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ABSTRACT: The Goettingen minipig is a laboratory
animal especially developed for medical research. For
easy and comfortable handling during experiments,
and to minimize costs, a low BW is essential. To breed
for an even smaller minipig, genetic parameters for
BW were estimated using a random regression model
(RRM). The RRM was calculated using random animal,
common litter environment, and permanent environ-
ment effects, respectively. Regressions for the random
effects in the RRM were modeled using Legendre poly-
nomials from second to fourth order of fit in different
combinations. The model was applied to a data set that
focused on the time period from 30 to 400 d of age.
Eight age classes were built to consider heterogeneous
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INTRODUCTION

The Goettingen minipig is a laboratory animal that
has a widespread popularity in medical and pharma-
ceutical research because of its shared anatomic and
physiologic characteristics with humans. In general,
swine are becoming more and more important as nonro-
dent models in medical experiments. Major advantages
are that pigs are not considered companion animals as
are dogs, and they do not have physical similarities or
phylogenetic proximity to humans as do primates. With
respect to ethics and animal welfare, pigs therefore are
a much less disputed model species in medical research
(Gad, 2007). The most important advantage of the mini-
pig in comparison with normal pigs is the smaller body
size and the resulting low BW of 35 to 45 kg for adult
minipigs (Bollen et al., 1998). The low BW is a necessary
trait because handling in medical experiments is more
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residual variances. The heritabilities were moderate
and ranged from 0.211 (375 d of age) to 0.254 (275 d of
age). The variances initially decreased and then in-
creased toward the end of the examined time period for
permanent environment and litter effects. Genetic and
phenotypic correlations between BW in different age
classes decreased with increasing distance between age
classes. The major eigenfunction showed positive val-
ues throughout the whole trajectory (i.e., a selection for
low BW had positive effects on this trait throughout
the whole range of time). On the basis of the estimated
genetic parameters, a breeding scheme can be created
to develop genetically smaller Goettingen minipigs in
the future.

easily facilitated, and the costs for housing, feeding and
dosing are lower. At present there is no line of minipig
that has been selected for a low BW, and the inheritance
of low BW of Goettingen minipigs at different ages is
still unknown. It is necessary to have a genetically
small minipig, not simply a pig of reduced weight from
restricted feeding (Brandt et al., 1997).

Body weight is a trait where the phenotype of an
animal can be represented by a continuous function of
time. Thus, this trait is characterized by a trajectory
with a theoretically infinite number of measurements.
Therefore, an appropriate model is one that considers
a complex covariance structure. In the infinite-dimen-
sional approach, the covariance structure is modeled
as a covariance function (CF; Kirkpatrick et al., 1990).
The CF quantifies the variation of the individual growth
curves about the population mean. A useful tool for the
estimation of CF is the random regression model (RRM;
Van der Werf, 2001). The aims of this study were the
estimation of genetic parameters for the trait BW with
a RRM and conclusions about prospects of selection
response for low BW.

MATERIALS AND METHODS

Animal Care and Use Committee approval was not
obtained for this study because the data were obtained
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Table 1. Age classes, age range (d), number of records,
mean BW (kg), and variance of BW (kg2) per age class

Age Age No. of Mean Variance
class range, d records BW, kg of BW, kg2

1 30 to 60 5,792 3.33 1.04
2 61 to 100 5,761 5.28 1.54
3 101 to 150 5,855 8.36 3.24
4 151 to 200 5,821 11.84 5.61
5 201 to 250 5,639 15.25 7.82
6 251 to 300 4,105 18.69 9.06
7 301 to 350 3,012 21.82 10.14
8 351 to 400 2,038 24.86 10.48

from the database Navision from Ellegaard Goettingen
Minipigs ApS, Dalmose, Denmark.

Body weight data were provided from Ellegaard Goet-
tingen Minipigs ApS, where 2 subpopulations of the
Goettingen minipig base population are housed in 2
units that are entirely separated from each other, both
physically and with respect to gene flow between them.
The data were acquired from 1995 to 2005. The minipigs
were weighed routinely at various intervals, without
provision for fasting before weighing. All pigs were
weighed at birth, then at weaning (21 to 28 d of age),
and again at 8 wk of age, when they left the rearing
unit. Later, all minipigs were weighed once each month,
and each minipig was weighed before it was sold. Unlike
slaughter pigs, minipigs are not kept until a certain
age or weight, but are sold for different purposes at
different ages. Therefore, the number of available
weights per pig varied considerably.

In total, the original data set contained 199,764 BW
records of 33,749 animals. Because of scarcity, BW mea-
sured after 400 d of age were excluded from the analy-
ses. Outliers of the data set were also excluded using
the Studentized residual. This resulted in a total of
180,092 BW records of 32,510 animals.

A data set, with a focus on 30 to 400 d of age, was
prepared out of this data for the random regression
analysis. The BW from d 0 to 29 were excluded because
they are influenced by the parity and the lactation
length of the sow and cannot be classified as indepen-
dent BW traits like those after weaning.

The residuals, or the so-called temporary environ-
mental effect, should not be assumed to be homoge-
neous over the observed range of time (Schaeffer, 2004).
After a graphical analysis of the residuals, they were
considered independently distributed, with heteroge-
neous variances. Changes in the residual variances
with age were modeled as a step function with different
age classes. Within every age class, equal residual vari-
ance was assumed. Eight age classes were built for
the consideration of heterogeneous residual variances
(Table 1). Preliminary analyses with completely un-
structured data and data sets with less then 5 measure-
ments per animal resulted in no convergence; thus ev-
ery animal had at least 5 BW recordings, with only
1 record per age class. Animals with less then 5 BW

measurements were excluded from the analysis. The
BW record measured at an age that was closest to the
average age per age class was accounted for in the
analysis. This resulted in 38,023 records of 6,713
animals.

For the analysis with RRM, Legendre polynomials
(LP) for the regression on age at weighing were used
for modeling the random effects. Therefore, the age at
which the BW recordings were taken had to be rescaled
to a standardized age, t*, for the orthogonal functions,
using the formula

t* =
2(t − tmin)

(tmax − tmin) − 1,

where tmin is the youngest age, here 30 d of age, and
tmax is the oldest age, here 400 d of age, respectively.
The random regression animal model was

yijkl(t) = � + Si + Uj + Yk + ∑
3

r=1

βrtr + ∑
s

s=1

αsijklφs(t*)

+ ∑
s

s=1

γsijklφs(t*) + ∑
s

s=1

ρsjφs(t*) + εs̄ijkl,

where yijkl(t) = weight of animal l at age t within sex i,
unit j, and birth year k; Si = fixed effect of sex i; Uj =
fixed effect of unit j; Yk = fixed effect of birth year k;
βr = fixed cubic regression coefficient; t = age in d; t* =
age standardized to the range −1 to 1; φs = value of the s-
th LP at standardized age t*; αsijkl = random regression
coefficient for additive genetic effects; γsijkl = random
regression coefficient for permanent environmental ef-
fects; ρsj = random regression coefficient for common
environmental effects for litter; and εijkl = random mea-
surement error.

The fixed regression with the fixed effects sex, unit,
and birth year was calculated with a polynomial of third
order of fit. This polynomial model was chosen as that
with the best fit after applying different linear and
nonlinear functions to growth data of Goettingen mini-
pigs (Köhn et al., 2007). The random regression coeffi-
cients for additive genetic effect, permanent environ-
mental effect, and common litter environmental effect,
were fitted with LP from quadratic (LP 2) with 3 terms
to quartic (LP 4) LP with 5 terms. Every possible combi-
nation of LP for the random effects was calculated.

The final pedigree contained 35,066 animals. The
6,713 animals that were represented in this study were
offspring of 332 sires and 1,030 dams.

Covariance components for the random regression
coefficients estimated via REML were obtained by using
VCE-5 (Kovac et al., 2002). With the procedure IML
from the software package SAS (SAS Inst. Inc., Cary,
NC), the eigenfunctions with corresponding eigenval-
ues were calculated for the covariance components of
the random regression coefficients. Eigenfunctions and
eigenvalues can provide insight into the potential for
genetic change in the average growth curve of the whole
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Figure 1. Variances (kg2) for random and residual ef-
fects estimated with random regression model (LP 2).
pe = permanent environment.

population. They are calculated from the covariance
matrix of the random animal effects. To each eigenfunc-
tion, a specific eigenvalue is associated. This eigenvalue
represents the amount of variation explained by the
corresponding eigenfunction. Accordingly, a large ei-
genvalue represents considerable genetic variation for
pattern of growth and changes in the growth curve that
can be modified by selection (Bermejo et al., 2003).

Jamrozik and Schaeffer (2002) outlined different test
criteria like Akaike’s information criterion or the infor-
mation criterion based on Bayes statistics rank models
in a different way. Due to the fact that it is unclear
which criterion is the best for choosing the right model
in this study, the model comparison was carried out by
using the estimated mean squared error, as was done
by Meyer (2005b).

RESULTS

After examining the estimated variances and vari-
ance proportions for all models, the best fitting RRM
was the model with a polynomial of third order of fit
for the fixed effects and LP of second order of fit (LP 2)
for all random effects. In the following, only the results
of this model are presented.

The variances of random animal effect increased up
to an age of 125 d of age (Figure 1). At 175 d of age
a very low value was estimated, and afterwards the
variances increased again. The variances for litter, per-
manent environment, and residual effect increased
steadily over the examined time period.

The heritabilities increased up to 275 d of age with
a lower value at 80 d of age and decreased afterwards
(Figure 2). The proportions of variance for the litter
effect decreased continuously up to 275 d of age and
increased again afterwards. For the permanent envi-
ronmental effect the proportions of variance increased
steadily. The proportions of the residual variance in-
creased and decreased over the examined time period

Figure 2. Variance proportions for the random and
residual effects estimated with random regression model
(LP2). pe = permanent environment.

but on a more or less constant level between 0.14 (45
d) and 0.24 (80 d).

As expected, the genetic and phenotypic correlations
between BW in different age classes decreased continu-
ously with increasing distance between the age classes
(Figure 3). The estimates of the first eigenfunction were
positive throughout (Figure 4). As a consequence, selec-
tion on the trait low BW at any age will change BW in
the period of 30 to 400 d of age in the same direction.
The first eigenvalue explained 89.93% of the genetic
variation. As outlined by Kingsolver et al. (2001), eigen-
values indicate the amount of variance explained by
its associated eigenfunction. The second eigenfunction
explained 9.45% of the genetic variation. In this case,
a selection before 305 d of age on the trait low BW leads
to a negative effect on this trait from 305 to 400 d of
age. The third eigenfunction explained only 0.62% of

Figure 3. Genetic (above diagonal) and phenotypic (be-
low diagonal) correlations between BW in different age
classes.

 by on March 13, 2009. jas.fass.orgDownloaded from 

http://jas.fass.org
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Figure 4. Eigenfunctions (EF) for the random animal
effect estimated with random regression model (LP 2).

the genetic variation and can be neglected. It can be
concluded that the genetic variation associated with
the second and third eigenfunction is small compared
with the genetic variation associated with the first
eigenfunction.

DISCUSSION

The importance of Goettingen minipigs in medical
research is increasing every year. To ensure a geneti-
cally small pig and to decrease BW of Goettingen mini-
pigs in the future, a breeding strategy for the trait low
BW has to be developed. This is the first genetic study
made for BW of Goettingen minipigs in such detail.
Additionally, this data set is unique in pig research due
to the high number of animals that had at least 5 weight
recordings over a wide time range. If the analyzed trait
is measured along a trajectory, which is the case with
BW measurements, the covariance structure should
take the ordering of the measurements in time into
account. The RRM is able to give the covariances of a
trait that is measured at different ages as a function
of these ages. There is no need for an adjustment of ages
with this model, and as a consequence, errors associated
with an adjustment are avoided (Albuquerque and
Meyer, 2001).

The main advantages of RRM in comparison to the
conventionally used multiple trait model are a smaller
number of parameters to describe longitudinal mea-
surements, smoother covariance estimates, no regular
measurement schedules are needed, as well as the pos-
sibility to estimate covariance components and predict
breeding values at any point along the trajectory. The
RRM enable modeling and investigation of growth
curves as a function of age for individual animals.

The RRM have been used for the analysis of test day
records in dairy cattle (Schaeffer and Dekkers, 1994;
Jamrozik et al., 1997; Van der Werf et al., 1998; Veer-
kamp and Thompson, 1999). Test day records are a very
typical example for a repeated measured trait in animal
breeding because milk yield per test day changes during

the lactation. The same can be observed for BW of ani-
mals that are also changing gradually until a plateau
at maturity is reached (Arango and Van Vleck, 2002).
Thus, growth is a longitudinal process with many mea-
surements that are highly correlated. Many studies
used RRM for the estimation of genetic parameters of
growth in beef cattle (Meyer, 1999, 2000, 2001; Albu-
querque and Meyer, 2001; Nobre et al., 2003b; Arango
et al., 2004; Bohmanova et al., 2005; Krejcova et al.,
2005) and sheep (Lewis and Brotherstone, 2002; Fi-
scher et al., 2004). In the last few years RRM were also
applied for the investigation of genetics in pig growth
and feed intake (Huisman et al., 2002; Malovrh, 2003;
Huisman et al., 2005).

When including random effects in the model, the total
variation can be separated in within- and between-ani-
mal variation. Normally, nonlinear functions like the
Gompertz, von Bertalanffy, Brody, and Richards func-
tion are used to describe growth curves in pigs (Köhn
et al., 2007). They are preferred because of their well-
founded biological meaning. When using nonlinear
functions, the growth curve has to be modeled and the
growth parameters of the particular function have to
be estimated for each animal. In a second step, the
estimation of environmental effects and variance com-
ponents has to be conducted. The problem is that the
information on relatives is not considered while esti-
mating the growth curve. Further, errors that are typi-
cally correlated in repeated measures analysis are not
taken into account with these traditional approaches
(Albuquerque and Meyer, 2001). These disadvantages
are the reasons for choosing linear polynomial models
for the estimation of variance components with RRM.
Kirkpatrick et al. (1990) proposed to use orthogonal
polynomials of standardized units of time as covariables
for the random regressions. The most common type of
orthogonal polynomials used is the LP. In this study,
a polynomial of third order was used for modeling the
fixed part of the regression and LP were used to model
the regressions of random effects.

The heritabilities for BW were moderate in this study
(Figure 2). The decrease for the estimated heritability
at 80 d of age is due to high residual variance ratios at
this age. This can be explained by a lower number of
analyzed weight recordings in the second age class and
a higher variance in weights compared with the first
age class.

Huisman et al. (2002) calculated lower heritabilities
of 0.17 (70 d of age) to 0.18 (190 d of age). They estimated
the heritabilities with the weight data of 1,315 boars.
The RRM was fit as a sire model and not as an animal
model as in this study. Therefore, the results are not
completely comparable with our results. In the study
of Malovrh (2003) 3,819 boars of 4 German pure-bred
lines for fattening pigs were weighed 6 times in an age
range from 30 to 167 d of age. A RRM with animal,
litter, and permanent environment as random effects
was applied. In the study of Malovrh (2003), the herita-
bilities estimated were higher than in our study. They
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ranged from 0.30 at 31 d of age to 0.40 at 145 d of age.
The proportion for the litter effect decreased over time,
as was found in this study.

Additionally, Malovrh (2003) tested the influence of
maternal genetic effect on pig growth. She found out,
that the maternal genetic effect accounted for only a
small proportion of variance compared with the other
random effects. Thus, the maternal genetic effect can
be neglected in growth studies for pigs if the pigs are
weaned at an age of 21 to 28 d. However, the maternal
genetic effect on growth traits has to be included in the
model for growth analysis in sheep and beef cattle.
Their offspring are weaned at later ages and the influ-
ence of the dam is more important for their growth de-
velopment.

Another important fact is the exclusion of birth
weight in the analysis. Implausible values of variance
components often occur at extreme ages like at birth.
This is mainly the problem with high order polynomials
(Meyer, 2005a). Thus, including birth weights in-
creased the order of fit for the best fitting polynomial
model in a significant way in the study of Meyer (2001).
Apiolaza et al. (2000) also mentioned that RRM have
problems of fitting data with small variances as it is
typical for birth weights. So it is assumed that prenatal
growth underlies a different growth process than post-
natal growth. The study of Lewis and Brotherstone
(2002) supports this hypothesis. Their investigation of
genetic parameters for growth in sheep from 2 to 159
d of age led to the conclusion that live weight in early
ages seems to be under different genetic control than
live weight in later ages.

The estimation of genetic parameters with RRM also
provides an insight into the effects of selection across
the growth trajectory by examining the eigenfunctions
and eigenvalues. In this study the first eigenfunction
had the highest associated eigenvalue. It explained
89.93% of the genetic variation. Because of low values
for the second and third eigenfunction, it is sufficient
to focus on the first eigenfunction. It indicates that
selection between d 30 to 400 changes the pattern of
growth in the same direction, i.e., selection on low BW
at d 30 will also lead to a low BW at d 400. Thus, a
successful selection on low BW is possible.

As outlined by Nobre et al. (2003a), random regres-
sion analysis requires structured data. Otherwise a
poor fit for some curves modeled with RRM may be
the consequence. Thus, for the estimation of genetic
parameters with RRM on the basis of weight recordings
with an uneven distribution as it is given in original,
not adjusted data sets with minipig BW, an adjustment
of the results based on estimates from multiple trait
models and literature information could be necessary.
Another problem is a possible poor fit of growth curves
estimated with RRM using LP. The LP require large
data sets with an almost homogeneous distribution of
weight recordings for a successful estimation of vari-
ance components (Misztal, 2006). Points on the growth
curve estimated with LP on the basis of only a few

records very often contain artifacts. This is especially
the case at the extremes of the growth curve. A possible
alternative to LP is the use of splines. Splines are piece-
wise polynomials [i.e., curves modeled from pieces of
polynomials of low degrees and joined together at knots
(Meyer, 2005a)]. They are able to estimate genetic pa-
rameters in a more robust way even if the distribution
of weight recordings is very heterogeneous. However,
with this method other problems do occur. A lack of
smoothness for the predicted breeding values can be
observed, and the number and position of the knots
have to be chosen very carefully to avoid artifacts (Mis-
ztal, 2006). Nevertheless, Iwaisaki et al. (2005) report
a simpler implementation of RRM with splines when
compared with LP.

On the basis of the results of this study it is possible
to construct a breeding scheme with a focus on the
reduction of BW. As outlined by Brandt et al. (1997),
there is a good potential for the selection on low BW
due to moderate heritabilities and a high genetic varia-
tion in BW especially in later ages. This conclusion is
also supported by the results of this study. Therefore,
breeding progress for the trait low BW is expected.
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