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Abstract

This article proposes a simple and fast approach to build simultaneous confidence

bands and perform specification tests for smooth curves in additive models. The

method allows for handling of spatially heterogeneous functions and its derivatives

as well as heteroscedasticity in the data. It is applied to study the determinants

of chronic undernutrition of Kenyan children, with particular focus on the highly

non-linear age pattern in undernutrition. Model estimation using the mixed model

representation of penalized splines in combination with simultaneous probability

calculations based on the volume-of-tube formula enable the simultaneous inference

directly, i.e. without resampling methods. Finite sample properties of simultaneous

confidence bands and specification tests are investigated in simulations. To facilitate

and enhance its application, the method has been implemented in the R package

AdaptFitOS.
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1 Introduction

In empirical studies one is typically interested not only in estimation of parameters or

curves, but also in statistical inference about these estimators. Constructing confidence

intervals and performing corresponding specification tests are necessary tools for going

beyond the first steps of data exploration. Compared to the finite-dimensional para-

metric case, inference about a smooth function f , say, in the univariate nonparametric

regression context is much more involved. The pointwise confidence bands for f(x) that

are usually given do not assess the whole function. Another commonly used confidence

band based on Bayesian smoothing splines proposed by Wahba (1983) (see also Nychka,

1988) is only valid in the average coverage sense. That is, the nominal coverage prob-

ability results by averaging the coverage probabilities for f(x) at each sample point, so

that the confidence band is valid neither at each point nor for the entire curve simulta-

neously. In general, both pointwise and Wahba (1983)’s confidence bands do not permit

statements about the statistical significance of certain features in the underlying curve.

Instead, one needs a simultaneous confidence band for f (from some suitable class of

functions F , say), which is typically based on its nonparametric estimator f̂ , and is given

by

{
f̂(x)− c

√
Var{f̂(x)}, f̂(x) + c

√
Var{f̂(x)}, ∀x ∈ X

}
, where c satisfies

α = inf
f∈F

Pf

 |f̂(x)− f(x)|√
Var{f̂(x)}

> c,∀x ∈ X



on some subspace of the predictor space X for a given α ∈ (0, 1). Such a confidence band

can be used, for example, in tests for functional form specification. Note that c depends

crucially on f , which is unknown in practice.

There is an extensive theoretical literature on simultaneous confidence bands for models

with a single curve. In a seminal paper, Bickel and Rosenblatt (1973) relate the asymp-
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totic distribution of supx∈X

∣∣∣f̂(x)− E{f̂(x)}
∣∣∣ (that is, ignoring the bias E{f̂(x)} − f(x)

that depends on the unknown f) to the distribution of the supremum of a Gaussian pro-

cess. However, the convergence of these normal extremes is known to be exceedingly slow

with log(n)−1 for sample size n, resulting in very poor performance in small samples.

This has led to the development of confidence bands based on bootstrapping techniques

in combination with slight undersmoothing, see for example Neumann and Polzehl (1998)

and Claeskens and Van Keilegom (2003). In general, such resampling methods are ex-

tremely numerically demanding and the data-driven choice of an appropriate smoothing

parameter is still an open (and difficult) issue. Hence, in applications with large number

of observations and a complicated model structure bootstrapping techniques introduce an

unacceptable computational burden.

For our study of undernutrition of children in Kenya we are confronted with a data set

of nearly 5, 000 observations. The aim is to investigate the relationship between the so-

called Z-score for height for age measuring chronic undernutrition (often called ’stunting’)

typically used by the WHO (see e.g WHO, 1995) and various continuous covariates,

modeled additively. Initial explorative analysis has indicated heteroscedasticity in the

data and has shown that at least one component of the model needs to be estimated using

locally adaptive methods. Such a task is hardly feasible for bootstrap based techniques.

Another approach to building simultaneous confidence bands is to consider the tail proba-

bilities of suprema of Gaussian random processes, exploring its connection to the so-called

volume-of-tube formula, see Sun (1993), Sun and Loader (1994) and Johansen and John-

stone (1990). As long as f can be estimated without a bias, this method yields very good

results for c → ∞ even in small samples, making resampling methods redundant. Re-

cently, Krivobokova et al. (2010) have shown that using the mixed model representation

of penalized splines (for a comprehensive overview see Ruppert et al., 2003) for the curve

estimation in combination with the approach of Sun (1993) has several advantages com-
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pared to other available techniques. However, they only consider univariate models with

homoscedastic errors and do not allow for functional heterogeneity. Certainly, in practice

usually more complicated data situations arise which limits the use of their approach.

Motivated by such a complex data set concerning stunting by age in Kenya, our work

aims at filling this gap. Specifically, we extend the approach of Krivobokova et al. (2010)

to much more involved additive models with heterogenous functional components and

heteroscedastic errors. Further, a completely new specification test for the components of

an additive model is introduced that naturally takes a possibly varying residual variance

as well as spatial heterogeneity of additive model components into account.

Simultaneous inference in additive models has to date not received much attention in the

literature. Härdle et al. (2004) developed simultaneous confidence bands and specification

tests for generalized additive models in the kernel regression context. Wang and Yang

(2009) propose an oracally efficient spline-backfitted kernel smoothing estimator for ad-

ditive models and obtain asymptotic simultaneous confidence bands around the additive

components using results for kernel regression in line with Bickel and Rosenblatt (1973).

The main contribution of this work is an efficient estimation procedure with preliminary

spline smoothing followed by univariate kernel regression, which allows for fast calcula-

tions. Extensions to additive autoregression models are pursued in Wang and Yang (2007)

and in Song and Yang (2010), while Ma and Yang (2011) treated partially linear additive

models. Härdle et al. (2001) proposed locally adaptive (via wavelets) and bandwidth

adaptive specification tests for additive models.

In our work, we employ penalized splines for estimation which avoids backfitting or

marginal integration in additive models and allows to obtain (adaptive) smoothing pa-

rameters from the corresponding (restricted) likelihood simultaneously with the main

parameters of interest. Moreover, estimation of the varying residual variance can be in-

corporated with little additional numerical effort. The main advantage of the method we
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propose in this article is that one can obtain simultaneous confidence bands with very

good small sample properties for sophisticated models – such as additive models with

heterogeneous smooth components and heteroscedastic errors – instantly, i.e. without

resampling methods. Simple and fast calculations allow us also to perform model selec-

tion and specification tests in seconds. The approach is implemented in the R package

AdaptFitOS, making it readily available for practitioners.

The paper is organized as follows. In Sections 2 and 3 additive models with penalized

splines and the data are introduced. In Section 4 uniform confidence bands are considered,

while a new model specification test is proposed in Section 5. The performance of our

approach is investigated in Monte Carlo simulations in Section 6. The methods are used

then to analyze the determinants of undernutrition of children in Kenya in Section 7 before

we conclude in Section 8. Some of the technical details are deferred to the Appendix.

2 Additive models with penalized splines

Let us start with a simple additive model

Yi = β0 +
d∑
j=1

fj(xji) + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (1)

where the constant β0 is an intercept. Without loss of generality we assume non-random

covariates to be scaled to the unit interval, i.e. xj1, . . . , xjn ∈ [0, 1], j = 1, . . . , d. Each

corresponding fj ∈ Cq[0, 1] is a q times continuously differentiable function and is centered

at zero to ensure identifiability, i.e. we assume E{fj(xj)} = 0. To estimate fj with

penalized splines, we define for each fj, j = 1, . . . , d a set of kj < n knots τj = {0 < τj,1 <

. . . < τj,kj < 1} and denote the corresponding spline space of degree p as S(p; τj). This

set consists of p − 1 times continuously differentiable functions, that are polynomials of
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degree p on each [τj,i, τj,i+1). Then, the penalized spline estimator is the solution to

min
sj(x)∈S(p;τj), j=1,...,d

 n∑
i=1

{
Yi − β0 −

d∑
j=1

sj(xji)

}2

+
d∑
j=1

λj

∫ 1

0

{s(q)j (x)}2dx

 , (2)

for some q ≤ p. Claeskens et al. (2009) studied asymptotic properties of univariate

penalized spline estimators under very mild regularity conditions on the distribution of

the covariates and knots, which are further assumed to hold for (2) as well. Note also

that all subsequent results are directly adjustable to random designs. In principle, one

can choose different spline degrees for each S(p; τj) and different penalization orders q for

each sj, but we do not consider this generalization here. To solve (2), represent each sj(x)

as a linear combination of kj + p+ 1 spline functions that form basis in S(p; τj). We use

B-splines in our implementation, although others are also certainly possible. Denote a row

vector Bj(x) = {Bj,1(x, τj), . . . , Bj,kj+p+1(x, τj)} to be some spline basis for S(p; τj) and

let Bj = {Bj(xj1)
t, . . . , Bj(xjn)t}t be the corresponding basis matrix. To obtain centered

estimates for fj, one uses the centered basis matrix B̃j = (In − 1n1tn)Bj, with 1n as an

n-dimensional column vector of ones. Now, representing each sj(x) = B̃j(x)βj allows to

solve (2) as a minimization problem over βj.

Smoothing parameters λj can be chosen using multivariate versions of cross-validation.

An alternative way to estimate smoothing parameters λj is to exploit the link between

penalized splines and linear mixed models. Decompose each B̃jβj = B̃j(F
j
b bj + F j

uuj) =

Xjbj + Zjuj in such a way that (F j
u)tF j

b = (F j
b )tDjF

j
b = 0 and (F j

u)TDjF
j
u = Ik̃j , where

Dj is such that
∫ 1

0
[{B̃j(x)βj}(q)]2dx = βtjDjβj and k̃j = kj +p+1−q. This decomposition

is not unique due to singularity of Dj. In our implementation we followed Durban and

Currie (2003). Assuming

Y |u1, . . . , ud = β0 +
d∑
j=1

(Xjbj + Zjuj) + ε, uj ∼ N (0, σ2
uj
Ik̃j), j = 1, . . . , d, (3)
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for Y = (Y1, . . . , Yn)t and ε ∼ N (0, σ2In) leads to the standard linear mixed model with

the best linear unbiased predictor being equal to the solution of (2) with λj = σ2/σ2
uj

. All

mixed model parameters, including σ2/σ2
uj

, are estimated simultaneously by maximizing

a single (restricted) likelihood function. In our further developments we will use the

estimators for fj that result from the mixed model representation of penalized splines (3),

so that our estimator will have the form f̂j(x) = `tj(x)Y , with the smoothing matrix `j(x)

given by

`j(x) = (I − S−j)Cj{Ct
j(I − S−j)Cj + Λj}−1Ct

j(x), (4)

where model matrix Cj = [Xj Zj], penalty matrix Λj = σ2/σ2
uj

diag(0q, 1k̃j) and

S−j = C−j(C
t
−jC−j + Λ−j)

−1Ct
−j with C−j = [C1, C2, . . . , Cj−1, Cj+1, . . . , Cd] and Λ−j =

blockdiag(Λ1,Λ2, . . . ,Λj−1,Λj+1, . . . ,Λd). For practical implementation standard mixed

models software can be used (e.g. function lme in R).

3 Data on childhood undernutrition in Kenya

Using the model introduced in the previous section we aim to investigate the data on

undernutrition of Kenyan children. Acute and chronic undernutrition is among the most

serious health issues facing developing countries. It is not only an intrinsic indicator of

well-being but also associated with morbidity, mortality, reduced labor productivity, etc.

Moreover, some estimates claim that undernutrition is implicated in more than 50% of

deaths in developing countries (Pelletier, 1994). Given the importance of nutrition for

child development, a particular focus is on promoting adequate nutrition for children.

Consequently, there is an abundant theoretical and empirical literature on the deter-

minants of childhood undernutrition in developing countries (see Horton et al., 2009).

However, most studies are limited to parametric approaches or simple descriptive meth-

ods, not accounting for the complex functional forms of the relationships and neglecting
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the high uncertainty due to the large variability in the data (e.g. Kabubo-Mariara et al.,

2009 and Victora et al., 2010).

In this article we analyze the determinants of child undernutrition in Kenya, using the 2003

round of the Kenyan Demographic and Health Survey (KDHS2003, see Central Bureau

of Statistics (CBS) Kenya et al., 2004). This includes information on n = 4, 561 children,

aged 0–60 months. The data are cross-sectional, i.e. there are no repeated observations

of the same individual. We focus on the Z-score for stunting defined as

Zi =
Hi −med(H)√

Var(H)
,

where Hi is the height of the ith individual at a certain age and med(H) and Var(H) are

the median and variance of the heights in a reference population of well-nourished and

healthy children of the same age, respectively. By this normalization, a suitable Gaussian

response is obtained and international comparability is aimed for. Note that our analysis

is based on the new WHO child growth reference standard which was recently developed

based on the assessment of child growth in healthy populations in six countries across

the world. Roughly, as described in WHO (2006), to obtain med(H) and
√

Var(H) a

generalized additive model for location, scale and shape (GAMLSS) was applied. Thereby,

median heights and standard deviation were estimated as smooth functions of age using

cubic splines with degrees of freedom chosen by (G)AIC. Since children younger than 2

years were measured recumbent and children older than 2 years were measured standing,

0.7 cm were added to all observations of children older than 2 years prior to fitting the

model. This estimated difference of 0.7 cm was obtained as the mean differences between

measurements of recumbent length and standing height of children between 18 and 30

months from which both measurements are available. Further, some power transformation

was applied to age prior to fitting in order to expand the age scale for low age values and

compress it for larger age values. This was necessary in order to avoid oversmoothing for
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low age values where growth is much more rapid than for larger age values. After fitting,

0.7 cm were subtracted from the estimated median curve for all age values larger than 24

months.

Based on the literature on the determinants of chronic undernutrition (e.g. UNICEF,

1998), we start with the following simplified semiparametric model assuming i.i.d. Gaus-

sian errors

Zi = β0 + f1(agei) + f2(bmii) + f3(mheighti) + z′iγ + εi, εi ∼ N(0, σ2), i = 1, . . . , n, (5)

where f1(age), f2(bmi) and f3(mheight) are smooth functions of the age of the child

in months, the Body Mass Index (BMI, defined as weight in kg divided by the squared

height in meters) of the mother and the mother’s height, respectively. Constant smoothing

parameters λj are assumed for all functions. Further, as control variables we add a set

of covariates z including the numbers of years of education of the mother, the sex of the

child as well as the location (rural/urban) and province of the household.

Some of the substantive questions for which a semi-parametric regression approach is

particularly suitable concern the age effect. As shown in the literature on undernutrition

(e.g. Belitz et al., 2010 and references therein), children in developing countries are usually

born with an anthropometric status that is close to the median of the reference population.

Due to poorer nutrition and a poorer health and sanitary environment, many children

begin to fall behind, first in weight, and then in growth so that a growth deficit begins to

emerge. This is usually intensified in the so-called weaning crisis, which ranges from 4 to

8 months of age, when solid foods and liquids are introduced and the poor quality of these

foods and liquids in many poor countries worsens the nutritional status of the child. As

children’s bodies then partly adapt to poorer nutritional and health environment (largely

by becoming more resistant to pathogens, partly by the reduced energy needs for a smaller

body, and partly through lower activity levels), stunting usually stabilizes at around age
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2, i.e. no further deteriorations vis-a-vis a reference population of healthy children is

observed. One of the important questions in the literature concerns the possibility of

catch-up growth (see e.g. WHO, 1995), i.e. improvements of the stunting Z-score over

time, particularly after age 2. Thus an important empirical question to ask is in which

countries and under which contexts such catch-up growth (usually assumed to be possible

particularly between age 2 and 3) is observed. This amounts to testing whether the slope

of the age effect is significantly above 0 in some interval.

A second substantive question concerns the impact of the mother’s nutritional status,

typically proxied by her BMI, on child growth. Some studies (see e.g. Kandala et al.,

2009) have found an inverse U-shape, where initially the BMI serves to improve the Z-

score, but high levels of the BMI could signify poor quality nutrition which then leads to a

worse nutritional status for the child. Again the shape of the curve is thus of interest here.

Similar arguments can be made for the impact of mother’s height on child height which

is likely to be related to genetic transmission as well as inter-generational transmission of

the economic status. Also here the shape of the curve is hard to guess in advance.

To answer these questions certain specification tests based on simultaneous confidence

bands for additive models developed in the subsequent sections need to be employed.

4 Simultaneous confidence bands

4.1 The volume-of-tube formula

Sun and Loader (1994) suggested to build simultaneous confidence bands for a smooth

function using the approximation to the tail probability of maxima of Gaussian random

processes, which turned out to be connected to the volume-of-tube formula. In this case

no bootstrap is necessary and the approach yields quite good results in small samples,

once a function estimator is unbiased. For completeness we give here some details.
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Consider model (1) with d = 1. Let f̃(x) = ˜̀(x)tY be an unbiased estimator of f

and assume λ to be known. This implies that G(x) = Var{f̃(x)}−1/2{f̃(x) − f(x)} =

˜̀(x)tε/‖˜̀(x)‖ is a zero mean Gaussian process with variance one and

Cov{G(x1), G(x2)} =

(
˜̀(x1)

‖˜̀(x1)‖

)t(
˜̀(x2)

‖˜̀(x2)‖

)
=: ηt(x1)η(x2),

with manifold {η(x) : x ∈ [0, 1], η(x) = (η1(x), . . . , ηn(x))}. Then, according to Sun and

Loader (1994), it holds for c→∞

α = P

(
sup
x∈[0,1]

|G(x)| ≥ c

)
=
κ0
π

exp
(
−c2/2

)
+ 2{1− Φ(c)}+ o

{
exp(−c2/2)

}
, (6)

with κ0 =
∫ 1

0
‖ d
dx
η(x)‖dx the length of the manifold η(x) and Φ(·) the distribution function

of a standard normal distribution. With this, the 100(1 − α)% simultaneous confidence

band for f(x), x ∈ [0, 1] has the form

f(x) ∈
[
f̃(x)− c

√
Var{f̃(x)}, f̃(x) + c

√
Var{f̃(x)}

]
, ∀x ∈ [0, 1],

where c is found by inverting (6). In practice, however, all nonparametric estimators

of f are biased and the smoothing parameter λ is estimated from the data, introducing

extra variability. Both problems have been discussed in Krivobokova et al. (2010) who

suggested (in the univariate case) to use instead of c a critical value cm obtained from

the mixed model representation of penalized splines (3). Some heuristic arguments and

an extensive simulation study confirmed that this approach has very good small sample

properties. Also, they showed that the variability due to the estimation of the smoothing

parameter σ2/σ2
u is negligible, once a small q is used. Thereby, one has to use enough

knots (k proportional to nν/(2q+1), ν > 1) to ensure that the approximation bias of the

penalized spline estimator is negligible (approximation bias arises due to the fact that a
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smooth function f is replaced by a spline; it converges to zero with k−p−1). For more

details on the bias structure of penalized splines see Claeskens et al. (2009). In the next

section we discuss how cm can be obtained for a general additive model.

4.2 Simultaneous confidence bands for additive models

We consider model (3) and assume that sufficiently many knots are taken, so that the

approximation bias is small enough and one can replace fj(x) by Xj(x)bj + Zj(x)uj =:

Cj(x)θj directly. To obtain cm,j we consider the marginal distribution of Y , that is

Y ∼ N

(
β0 +

d∑
j=1

Xjbj, σ
2In +

d∑
j=1

σ2
uj
ZjZ

t
j

)
.

With respect to this distribution we obtain a zero mean Gaussian process

Gm,j(x) =
Cj(x)(θ̂j − θj)√

Cj(x)Cov(θ̂j − θj)Cj(x)t
∼ N (0, 1),

where Cov(θ̂j − θj) = {Ct
j(In − S−j)Cj + Λj}−1 and

Cov{Gm,j(x1), Gm,j(x2)} =

(
`m,j(x1)

‖`m,j(x1)‖

)t(
`m,j(x2)

‖`m,j(x2)‖

)
=: ηtm,j(x1)ηm,j(x2),

with `m,j(x) = {Ct
j(I − S−j)Cj + Λj}−1/2Ct

j(x). Since Gm,j(x) is a zero mean Gaussian

process, we can apply the volume-of-tube formula to obtain cm,j from

P

(
sup
x∈[0,1]

|Gm,j(x)| ≥ cm,j

)
=
κm,j
π

exp
(
−c2m,j/2

)
+ 2{1− Φ(cm,j)}+ o

{
exp(−c2m,j/2)

}
, (7)

12



with κm,j =
∫ 1

0
‖ d
dx
ηm,j(x)‖dx as the length of the mixed model manifold. Now a confi-

dence band around fj based on a penalized spline estimator f̂j is built as

[
f̂j(x)− cm,j

√
Var{f̂j(x)}, f̂j(x) + cm,j

√
Var{f̂j(x)}

]
,

where Var{f̂j(x)} = σ2‖`j(x)‖2 with `j(x) defined in (4). A careful check shows that the

proofs in Krivobokova et al. (2010) carry over to our complex case. Hence, this confidence

band should have coverage probability close to the nominal level without further correc-

tions. The critical value cm,j is obtained directly from (7) and no bootstrap is necessary.

The small sample performance of this band is investigated in Section 6.1.

4.3 Simultaneous bands for additive models with spatially het-

erogeneous components and heteroscedastic errors

So far we assumed a constant error variance σ2. This assumption of homoscedasticity may

often be violated when the variance changes with some covariate or depends on E(Y ).

Further, we assumed constant smoothing parameters λj, which may be too restrictive

for functions that exhibit strong spatial heterogeneity. For example, the mean function

can change rapidly for low covariate values and remains rather constant afterwards. This

makes it necessary to penalize little in one part of the covariate support and more severely

in another, which is referred to as locally adaptive smoothing. To relax these assumptions,

we define ujs ∼ N{0, σ2
uj

(τj,s)}, s = 1, . . . , kj and εi ∼ N{0, σ2(x̃i)}, i = 1, . . . , n, where

x̃ is one of the covariates or some linear combination of them. Assuming that the variance

processes σ2
uj

(τj) and σ2(x̃) are smooth functions, we model them with penalized splines

and estimate using the link to mixed models. More precisely, we define a hierarchical
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mixed model

Y = β0 +
d∑
j=1

(Xjbj + Zjuj) + ε, ε|v ∼ N(0, σ2Σε), uj|wj ∼ N(0, Σuj),

Σε = diag{exp(Xvγ + Zvv)}, v ∼ N(0, σ2
vIkv), (8)

Σuj = diag{exp(Xwj
δj + Zwj

wj)}, wj ∼ N(0, σ2
wj
Ikwj

),

where Xv and Zv are obtained by decomposing Bj in the same fashion as described in

Section 2, but based on a smaller number of knots kv � kj. In contrast, Xwj
and Zwj

are obtained by decomposing the basis matrix Bj = {Bj(τj,1, τwj
)t, . . . , Bj(τj,kj , τwj

)t}t.

This basis matrix is obtained by treating knots τj as observations and choosing as knots

τwj
a smaller subset of τj. All parameters of this model can be estimated from the

corresponding (restricted) likelihood. A similar idea was suggested in a fully Bayesian

framework with d = 1 and MCMC techniques by Crainiceanu et al. (2007). To overcome

the numerically intensive computations of the latter, Krivobokova et al. (2008) suggested

to use the Laplace approximation of the likelihood. They have shown, that the resulting

estimator is nearly identical to the Bayesian one, but can be obtained with considerably

smaller numerical effort. In Appendix A.1 we extend the method of Krivobokova et al.

(2008) to the model with heteroscedastic errors and provide some details on the estimation

procedure.

The smoothing matrix for the given penalized spline estimators has now the form

`j(x) = Σ−1ε (I − S−j)Cj{Ct
jΣ
−1
ε (I − S−j)Cj + Λj}−1Ct

j(x) (9)

with Λj = σ2 blockdiag(0q,Σ
−1
uj

) and S−j = C−j(C
t
−jΣ

−1
ε C−j + Λ−j)

−1Ct
−jΣ

−1
ε . Note that

Var{f̂j(x)} = σ2`j(x)tΣε`j(x). Then, simultaneous confidence bands can be obtained as

described in Section 4.2. Since kwj
and kv are both typically very small (5 – 10 subknots
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are usually sufficient), following the arguments of Krivobokova et al. (2010) one can show

that the variability due to estimation of Σε and Σuj is negligible for sufficiently large n

and small q. Our simulation study in Section 6.2 confirms this. The approach can also be

used for investigating the statistical significance of features like dips and bumps. In order

to do so, choose q ≥ 2 and build the simultaneous confidence band around the estimated

first derivative of fj using

`′j(x) = Σ−1ε (I − S−j)Cj{Ct
jΣ
−1
ε (I − S−j)Cj + Λj}−1C

′t
j (x),

where Cj(x) in (9) is replaced by the first derivative of the basis matrix C ′j(x) (see Ruppert

et al., 2003, Chapter 6.8). Analogously, the critical value is obtained by replacing `m,j(x)

by `′m,j(x).

Thus, using the mixed model representation of penalized splines one can estimate com-

plex additive models with varying smoothing parameters and varying residual variance

easily and obtain simultaneous confidence bands for the corresponding functions without

additional effort.

5 A new specification test

The constructed simultaneous confidence bands can now be used for testing a paramet-

ric regression specification versus a quite general nonparametric alternative modeled by

penalized splines. That is, we test the hypotheses

H0 : fj(x) = f 0
j (x) vs H1 : fj(x) = f 0

j (x) + gj(x), ∀x ∈ [0, 1],

with f 0
j (x) as a pre-specified polynomial function, whereas gj(x) is an unspecified devi-

ation. The idea is to write fj(x) = f 0
j (x) + Zj(x)uj and to exploit the orthogonality
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of f 0
j (x) and Zj(x)uj. Then, the above test is equivalent to testing H0 : Zj(x)uj = 0.

This hypothesis can be checked by constructing a simultaneous confidence band around

gj(x) = Zj(x)uj. Since any spline function of degree q can be decomposed into a q − 1

degree polynomial and a remainder, we can always choose such ψl that f 0
j (x) =

∑q−1
l=1 ψlx

l.

Obviously, the test procedure corresponds to checking whether the confidence band for

Zj(x)uj uniformly encloses the zero line coinciding with the test statistic

Tj = sup
x∈[0,1]

(
|Zj(x)ûj|/

√
Var{Zj(x)ûj}

)
.

Rejection of H0 takes place if Tj > c∗m,j. The critical value c∗m,j and Var{Zj(x)ûj} =

σ2‖`j(x)‖2 are obtained by replacing Cj and C−j in definitions (4) and (7) by Cj := Zj

and C−j := [X1, Z1, . . . , Xj−1, Zj−1, Xj, Xj+1, Zj+1, . . . , Xd, Zd], as well as appropriately

adjusting Λj and Λ−j. Adjustments to the cases of heteroscedastic errors and locally

adaptive smoothed components follow from the definitions in Section 4.3. Note that

approximative p-values can be obtained by calculating the tail probabilities using the

volume-of-tube formula (7) replacing cm,j by Tj.

By exploiting the decomposition of a spline function, improved power is obtained com-

pared to the test strategy proposed in Claeskens and Van Keilegom (2003), for example.

They build their proposed test on the simultaneous confidence band around fj itself with

the hypotheses H0 : fj(x) = f 0
j (x) vs H1 : fj(x) 6= f 0

j (x), ∀x ∈ [0, 1], and rely on local

polynomials for estimation and bootstrapping to obtain the critical value. Thereby, the

data-driven choice of smoothing parameters is still an open problem.

Similar to our findings for the confidence bands, our test also has the advantage of per-

forming well in small samples and of being analytically available, i.e. no bootstrap or

Monte Carlo simulation is necessary (as in Härdle et al., 2004, for example). In particu-

lar, this test is preferable to F-type tests as used in the R package mgcv, which tend to
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underestimate p-values when smoothing parameters are estimated. As we will show in

Monte Carlo simulations in Section 6.3, the proposed test not only performs competitively

compared to restricted likelihood ratio tests (RLRT, see e.g. Crainiceanu et al., 2005),

but also allows to incorporate spatially adaptive smoothed curves without any additional

effort.

6 Monte Carlo studies

6.1 Simulation 1: Simultaneous confidence bands for additive

models

First, we generate data from model (1) for d = 3 with homogeneous functions and i.i.d.

Gaussian errors. The covariates are taken to be independent and uniformly distributed

over [0, 1]. The true functions fj, shown in Figure 1(a) – (c) (centered to have zero mean),

are simulated according to

f1(x) = sin2{2π(x− 0.5)},

f2(x) =
6

10
β30,17(x) +

4

10
β3,11(x),

f31(x) = x(1− x),

with βl,m = Γ(l+m){Γ(l)Γ(m)}−1xl−1(1−x)m−1. Functions f1 and f2 were also considered

in Krivobokova et al. (2010), while f31 was used by Claeskens and Van Keilegom (2003).

We scaled all three functions such that their standard deviations are all equal to one

providing comparable signal-to-noise ratios (SNR).

We consider three different sample sizes (300, 600 and 1000), kj = 40, j = 1, 2, 3 knots

and σ ∈ {0.33, 0.5, 1.0}, corresponding to medium, low and very low SNR, that is
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√
Var{fj(xj)}/σ ∈ {3, 2, 1}. We used B-spline bases of degree three with penalties on the

integrated squared second derivatives (q = 2) of the spline functions. Results for kj = 80

knots were very similar and are therefore discarded. Table 1 shows the coverage rates

based on a Monte Carlo sample size of 1000 and nominal coverage 100(1 − α)% = 95%.

All coverage rates are very close to the nominal level of 0.95, except for f2 in the case of

σ = 1.0 and n = 300. In the latter case, the SNR is too low for the given small sample size

such that the second peak of function f2 could not be recovered frequently. This led to

coverage rates lower than the nominal level, since the confidence bands were not correctly

centered. Note, however, that this setting is very extreme compared to common settings

used in simulations to test the performance of other approaches to simultaneous confidence

bands (e.g. Claeskens and Van Keilegom, 2003), where usually considerably larger signal-

to-noise ratios are used. Compared to these studies, we thus find that our approach

works rather well also in quite unfavorable data situations. Additionally, we replicated

the simulation setting with covariates sampled randomly from the uniform distribution as

well as with correlations between the covariates and obtained almost identical coverage

rates. Results are available upon request from the authors.

6.2 Simulation 2: Additive model with locally adaptive

smoothed components and heteroscedasticity

In the second simulation study, function f31 of simulation 1 is replaced by function f32

shown in Figure 1(d) which is defined as

f32(x) = exp{−400(x− 0.6)2}+
5

3
exp{−500(x− 0.75)2}+ 2 exp{−500(x− 0.9)2}.

This function was also considered e.g. in Krivobokova et al. (2008) and exhibits strong

heterogeneity. Further, we introduce heteroscedasticity by specifying σ(x2) = σ−0.2(x2−
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x2) where x̄2 denotes the arithmetic mean x̄2 = n−1
∑n

i=1 x2i. We consider either (i)

constant smoothing parameters and error variance or (ii) varying error variance σ2(x2)

and adaptive smoothing parameter λ3(τ3) for f32 (kw3 = kv = 5 knots). All other settings

remain the same as in Section 6.1.

Table 1 shows the coverage rates for 100(1 − α)% = 95%. Coverage probabilities for

function f1 are very close to the nominal level regardless whether heterogeneities are taken

into account or not except for σ = 1, n = 300 where the apparently worse overall model fit

in (i) led to undercoverage. For function f2 coverage probabilities improve considerably by

taking heteroscedasticity into account such that rates of 0.94 or 0.95 are achieved except

for the σ = 1, n = 300 case. Note the virtually identical average areas in (i) and (ii),

i.e. the improvement is not ascribed to overall wider confidence bands. Locally adaptive

estimation of f32 leads to a similar improvement and nearly perfect coverage rates were

obtained, except for n = 300 and the very low SNR. Further, the average sizes of the

bands are decreased notably, due to improved estimation of the horizontal part of f32.

However, estimation of the wiggly part of function f32 regularly failed for the smallest

sample size or high noise settings, resulting in slight undercoverage in these cases. That

is, although the volume-of-tube formula does not require n → ∞, we observe improved

coverage probabilities for increasing sample sizes, due to more precise function estimation.

Summarizing, the sample size must be large enough in low signal-to-noise settings such

that the functions can properly be recovered, which is, however, a feature common to all

approaches to confidence bands. Overall, we found the approach to perform very well

even in these relatively complex models and extreme settings.
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6.3 Simulation 3: Nonparametric specification test

We now compare the performance of the proposed test with the restricted likelihood ratio

test of Crainiceanu et al. (2005). We consider additive models with i. i. d. Gaussian errors

Y = µj(x1, x2, x3) + ε, ε ∼ N (0, σ2I), j = 1, 2, 3 with

µ1(x1, x2, x3) = ϕf1(x1) + x2(1− x2) + f2(x2) + x3 + f32(x3)

µ2(x1, x2, x3) = f1(x1) + x2(1− x2) + ϕf2(x2) + x3 + f32(x3)

µ3(x1, x2, x3) = f1(x1) + x2(1− x2) + f2(x2) + x3 + ϕf32(x3)

where ϕ ∈ [0; 0.6] corresponds to the separation distance between the null and the alterna-

tive. We test for no effect, second degree polynomial and for linearity of the components

f ∗1 (x1) = ϕf1(x1), f
∗
2 (x2) = x2(1−x2) +ϕf2(x2) and f ∗3 (x3) = x3 +ϕf32(x3), respectively.

To do so, B-spline bases with (p = 1, q = 1), (p = 5, q = 3) and (p = 3, q = 2),

respectively, are used.

Further, we choose σ = 0.33, n = 300, kj = 40, j = 1, 2, 3 and kw3 = 5. (Results

for n = 600 led to the same conclusions and are therefore not reported here.) Three

Monte Carlo simulations with 1000 replications each were carried out. Critical values for

the RLRT test were computed using the simulation based approximation to the RLRT

distribution implemented in the R package RLRsim (see Scheipl et al., 2008 which also

includes a comprehensive comparisons of RLRT with F-type tests). The power curves of

the proposed test and the RLRT test are virtually identical. The rejection rates are given

in Figure 2.
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7 Studying undernutrition in Kenya

We start by estimating the model (5). Figure 3 shows the estimated functions based on

B-splines with p = 5, q = 3 and k1 = 40, k2 = k3 = 30. In Figure 3(b), the partial

residuals seem to exhibit a larger variability for small BMI values than for large BMI

values. This could indicate a dependency between the Body Mass Index and the variance

of the error term, which we want to explore by modeling the error variance as a smooth

function of bmi. Further, the bump between the ages of 30 and 50 months in the enlarged

plot of f̂1(age) shown as grey line in Figure 5(a) could be an artefact due to the constant

smoothing parameter used. Since the Z-score decreases rapidly in the first 20 months and

remains nearly constant afterwards, it seems reasonable to estimate the effect of age with

a locally adaptive smoothing parameter, as discussed in Section 4.3. Note that WHO

(2006) also faced this problem of functional heterogeneity in their derivation of reference

standards used to construct the Z-scores. However, instead of locally adaptive smoothing,

a rather crude approach was chosen to address the issue (see Section 3).

Naturally, neglecting these heterogeneities in smoothness and error variance could lead

to wrong conclusions. Figure 5 shows the results for model (5) supplemented by these

two features. Results for parametric effects are available upon request from the authors.

The density plot in Figure 4(a) shows that now the residual distribution is reasonably

close to the Gaussian distribution. That is, we can consider the distributional assumption

for the validity of the given confidence bands to be fulfilled. The estimated smoothing

parameter function λ̂1(τ1) shown in Figure 4(b) penalizes the roughness of f1(age) more

strongly for larger age values. This ensures that the ’wiggliness’ of the age effect between

30 and 50 month disappears. The estimated function of the residual standard deviation

in Figure 4(c) indicates a slightly decreasing trend with bmi, however, barely affecting

the width of the confidence bands in Figure 5.

The resulting estimated fit of the mother’s BMI is positive and statistically significant
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based on a 5% significance level, since the zero line lies not entirely inside the simultaneous

confidence band. However, the effect of bmi is more or less linear and, according to the

test proposed in Section 5, does not significantly deviate from the parametric fit (with

a p-value of 0.652). That is, the inverted U shape of the effect of the mother’s BMI

mentioned before is not confirmed for our Kenyan data. Similarly, the estimated function

of the mother’s height (mheight) is virtually linear and does not significantly deviate

from the parametric fit (p-value 1). Regarding the age effect, we find a clearly nonlinear

relationship and a significant deviation from the parametric linear fit (the p-value of our

test is < 0.0001). Note also that the hypothesis of a quadratic age effect would be rejected

indicating that the commonly used parametric models quadratic in age are vulnerable to

misspecification bias and inference for other variables of interest could be misleading.

The child’s nutritional status seems to be more or less constant for the first three or four

months of age, which is, however, associated with high uncertainty. Then, as already

been suggested by the nutritional literature, there is a virtually linear deterioration until

some inflection point at about 20 months of age after which there seems to be some

improvement. In order to investigate whether this catching-up is real, i.e. statistically

significant, we compute the first derivative of the function of age, which is given in Figure 6.

The slope observed after the inception point until approximately 28 months is marginally

significant on a 5% level, since the 95% confidence band around the first derivative does

not include the zero line for this range. Afterwards, the zero line is included, meaning that

we cannot reject the null hypothesis of no catching-up for ages larger than 28 months.

Despite the efforts of the WHO to improve the comparability of Z-scores by age by in-

troducing a new reference standard derived from samples of comparable populations of

children younger and older than 24 months, there still could be some problems. For ex-

ample, the estimated derivative could also be picking up the fact that children younger

than 2 years were measured recumbent and children older than 2 years were measured
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standing. To account for this, the reference standard was adjusted assuming a difference

of 0.7 cm as described in Section 3. Note that this difference is associated with high un-

certainty. Also, using the mean differences between recumbent length and height instead

of the median could make the estimate sensitive to a very likely skewed distribution. If

this estimate is not appropriate or this difference is smaller for the Kenyan children (who

were smaller in average than the sample of healthy children from well-to-do families which

form the reference standard), this could have led to the observed effect which therefore

has to be treated with caution. To see this, we show in Figure 6(b)-(c) what would happen

if the difference between children measured lying down and standing was assumed to be

only 0.3 cm. Given that the children in Kenya are generally much worse nourished than

children in the reference standard, this might well be the case. As shown in the figure, if

the difference were only 0.3 cm, the significant effect of catch-up growth would disappear.

Similarly, if there is substantial age misreporting around that age group, the reliability of

the finding of catch-up growth could be open to question.

8 Discussion

In this paper we construct simultaneous confidence bands for additive models with varying

residual variance and spatially heterogenous smooth components. In doing so, the use

of the mixed model representation of penalized splines not only allows for the fast and

efficient estimation of such complex models, it also helps to build simultaneous confidence

bands with very good small sample properties instantly, that is without using bootstrap

or other numerically demanding techniques. Moreover, this technique can be used to

construct specification tests for the additive components. Our simulation study confirmed

that the resulted coverage probabilities are very close to the nominal level even for small

sample sizes and the specification test is competitive to simulation based alternatives.

When studying data on undernutrition of children in Kenya the suggested model, the
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simultaneous confidence bands, and corresponding specification tests generated useful

insights into drivers of undernutrition of Kenyan children, particularly the highly non-

linear age affect. Our analysis indicates a statistically significant improvement of the

stunting score between ages of 23 and 28 months. This, however, could also be due to

differences in height measurements of children younger/older than 24 months and therefore

requires further investigation. For children older than 28 months, no evidence for catch-up

growth with respect to the reference population is found. From a model selection point

of view, our analysis emphasizes the importance of flexible estimation of the age effect

in order to avoid misspecification bias in the fully parametric models that are frequently

employed in this context. Note that the data exhibit both heterogeneity in the functional

form of some additive components as well as heteroscedasticity.

Possible further extensions are to include random effects and multidimensional compo-

nents into the additive model, as well as to account for possible serial correlations in

the data. It is important to note that the confidence bands considered rely explicitly on

the assumption of normality of the data. Even though for symmetric distributions and

sufficiently large sample sizes this assumption is less crucial and good results are typically

obtained (see Loader and Sun, 1997), some corrections would be needed for highly skewed

data. The proposed approach is quite fast and can readily be applied to large data sets

despite its nonparametric nature. It is implemented in the R package AdaptFitOS.
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A Appendix

A.1 Estimation of varying residual variance

To keep the exposition as clear as possible we will cover the single covariate case with

varying residual variance and constant smoothing parameter. Details on the estimation

of a model with varying smoothing parameter and constant error variance are given in

Krivobokova et al. (2008). The combination of varying smoothing parameter with varying

residual variance, as well as the extension to additive models, is straightforward. Thus,

in the following we provide details only on the estimation of the model

Y |u, v ∼ N(Xb+ Zu, σ2Σε), u ∼ N(0, σ2
uIk),

Σε = diag{exp(Xvγ + Zvv)}, v ∼ N(0, σ2
vIkv) (10)

The marginal likelihood of model (10) is given by

L(b, γ, σ2
u, σ

2, σ2
v) = (2π)−

(n+kv)
2 σ−kvv

∫
Rkv

exp{−g(v)}dv (11)

where 2g(v) = log |V |+ vtv/σ2
v + (Y −Xb)tV −1(Y −Xb), with V = σ2Σε + σ2

uZZ
t.

Since the integral in (11) is not available analytically, we opt to use the Laplace approxima-

tion. This is justified because the approximation error is of order kv/n (see Severini, 2000)

and we assumed kv � n. After applying the Laplace approximation, the log-likelihood

corresponding to (10) results in

−2l(b, γ, σ2, σ2
v , σ

2
u) ≈ kv log σ2

v+log |V (v̂)|+log |Ivv(v̂)|+ v̂tv̂

σ2
v

+(Y −Xb)tV −1(v̂)(Y −Xb),

with v̂ as a solution to 0 = ∂g(v)/∂v = −Zt
v

[
{(ZZt)−1Zb̂}2σ2Σε − diag(A1)

]
/2 + vσ−2v ,

25



where A1 denotes the vector of diagonal elements of matrix A = Z(Ztσ−2Σ−1ε Z +

σ−2u Ik)
−1Zt(ZZt)−1σ−2u . The corresponding Fisher information matrix is given by Ivv(v) =

E (∂2g(v)/∂v∂vt|v) = Zt
vdiag(A2)Zv/2 + σ−2v Ikv . Here, A2 is the vector of diagonal ele-

ments of matrixA2. Introducing notations ω = (γ, v), Cv = [Xv Zv] andDv = diag(0, Ikv),

one can obtain estimates γ̂ and v̂ simultaneously from the iterated weighted least squares

ω̂ =
1

2

(
1

2
Ct
vdiag(A2)Cv + σ−2v Dv

)−1
Cvdiag(A2)α, (12)

with the working vector α = Cvω + diag(A−12 ){(ZZt)−1Zb̂}2σ2Σε − diag(A1). The corre-

sponding variance is estimated as

σ̂2
v = v̂tv̂/tr{Zt

vdiag(A2)ZvI
−1
vv }. (13)

Thus, the parameters of model (10) can be estimated by iterating between estimation of

b̂, û, σ̂2, σ̂2
u for a fixed ω and σ2

v using standard linear mixed model software and updating

ω̂ and σ̂2
v from (12) and (13). To use the restricted likelihood, one has to replace g(v) by

gr(v) = g(v) + log |X tV −1X|/2.
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Härdle, W., Sperlich, S., and Spokoiny, V. (2001). Structural tests in additive regression.

Journal of the American Statistical Association, 96:1333–1347.

Horton, S., Alderman, H., and Rivera, J. (2009). Hunger and malnutrition. In Lomborg,

B., editor, Global Crises, Global Solutions. Cambridge University Press, Cambridge,

2nd ed.

Johansen, S. and Johnstone, I. (1990). Hotelling’s theorem on the volume of tubes: some

illustrations in simultaneous inference and data analysis. The Annals of Statistics,

18(2):652–684.

Kabubo-Mariara, J., Ndenge, G., and Mwabu, D. (2009). Determinants of children’s

nutritional status in Kenya: Evidence from demographic and health surveys. Journal

of African Economies, 18(3):363.

Kandala, N., Fahrmeir, L., Klasen, S., and Priebe, J. (2009). Geo-additive models of

27



childhood undernutrition in three sub-Saharan African countries. Population, Space

and Place, 15(5):461–473.

Krivobokova, T., Crainiceanu, C., and Kauermann, G. (2008). Fast adaptive penalized

splines. Journal of Computational and Graphical Statistics, 17(1):1–20.

Krivobokova, T., Kneib, T., and Claeskens, G. (2010). Simultaneous confidence bands

for penalized spline estimators. Journal of the American Statistical Association,

105(490):852–863.

Loader, C. and Sun, J. (1997). Robustness of tube formula based confidence bands.

Journal of Computational and Graphical Statistics, 6(2):242–250.

Ma, S. and Yang, L. (2011). Spline-backfitted kernel smoothing of partially linear additive

model. Journal of Statistical Planning and Inference, 141(1):204–219.

Neumann, M. H. and Polzehl, J. (1998). Simultaneous bootstrap confidence bands in

nonparametric regression. Journal of Nonparametric Statistics, 9(4):307–333.

Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. Journal of the

American Statistical Association, 83(404):1134–1143.

Pelletier, D. (1994). The relationship between child anthropometry and mortality in

developing countries: implications for policy, programs and future research. Journal of

nutrition, 124:2047–2081.

Ruppert, D., Wand, M., and Carroll, R. (2003). Semiparametric Regression. Cambridge

University Press, Cambridge, U.K.
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Table 1: Coverage rates in simulations together with average areas in parenthesis. For
simulation 2 results for either constant smoothing parameters and error variance (columns
(i)) or varying error variance σ2(x2) and adaptive smoothing parameter λ3(τ3) for f32
(columns (ii)) are given.

Simulation 1 Simulation 2
σ n f1 f2 f31 f1 f2 f32

(i) (ii) (i) (ii) (i) (ii)

0.33 300 0.94 0.94 0.95 0.93 0.94 0.89 0.94 0.92 0.93
(0.45) (0.49) (0.31) (0.46) (0.44) (0.51) (0.51) (0.69) (0.51)

600 0.95 0.94 0.95 0.95 0.95 0.89 0.94 0.93 0.95
(0.35) (0.38) (0.23) (0.36) (0.34) (0.39) (0.38) (0.52) (0.38)

1000 0.96 0.95 0.96 0.95 0.94 0.88 0.95 0.94 0.95
(0.28) (0.31) (0.19) (0.29) (0.27) (0.32) (0.31) (0.42) (0.29)

0.50 300 0.94 0.93 0.94 0.93 0.95 0.90 0.94 0.90 0.92
(0.61) (0.67) (0.42) (0.63) (0.62) (0.70) (0.69) (0.95) (0.73)

600 0.94 0.95 0.95 0.95 0.94 0.91 0.95 0.92 0.95
(0.48) (0.52) (0.32) (0.48) (0.47) (0.53) (0.53) (0.72) (0.55)

1000 0.95 0.95 0.96 0.95 0.95 0.91 0.94 0.93 0.95
(0.39) (0.42) (0.26) (0.39) (0.39) (0.43) (0.43) (0.59) (0.42)

1.00 300 0.93 0.88 0.95 0.91 0.94 0.87 0.90 0.71 0.81
(1.03) (1.12) (0.71) (1.05) (1.06) (1.16) (1.18) (1.54) (1.26)

600 0.95 0.93 0.96 0.95 0.94 0.92 0.93 0.86 0.92
(0.8) (0.87) (0.54) (0.81) (0.81) (0.89) (0.89) (1.22) (0.97)

1000 0.94 0.94 0.97 0.95 0.94 0.93 0.94 0.89 0.92
(0.66) (0.72) (0.44) (0.67) (0.66) (0.73) (0.73) (1.01) (0.76)
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Figure 1: True functions in simulations 1 (top and bottom left) and 2 (top and bottom
right) scaled to have variance 1.
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Figure 2: Empirical power curves of the proposed test (solid lines) and RLRT test (dashed
lines) in simulation 3.
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Figure 3: Estimated effects with corresponding partial residuals in model (5).
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Figure 4: In (a), the gray line corresponds to the standard normal pdf. In (b) and (c),
the estimated smoothing parameter function λ̂1(τ1) and the estimated residual standard
deviation σ̂(bmi) based on kv = kw1 = 5 knots are given.
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Figure 5: Estimated effects in the final model. As gray lines, in (a) the fit assuming con-
stant smoothing parameter and in (b) and (c) the linear fits are superimposed. 95% simul-
taneous confidence bands assuming homoscedasticity (light gray area) and heteroscedas-
ticity (dashed lines) are practically identical and can therefore hardly be distinguished.
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Figure 6: (a): Estimated first derivative of the age effect with 95% simultaneous confi-
dence band. (b) and (c): Estimated age effect and its first derivative assuming that the
recumbent length and standing height only differ by 0.3 cm.
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