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Abstract

The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selec-
tion. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition
and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of geno-
typed animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to
5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081
individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substan-
tially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing
(co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially,
depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens ro-
tations would be the method of choice in this particular application as it provided an exact solution within a fairly rea-
sonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources
allow its use.
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Introduction

Most applications in animal breeding involve the so-
lution of systems of equations with very large numbers of
unknowns. For instance, with multiple or single trait animal
models or random regression test-day models the number
of parameters increases as a function of the number of ani-
mals being evaluated, which are not so rarely in the hun-
dreds of thousands or above. The coefficient matrices that
arise from these kinds of problems are too large to be stored
in high speed memory. For this reason, iterative solvers,
both on data or on the mixed model equations, have gained
high popularity and are widely employed in genetic evalua-
tion of livestock. When an iterative algorithm is applied for

the solution of a linear system, one cannot obtain the ele-
ments of the inverse of the coefficient matrix. Therefore,
prediction error variances and standard errors of estimates
have to be calculated in an indirect way and are conse-
quently approximated values.

Recent advances in molecular genetic techniques
have led to the availability of information on a large num-
ber of sequence variations across the genome. This new
source of information has launched a series of studies (e.g.,
Meuwissen et al., 2001; Xu, 2003) attempting to associate
such sequence variations with phenotypic variation in com-
plex traits. If the number of identified variations is large
enough that it covers the entire genome one could assume
that most of the quantitative trait loci (QTL) associated
with a given trait will be in linkage disequilibrium with at
least some of these markers. Genome assisted breeding val-
ues (GEBV) could then be calculated by estimating the ef-
fects of QTL associated with the markers, or alternatively
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the effects of the markers themselves, on the traits of inter-
est and taking the summation of these effects across the
whole genome. High-density panels for genotyping thou-
sands of single nucleotide polymorphisms (SNP) are now
commercially available and their costs are likely to de-
crease over time, which would make genome-wide selec-
tion an affordable procedure in the near future (Schaeffer,
2006). The number of unknowns in the models considered
for the estimation of SNP effect on total genetic merit of in-
dividuals is a function of the number of genotyped SNP,
which may be constant over time. A constant number of un-
knowns and the increasing rate of advances in computer
hardware could make the use of a direct solver an interest-
ing option, as that would make it possible to obtain the
elements of the inverse of the coefficient matrix for calcu-
lating standard errors of estimates.

This research compares the application of iterative
and direct solvers for the estimation of SNP effects with po-
tential use on genomic selection. Possible computational
advantages and disadvantages of the methods were investi-
gated.

Material and Methods

Simulated data

A simulated data set prepared for the XII QTL-MAS
Workshop, held in Uppsala, Sweden, in May 2008, was
used. Data consisted of phenotypes, breeding values and
genotypes for 6,000 SNP on 5,865 animals. Markers were
evenly distributed on six chromosomes of 100 cM each.
Details about the simulation procedures can be found in
Lund et al. (2009).

From the 6,000 markers, 75 had the same genotype
shared by all animals and were then discarded from the
analyses. Twenty five subsets were extracted from the data
set, resembling scenarios that differed in the number of
evenly spaced markers (1,200, 2,400, 3,600, 4,800 and
5,925) and in the number of genotyped animals (1,200,
2,400, 3,600, 4,800 and 5,865).

Real data

Relative performances of the compared numerical
methods were also investigated with their application to
real data. A set of 3081 Holstein-Friesian sires genotyped
for the Illumina BovineSNP50 BeadChip was used. Fol-
lowing usual data quality control procedures, markers with
a call rate (i.e., successfully assigned genotype) lower than
90% or minor allele frequency lower than 1% were ex-
cluded from the initial set. After filtering, 45,181 markers
were kept in the analyses. The response variable used was
the estimated breeding value for milk yield.

Equations to solve

A multiple linear regression model (Xu, 2003) was
employed to estimate SNP effects on breeding values. The
model equation is described below:
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where yi is the breeding value of the ith animal; � is an over-
all mean; xij is the coefficient for the jth SNP genotype of the
ith animal; bj is the slope on the jth SNP genotype; p is the
number of genotyped SNP; ei is a random error.

Coefficients xij were set to -1 for genotype A1A1, 0 for
genotype A1A2 and +1 for genotype A2A2. Regression coef-
ficients can be obtained by the solution of the following set
of mixed model equations:
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where � is a vector of ones, of order equal to the number of

genotyped individuals;  is a square matrix of order p.
Different statistical models can be defined by alter-

nate ways of setting up the matrix . For the sake of sim-
plicity, and as the purpose of this investigation was to
compare numerical rather than statistical methods, the ma-

trix  used in the application to the simulated data was as-
sumed to be an identity matrix.

In the application to the real data, a different proce-
dure was conducted in order to resemble a more realistic

scenario. The matrix  used was an identity matrix times a
ratio of variances, as in the ‘BLUP’ method by Meuwissen
et al. (2001). Furthermore, two alternate forms of ‘BLUP’
analysis were performed: one in which the set of equations

to solve and matrix  were as previously described and an-
other in which each observation was weighted by the effec-
tive number of daughter contributions, a measure of the
reliability of the corresponding estimated breeding value,
which represents a procedure more likely to be used in
practice. The second set of equations was of the form:
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where W was a diagonal matrix with wii element equal to
the effective number of daughter contributions (Fikse and
Banos, 2001) of sire i.

Numerical methods

One iterative method and two direct (decomposi-
tional) methods were used in this study. The iterative
method of choice was Gauss-Seidel with Residual Update
(GSRU), which is a variant of Gauss-Seidel iteration due to
Janss and de Jong (1999). The modification from Gauss-
Seidel consists in updating the vector of residuals in each it-
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eration. A thorough explanation of the method including
the pseudo-code in Fortran 95 (which was used here) is pro-
vided by Legarra and Misztal (2008) in a study of possible
computational methods for use in genome-wide selection.
The convergence criterion employed here was the relative
difference between two consecutive solutions (Lidauer et

al., 1999) and the stopping point was defined when this dif-
ference was lower than 10E-14.

One of the direct methods considered was Cholesky
Decomposition (CHD), which was also included in the
study by Legarra and Misztal (2008). Briefly, it consists in
a factorization of a positive-definite coefficient matrix into
the product LLt where L is a lower triangular matrix. There-
fore the application of the method involves setting up the
mixed model equations, factorizing the left hand side and
solving two triangular systems.

The other direct method employed in this study was a
row-wise algorithm for orthogonal (QR) decomposition,
namely Givens planar rotations (Givens, 1954). According
to Bai et al. (2001), orthogonal factorization is strongly ro-
bust and numerically stable. The standard form of Givens
rotations requires a square root operation per rotation and
four multiplications for each pair of off-diagonal elements
in the pivot (r) and working (x) rows:
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Following the rationale underlying the square root
free version of Gram-Schmidt orthogonalization, Gentle-
man (1973) proposed a modification of the procedure in
order to save the square root operation in (3). The modifica-
tion consists in finding not the triangular matrix R (from the
QR decomposition) itself, but rather a diagonal matrix D
and a unit upper triangular matrix R such that:

R D R= .0 5 (4)

The modified algorithm thus rotates a row of the
product D R

0 5. with a scaled row of X:
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Besides avoiding the square root operation in (3), the
updating formulae in (5) also take only three multiplica-
tions for each pair of elements involved in the rotation.
Actually, with a slight modification, an extra multiplication
could still be saved, but it would compromise stability (Bai
et al., 2001). Here an algorithm using the formulae in (5)
presented by Gentleman (1974) was applied and referred to
as Gentleman-Givens (GG) algorithm.

For all the scenarios simulated analyses were run us-
ing the three numerical methods, and computational re-
quirements in terms of time and memory were measured.
All the analyses of the simulated data were run on a
2.0 GHz Intel® E4400 processor in a PC with 2.0 Gb of
RAM. The analyses with the real data required a larger
amount of memory and were therefore run on an SGI Altix
4700 system in which each computer blade had a Dual-
Core Itanium2 Processor (1.6 GHz clock speed, 533 MHz
frontside bus, 16 Mb 3 level cache) with at least 8 Gb
of RAM.

Results

Table 1 presents total processing times and memory
requirements for methods GG, GSRU and CHD for the dif-
ferent numbers of animals and markers considered in the
simulated data. In all scenarios identical solutions were ob-
tained by the three methods. The iterative method did not
have any problem related to convergence and the defined
convergence criterion with stopping point at 10E-14 was
effectively achieved. The average number of iterations was

582 � 50.
In the situation with the lowest number of markers

GSRU was the fastest when the number of animals was also
the lowest. As the number of animals increased, processing
time with GSRU increased at a higher rate than with GG
and CHD. Moreover, as the number of markers increases,
the advantage of GSRU over the direct methods persists
over an increasing number of animals, up to the point when
it is the fastest method for any number of animals. How-
ever, in terms of computing time, it is expected that the di-
rect methods finally outperform GSRU when the number of
animals becomes very large. This trend is illustrated in Fig-
ures 1 and 2.

Regarding the application to real data, the amount of
high speed memory (using single precision storage) de-
manded by the direct methods was 3.8 Gb, whilst GSRU re-
quired 530 Mb. Memory requirements obviously did not
change between the weighted and non-weighted analyses.
Differences in relative performance among methods with
respect to time were observed though. When no weight was
applied the processing time required for the analyses was
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597, 6,235 and 41,011 s for GSRU, GG and CHD respec-
tively. The solutions from GSRU converged (relative dif-
ference between two consecutive solutions lower than
10E-14) after 3,513 iterations.

With the weighted version of the analyses the pro-
cessing time required by the direct methods did not

change: 6,228 and 40,856 s for GG and CHD respec-
tively. However, although weighting the observations
did not cause any exact linear dependency, it turned the
coefficient matrix to be ill-conditioned and considerably
slowed down the rate of convergence with GSRU. The
log10 of relative differences between consecutive solu-
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Table 1 - Computational requirements for solving the equations using Gentleman-Givens (GG), Gauss-Seidel with Residual Update (GSRU) and
Cholesky decomposition (CHD), for the different numbers of animals and markers contemplated in the simulated data set.

Number of
animals

Number of
markers

Method

GG GSRU CHD

Time1 Memory2 Time Memory Time Memory

1,200 1,200 3.1 2.75 2.3 2.75 2.6 2.75

2,400 11.8 10.99 4.4 5.49 14.0 10.99

3,600 26.3 24.73 7.0 8.24 40.4 24.73

4,800 47.4 43.95 9.3 10.99 87.5 43.95

5,925 71.9 66.97 11.5 13.56 156.0 66.97

2,400 1,200 6.2 2.75 8.7 5.49 4.2 2.75

2,400 23.6 10.99 15.4 10.99 20.0 10.99

3,600 52.6 24.73 25.4 16.48 54.0 24.73

4,800 94.9 43.95 36.7 21.97 111.2 43.95

5,925 143.8 66.97 43.4 27.12 191.8 66.97

3,600 1,200 9.4 2.75 19.0 8.24 5.7 2.75

2,400 35.4 10.99 35.3 16.48 26.0 10.99

3,600 78.9 24.73 58.9 24.72 67.2 24.73

4,800 142.3 43.95 83.3 32.96 134.9 43.95

5,925 215.6 66.97 98.4 40.68 227.8 66.97

4,800 1,200 12.6 2.75 30.4 10.99 7.3 2.75

2,400 47.2 10.99 53.9 21.97 32.6 10.99

3,600 105.2 24.73 96.0 32.96 82.1 24.73

4,800 189.7 43.95 131.6 43.95 161.4 43.95

5,925 287.5 66.97 167.5 54.24 268.8 66.97

5,865 1,200 15.3 2.75 42.9 13.42 8.7 2.75

2,400 57.6 10.99 87.3 26.85 38.2 10.99

3,600 128.2 24.73 153.2 40.27 94.2 24.73

4,800 232.0 43.95 192.4 53.70 182.9 43.95

5,925 351.4 66.97 240.2 66.28 301.4 66.97

1in seconds.
2in Megabytes.

Figure 1 - Relative performance of the methods for the lowest, intermediate and the largest number of animals in the simulated data set.



tions across iterations are shown in Figure 3. A less strin-
gent stopping point (10E-12) had to be set in order to
obtain solutions within a reasonable time frame. This
threshold was achieved after 150,850 iterations. Solu-
tions obtained at this point were almost the same as the
ones obtained with the direct methods. Correlation was
greater than 0.999 and mean and maximum absolute dif-
ference between SNP effect estimates were 0.07 and 0.72
respectively. The time required to achieve this level of
convergence was 24,759 s. An even less stringent stop-
ping point (10E-10) was also tried and solutions con-
verged at this level in 1989 s after 12,073 iterations, but
the mean and maximum absolute difference between es-
timates increased to 0.18 and 1.78 respectively. As
pointed out by Legarra and Misztal (2008) it may be pos-
sible to speed up the rate of convergence by the use of a
relaxation factor, but this factor would have to be deter-
mined empirically. Such an approach was not conducted
here in order to keep the different performances of the al-
gorithms comparable.

Discussion

Results from the simulated data illustrate the relative
performance of the different numerical methods and their
deviations from what would be expected from just a com-
plexity analysis of the algorithms. With fewer animals
GSRU was the fastest method regardless the number of
markers whilst processing time sharply increased when
using a direct solver, more pronouncedly with CHD.
Legarra and Misztal (2008) compared several numerical
methods to be considered in SNP effect estimation using a
data set with ~11,000 SNPs and ~2,000 animals. They fit-
ted a model with additive and dominance effects so the to-
tal number of unknowns was ~22,000. In their study, the
processing times with GSRU and CHD were 1.5 and
136 min, respectively.

As it can be seen from Table 1, the main advantage of
GSRU over GG and CHD is the low memory requirement,
which makes it suitable for situations when the number of
parameters is very large. The memory requirement of
GSRU was a linear function of the number of parameters
while memory required by GG and CHD grew quadra-
tically with the number of parameters.

Based on the numbers of arithmetic operations in-
volved in each procedure one would expect that GSRU
would be faster than both CHD and GG for increasing num-
ber of markers, unless a very large number of iterations
were necessary. The number of operations involved in
CHD is np2/2 for setting up the mixed model equations and
(1/3)p3 for the factorization, where p is the number of un-
knowns and n the number of observations. The QR decom-
position via GG requires 2np2 operations. On the other
hand, in GSRU the number of operations is 3np times the
number of iterations.

Since GG implies the application of a sequence of
planar rotations on the rows of the data matrix, setting up
the normal equations is not necessary. One then has to add
some pseudo-observations to the system in a way that is
equivalent to setting up the equations in (2). The data ma-
trix to be factorized becomes:

202 Numerical methods in genomic selection

Figure 2 - Relative performance of the methods for the lowest, intermediate and the largest number of markers in the simulated data set.

Figure 3 - Log10 of relative difference between consecutive solutions
across iterations in GSRU applied to the weighted analysis of the real data.



� X y
~ ~.0 0

0 5

�
�
�

�
�
�

(6)

For the diagonal variance structure of the random ef-
fect, the above redefinition is fairly straightforward and the
elements of the pseudo-observations matrix are easy to
compute.

Augmenting the data matrix by a set of p pseudo-
observations would dramatically increase the amount of
arithmetics needed for decomposition, but this can be
avoided with the following procedure. The order by which
the rows of data are rotated does not affect the factorization
into the product QR. Therefore, the pseudo-observations
can be rotated first. Since they consist of just a diagonal ma-
trix this can be achieved by simply initializing this diagonal
as the initial diagonal of R (instead of a vector of zeros),
which avoids the extra p2 transformations implied by the
augmentation. This strategy was applied here and made the
addition of the pseudo-observations as (almost) costless as

the addition of matrix  to the random part of the MME in
(2). It explains in part why GG was still faster than CHD in
situations with larger numbers of markers and fewer ani-
mals, as it would be expected based on the number of oper-
ations in the case of non-augmented matrices (e.g., fixed
regression).

Legarra and Misztal (2008) pointed out that in large
SNP data applications setting up the MME incurs in a large
amount of non-zeros on the left hand side of the equations,
which makes the system fairly dense. Therefore, with CHD
it is not possible to take any advantage of the sparsity result-
ing from the form of parameterization applied here. On the
other hand, the use of GG makes it possible to explore spar-
sity (not in terms of storage but in terms of savings in arith-
metic operations). Since the MME are not explicitly set up,
all the zeros corresponding to heterozygous genotypes in
the data matrix are preserved, and this can be readily ex-
ploited by simply skipping the transformation. An example
evidence of these savings can be illustrated by the compari-
son between the processing times required by GG and
GSRU in the scenario with the largest number of animals
and markers. Based on the number of operations alone
(2np2 versus 3np times 950 iterations), one would expect
that the difference in processing time between GG and
GSRU would be almost seven times the observed one. The
difference in processing time between GG and CHD when
applied to real data was also much larger than would be ex-
pected from the number of operations only. It also reflects
the impact of these savings in the relative performance of
the algorithms.

The use of a direct solver can allow for calculations
that are not possible with an iterative approach. For in-
stance, a property of GG is that the upper triangular R ob-
tained by QR factorization of a matrix A is equivalent to the
Cholesky factor of the coefficient matrix AtA from the nor-
mal equations. Given that property, it is possible to calcu-

late the elements of (AtA)-1 directly from R without the
need for explicitly setting up the normal equations. Since
AtA = RtR then (AtA)-1 = R-1R-t. To simplify the notation,
let’s call (AtA)-1 = M with columns m1, m2, mn, so that
RM = R-t. Then, since R is upper triangular and R-t is lower
triangular, and noticing that the ith diagonal of R-t is the re-
ciprocal of the ith diagonal of R, it is possible to compute the
elements of columns mn to m1 from bottom to top, one col-
umn at a time. An efficient algorithm for computing the di-
agonals of the inverse can be found in Lawson and Hanson
(1974). Figure 4 presents the time required for calculating
exact standard errors of estimates from the simulated data
using their algorithm for obtaining the diagonals of the in-
verse. It can be seen that the increase in time is approxi-
mately exponential and therefore this procedure is feasible
only in the case of applications with limited number of pa-
rameters. For instance, with the real data used in this study
the calculation was not even attempted. Because of over-
parameterization problems in the genomic selection con-
text, efforts are underway to reduce the dimensionality of
the problem (e.g., Long et al., 2007; Habier et al., 2009). In
the case of pre-selection of a subset of most relevant mark-
ers (e.g., tag SNP) a direct solver could be used for comput-
ing (co)variances of SNP effects. In this case, method GG
as implemented here could be an interesting alternative to
CHD for a few thousand genotyped animals. If a larger
panel, say 50 k, is still preferred and one is interested in
computing (co)variances, this would be possible by block-
ing the SNPs of interest. For instance, one would likely be
interested in investigating covariances among marker ef-
fects within some segments of the genome (e.g., chromo-
some-wise). Reordering the SNPs of interest to be in the

Pimentel et al. 203

Figure 4 - Processing times (in seconds) for estimating standard errors us-
ing Gentleman-Givens /Cholesky decomposition, for different numbers of
markers in the simulated data.



bottom part of R, one can easily compute the inverse of the
last portion of the upper-triangular matrix. In the 50 k
panel, the largest number of markers within a chromosome
was less than 3000, so the computation would take just a
few minutes, as shown in Figure 4.

As discussed earlier, with increasing number of
markers the difference in speed between the iterative and
direct solvers used here tends to become more relevant.
Nevertheless, processing time is not the only issue to be ad-
dressed in the comparison. In fact, since the matrices to be
handled in these applications are dense, memory require-
ments are major factors in the decision on which method to
use. In the implementation of GSRU the data matrix was
kept in high speed memory during the whole execution, be-
cause the size of problem tested here (both with the simu-
lated and real data) allowed for it. For larger problems
though the program can be easily adapted to read it from
hard disk, keeping memory requirements at a very low
level. On the other hand, the direct solvers required the allo-
cation of p*(p+1)/2 positions of memory in a half-storage
structure. For five or ten thousand markers this would mean
approximately 190 Mb (in single precision) at most, which
is not such a high demand even for current personal com-
puters. The memory requirement increases quadratically
with the number of markers. With the application to the real
data for example, moving to ~45,000 markers took about
3.8 Gb and required the use of a more powerful machine.
Therefore, memory space and computer resources avail-
ability are usually the main issue determining the applica-
bility of direct methods.

The relative performance of the solvers may differ in
different scenarios, as shown with the simulated data in
Figures 1 and 2 and with the real data from the results of the
weighted and unweighted analyses. It is therefore difficult
to give a general recommendation on which method to use.
From the results of the analysis with the real data in the
weighted case, GG would be the method of choice in this
particular application as it provided an exact solution
within a fairly reasonable time frame (less than two hours).
It would indeed be the preferred method whenever com-
puter resources allow its use. If the number of markers to be
used in the estimation of genomic breeding values were in
the hundreds of thousands, then GSRU would definitely be
the method of choice, if not the only practically feasible due
to memory requirements and the current status of comput-
ing power. One would then have to experimentally define a
relaxation factor in order to speed up convergence rate. For
the current dimension of the SNP effect estimation problem
in a farm animal context (i.e., ~50 k) the direct methods
were still applicable in practice. It is clear that computer
and genotyping technologies are both developing with an
outstanding rate of progress so it is reasonable to anticipate
that in many future situations a direct solver may be still ap-
plicable.
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