS

PROJECTS WITH PhD-STUDENTS

Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung **Coffee & Cocoa -** Trade-offs and synergies in climate change adaptation and mitigation in coffee and cocoa systems

IMPAC³ - Novel genotypes for mixed cropping allow for IMProved sustainable land use ACross arable land, grassland and woodland

ALEJANDRA SARMIENTO SOLER

Research Topic:

Trade-offs and synergies in climate change adaptation and mitigation in coffee and cocoa systems

Alejandra Sarmiento Soler Bogota, Kolumbien

Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung

OBJECTIVES

Identifying opportunities for climate adaptation and increased resilience of coffee cultivation systems through:

- Quantification of water budgets
- Determination of coffee performance under a climate and shade gradient
- Identification of yield limiting factors

Source A. Sarmiento Soler based on SRTM (Jarvis, et al. (2008), Hole-filled SRTM for the globe Version 4 (<u>http://srtm.csi.cgiar.org</u>))

Sapflow measurements on *Cordia africana* – Mt. Elgon, Uganda

Hydrological measurements on Cordia africana and Banana – Mt. Elgon, Uganda

©Photos: A.Sar., 2015

ISSAKA ABDULAI

Research Topic:

Productivity, water use and resilience to climate change of cocoa cultivation systems in Ghana

Issaka Abdulai Boaso-Bechem, Ghana

Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung

OBJECTIVES

- Characterization of cocoa production systems along climate suitability transect
- Cocoa production, yield gap, plant productivity along climate gradient
- Microclimate and water use in cocoa cultivation systems

Climate suitability map (Läderach, Climatic Change, 2013)

Production system

Yield gap

Precipitation and soil water measurements - Asnakragua, Ghana

Transportation to research location – Asnakragua, Ghana

WILLIAM NELSON

Research Topic:

Resource (water, light, nutrients) use efficiency in cereal-legume intercropping systems

William Nelson London, England

OBJECTIVES

- Can irrigation enhance production under extreme conditions how much water is needed?
- Can intercropping help adaptation to climate extremes in achieving reasonable yields?
- Can planting density improve performance?

millet intercropping

©Photos: W.Nel./K.Schell, 2016

Field trial – Hyderabad, India

©Photos: W.Nel./K.Schell, 2016

Crop upper limit tent

Field Trial – Experimental Station Reinshof

©Photos: W.Nel., 2015

Soil sampling

Field trial – Niger

RATUNKU GABRIEL LEKALAKALA

Research Topic:

Finding opportunities for managing climate risk in highly resource constrained crop based smallholder farming system of the Limpopo basin

Gabriel Lekalaka Mokopane, Limpopo, Südafrika

OBJECTIVES

Determining potential strategies for attaining resilience and adaptation in smallholder farming system to climate variability and change

- How do climate-smart practices perform at field research scale, and upscaled across different soils, climates and locations?
- Are prevailing farmers management practices climate proof?
- What are likely responses to climate adaptation measures, concerning low productivity and climate-related risk, under future climate conditions?

RESEARCH PROJECTS AND COOPERATIONS

Bundesministerium für wirtschaftliche Zusammenarbeit und Entwicklung

PALMSIM - A PLANT GROWTH MODEL

Hoffmann, MP., et al. 2014. Simulating potential growth and yield of oil palm (Elaeis guineensis) with PALMSIM: Model description, evaluation and application. Agric. Syst. 131, 1–10. doi:10.1016/j.agsy.2014.07.006

SPACES – LIMPOPO LIVING LANDSCAPES

©Photo: M.Hoffm, 2016

andscap

iving

University of Venda Creating Future Leaders

SPACES – LIMPOPO LIVING LANDSCAPES

3. Annual Meeting , August 2016 – Hoedspruit, South Africa

Field survey – Limpopo, South Africa

Göttingen · Campus .

SUMMARY OF

ONGOING RESEARCH ACTIVITIES

AT TROPAGS

ONGOING RESEARCH PROJECTS

- BMZ Coffee & Cocoa (Uganda, Ghana)
- IMPAC³ (India, Germany)
- IPNI Cooperation (Indonesia/Southeast Asia)
- MACSUR (Europe)
- SUSTAg (Europe)
- AgMIP (Global)
- SPACES-LLL (South Africa)

METHODOLOGY DEVELOPMENT AND APPLICATION

Model aided ideotyping of climate resilient crop cultivars

Souce: Rötter RP., et al. 2015 (JEXBOT)

MACSUR/AGMIP

Experimentation to improve models for better quantification of extreme weather effects

©Photos: E.Fi., B.Bo, 2016

Why wheat experiments?

- one of the most important cereals in Europe and worldwide
- particularly sensitive to high temperatures during reproduction phase (flowering & grain filling)

Why heat and drought stress?

- ☆ increased occurence of days with temperatures ≥ 35 °C during the most sensitive development stage (reproduction phase) due to climate change
- possible effects on yield

EFFECTS OF CLIMATE CHANGE (MEANS AND VARIABILITY), CO₂ AND CULTIVATION PRACTICES ON CEREAL PRODUCTION

INTEGRIERTE REGIONALE STUDIEN ZUR KLIMAANPASSUNG

Vielfältige Bewertungsansätze von **Anpassungsmöglichkeiten** - eine Richtung ist die Aufstufung von mildernden Anpassungsoptionen von der Betriebsebene über regionale/nationale zu supranationalen Skalen - auch unter Berücksichtigung anderer Nachhaltigkeitsziele (siehe zB. www.mtt.fi/modags/)

Mehrere Zielführungen im Rahmen alternativer Management- / Ag-Technologien Source: www.macsur.eu

GREATER PRODUCTION DAMAGE FROM MORE RECENT DROUGHTS – EL NINO 2015/16 IN SA

Figure 5 | A temporal analysis of the influence of drought. **a**, **b**, Production composites for earlier (1964–1984, n = 126) (**a**) and later (1985–2007, n = 121) (**b**) droughts, with boxplots of 100 respective control composites. In later instances, mean drought-year production losses were greater (13.7%) than in earlier instances (6.7%; P = 0.008, Kruskal–Wallis test). (Source: Lesk et al. 2016, Nature)

EWASYS - Decision Support System

(Source: Rötter RP., Hoffmann MP., et al 2016 submitted)

PLANNED RESEARCH TOPICS TROPAGS 2017/18

- Topic 1: Climate risks and impact of extremes on crop production
- Topic 2: Climate change adaptation and mitigation options
- **Topic 3:** Utilizing genetic diversity and crop ideotyping to support breeding
- Topic 4: Smallholder food crop systems (cereals, legumes)
- Topic 5: Tropical perennial systems (cocoa, coffee, oil palm)
- Topic 6: Design and development of new crop model components and modelling frameworks
- Topic 7: Crop model improvement, evaluation and uncertainty analysis
- Topic 8: Integrated assessment and modelling (IAM) of agrifood systems

RESEARCH PROJECTS ON TOPIC ...

- 1+7: MACSUR
 /AgMIP
 Experimentation on heat and drought stress & publication of various
 special issues, e.g. "Crop impacts of climatic extremes" ; assessment of uncertainties in impact modelling
- 1+2: ClimBar Model aided ideotyping of climate resilient barley cultivars
- S: IMPAC3 Modelling genetic diversity and ecosystem services of intercropping follow-up
- 4: SPACES-LLL Completion and conductance of Master and PhD thesis on soil cultivation and soil carbon; food security; integration of results from subprojects; ENAFRICA Sustainable management of smallholder cassava production systems Ghana
- 6: SPACES-LLL Development of data platform CropM for large scale yield estimation;
 follow-ups Early warning system for droughts and evaluation system for adaptation measures
- 8: LUSci Land Use Science participation/design UGOE research cluster

Teff cultivation-Ziway, Ethiopia

Teff threshing – Ziway, Ethiopia

Coffee farm – Mt. Elgon, Uganda

Low-input systems in semi-arid eastern Kenya

Field trial with grain legumes – Machakos Kenya

©Photo: A.Senn., 2013

Low-Input maize system – Limpopo, South Africa

6th June 2015

<image>

Cocao – Ghana

28th July 2015

19th August 2015

©Photos: I.Abd., 2012

Cocoa harvest and extraction of cocoa beans for fermentation – Akumadan, Ghana

Cowpea in field trial –Hyderabad, India

Cowpea/pearl millet intercropping, field trial – Hyderabad India

Pearl millet field trial; scaring away birds with drums – Hyderabad, India

IRRI, Rice trial plots – Los Banos, Philippines

©Photo: RPR, 2002

Heat stress trial with sorghum – Greenhouse /DNPW Uni Göttingen

Heat stress trial with sorghum – Greenhouse /DNPW Uni Göttingen

Leaf area measurement

Photosysnthesis measurements

Plants during drought stress

Drought stress trial with sorghum – Greenhouse /DNPW Uni Göttingen

©Photo: B.Bo., 2016

Dr. Munir Hoffmann

Dr. Esther Fichtler

Birgitt Bode

Issaka Abdulai

William Nelson

Sarmiento Soler

Karina Schell

Tom Österreicher

PD Dr. Martin Worbes

Dr. Hsiao-Hang Tao

Prof. Dr. **Reimund Rötter**

Ratunku Gabriel Lekalaka

Mercy Appiah

Thomas Bringhenti

Dr. Ronald Kühne

Alejandra

https://www.uni-goettingen.de/de/106511.html