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Zusammenfassung
Für den Ausbau des LHC werden neue Pixeldetektortechnologien entwickelt, gefertigt
und letztendlich erprobt. Für letztere Aufgaben stellen Teststrahlmessungen ein mächti-
ges Werkzeug dar. Um für zukünftige Detektoren gerüstet zu sein, wurden Veränderung
am Rekonstruktionsframework EUTelescope sowie dem Datennahmepaket USBpix vor-
genommen. Die Veränderungen betreffen in erster Linie die Sensorgeometrie wie auch die
Modullayouts. EUTelescope wurde mit einem Sensor-Geometriemanager versehen, wel-
cher es erlaubt allgemeinere Pixelgeometrien als bisher zu rekonstruieren. USBpix ist nun
in der Lage sogenannte Burn-In Adapterkarten mit Multichipmodulen im Teststrahlbe-
trieb auszulesen.

Stichwörter: Physik, Masterarbeit, Teststrahlrekonstruktion und Analyse, Pixeldetek-
toren, Pixelgeometrien, ATLAS, HL-LHC, USBpix, EUTelescope

Abstract
For the upcoming LHC upgrades novel pixel detector technologies are being developed,
manufactured and ultimately tested and characterised. For detector testing and char-
acterisation, testbeam measurements are a useful tool. To support upcoming sensors,
the reconstruction framework EUTelescope, as well as the data acquisition package
USBpix, have been modified. Most notably, these changes concern the sensor geome-
try layouts as well as module layouts. A sensor geometry manager was introduced in
EUTelescope, allowing for more general pixel layouts and USBpix now supports the
read-out of burn-in adapter cards for multi chip modules in testbeam operation.

Keywords: Physics, Master Thesis, Testbeam Reconstruction and Analysis, Pixel Sen-
sors, Pixel Geometries, ATLAS, HL-LHC, USBpix, EUTelescope
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1. Introduction

1.1. The Standard Model and Physics at the LHC

A brief introduction to the Standard Model of Particle Physics (SM) will be given, as well
as a short outlook at the problems which cannot be described without extending it.

1.1.1. Introduction to the Standard Model

The SM is a theory describing interactions between fundamental, subatomic particles,
namely electromagnetic, weak and strong interactions between quarks and leptons. These
forces are mediated by the so-called gauge bosons (Fig. 1.1).
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Figure 1.1.: Overview of elementary particles (cf. [1] for detailed values and uncertain-
ties).
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1. Introduction

From a historical and more mathematical point of view, the electromagnetic and weak
force can be explained by a SU(2)×U(1) gauge group, yielding the electroweak unification.
Via this approach, the original weak isospin and weak hypercharge gauge bosons form the
W± and Z0 bosons via spontaneous symmetry breaking of the electroweak symmetry.
Additionally, a complex scalar Higgs doublet is introduced, which provides a mechanism
of mass generation by this spontaneously broken symmetry. Not only does the Higgs
mechanism give mass to the massive electroweak gauge bosons, but it also provides mass
to the fermions via a Yukawa coupling to them.
The discovery of neutral currents in 1973 [2, 3] at CERN brought the evidence to sup-
port the model of electroweak unification, proposed by Abdus Salam, Sheldon Glashow
and Steven Weinberg, who were awarded the Nobel Prize in 1976. This triggered the
search for the predicted weak gauge bosons. They were discovered at the Super Proton
Synchrotron (SPS) by the two experiments, UA1 and UA2 [4–7], at CERN in 1983. This
discovery lead to the Nobel Prize for Carlo Rubbia and Simon van der Meer, who were
deeply involved in the realization of the SPS just one year later in 1984.
It took roughly 30 years for the discovery of another important ingredient of the elec-
troweak theory, the Higgs boson. It was discovered by the two multi-purpose detectors at
the LHC, ATLAS and CMS, in 2012 [8, 9]. Subsequently, Peter Higgs and François En-
glert received the Nobel Prize for their theoretical work on the Higgs mechanism [10, 11]
in 2013.
Another ingredient of the SM is the theory describing strong interactions, called quantum
chromodynamics (QCD). Like in the previous theory, there is an underlying gauge group,
in this case the SU(3) symmetry group. From an experimental point of view, the history of
QCD is closely linked to probing the structure of the nucleons via deep inelastic scattering
(DIS). DIS was carried out to test the proposed substructure of nucleons, today known
as the quark-model, proposed by Murray Gell-Mann and George Zweig in the mid-60s.
An important milestone was the discovery of the J/ψ meson in 1974 by two groups, one
lead by Samuel Ting at Brookhaven National Laboratory, the other by Burton Richter at
the Stanford Linear Accelerator Center (SLAC)[12, 13]. The J/ψ was the first observed
particle which contains the at that time proposed charm quark. Ting and Richter were
awarded the Nobel Prize in 1976 for this discovery.
The force mediating gauge bosons of QCD, the massless gluons, were discovered at the
Positron-Elektron-Tandem-Ring-Anlage (PETRA) at the Deutsches Elektronen Synchro-
tron (DESY) by first observing three-jet events in 1979 [14].
In 1964, James Cronin and Val Fitch observed indirect CP violation in the Kaon system
[15]. Theoretically this was explained by Makoto Kobayashi and Toshihide Maskawa, who
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1.1. The Standard Model and Physics at the LHC

introduced the third generation of quarks to explain CP violation, by expanding the con-
cepts of the Cabibbo matrix which rotates the weak eigenstates into the mass eigenstates
by the Cabibbo angle [16], yielding the CKM matrix1 [17]. Cronin and Fitch received
the Nobel Prize in 1980 for their work, whereas it was awarded in 2008 to Kobayashi and
Maskawa.
The predicted third generation quarks were ultimately discovered at Fermilab. The bot-
tom quark was discoved in 1977 by Leon Lederman’s group [18], the top quark in 1995
by the two experiments DØ and CDF [19, 20].
This gives a rough overview of the historical development of the SM as we know it today.
Despite its success, there are several open questions which the SM cannot explain.

1.1.2. Physics Outlook

One of the open issues with the SM is that it requires 18 parameters as an input (and even
more to account for massive neutrinos), which seems very unnatural to many. Moreover,
the SM does not provide any mechanism to incorporate gravity.
Observations of neutrino oscillations, first observed by Super-Kamiokande [21], require
neutrinos to be massive, which is currently not explained by the SM.
The hierarchy problem in the SM is related to the Higgs boson’s mass. It is very light
compared to the Planck scale, and this can only be explained by cancellation of correction
terms to the mass which requires a very precise, and somewhat artificial, fine tuning.
Supersymmetric extensions to the SM are one approach to solve this issue, leading to an
underlying cause for this cancellation. Therefore, they are heavily investigated, also at
the LHC.
Despite the assumption that during the Big Bang matter and antimatter were created in
equal parts, all the matter surrounding us is ordinary matter. This raises the question
where all the antimatter has gone. Violation of CP symmetry is necessary to create an
imbalance, but while we have experimental evidence for CP-violating weak processes,
these are far too rare to explain this issue.
Additionally, cosmological observations tell us that visible matter is only a small fraction
of the matter known to us. Viable candidates for dark matter could originate from
supersymmetric extensions to the SM.
Given all those open questions, there is no doubt that the SM in its current form cannot
be the final theory. Therefore, searches for physics beyond the SM are of great interest
and should yield answers to the mentioned problems.

1Cabibbo-Kobayashi-Maskawa matrix
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1. Introduction

1.2. The LHC and the ATLAS Experiment

1.2.1. The Large Hadron Collider

The Large Hadron Collider (LHC) is currently the world’s largest and most powerful par-
ticle accelerator in terms of circumference and centre of mass energy.
Geographically, it is located at the main site of the European Organization for Nuclear
Research, CERN (Conseil Européen pour la Recherche Nucléaire) near Geneva, Switzer-
land. The LHC is a circular proton-proton collider (Fig. 1.2), as well as an ion collider,
with proton-proton collisions being the mode in which the LHC is mostly operated. It has
a circumference of 27 km and a nominal centre of mass energy of 14TeV in proton-proton
mode.
The two opposite travelling beams are brought together for collision at four different in-
teraction points, where the various experiments are located. ATLAS (A Toroidal LHC
Apparatus) and CMS (Compact Muon Solenoid) are both general purpose particle detec-
tors, primarily searching for new physics as well as probing the already known. ALICE

Figure 1.2.: Schematic overview of CERN’s accelerator complex. Image courtesy of
CERN.
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1.2. The LHC and the ATLAS Experiment

(A Large Ion Collider Experiment) investigates quark-gluon plasma in ion collisions and
LHCb (Large Hadron Collider beauty) is dedicated to charge-parity (CP) violation.

1.2.2. The ATLAS Experiment at the LHC

The ATLAS detector is a typical multi-purpose high energy physics detector. It consists
of multiple detector systems layered symmetrically around the interaction point in a
cylindrical fashion (Fig. 1.3).

Figure 1.3.: Overview of the ATLAS detector [22].

Additionally, end caps cover the region of high pseudorapidity η2. For the purpose of
bending particle trajectories for determination of their momentum, two magnet systems
are present. The inner detector is immersed in a 2T magnetic field from a solenoid,
whereas three large toroids are arranged around the calorimeters and provide a field
between 0.5 and 1T to bend muon tracks.

Muon System

The outermost layer of the detector is the muon system (Fig. 1.4). It exploits deflection
due to the toroidal fields in most of the η-region. In the forwards regions, the additional

2Pseudorapidity is defined as η = − ln(tan(θ/2)), where θ is the angle to the beam axis. It is commonly
used in high energy physics. Regions with high |η| (i.e. close to the beam pipe) are the so-called
forward regions.
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1. Introduction

magnets in the end caps provide fields for deflection. Due to deflection in this magnetic
field, the muon momentum can be measured independently of the Inner Detector.
Muon detection is mostly based on Monitored Drift Tubes (MDTs). Additionally, Cathode
Strip Chambers (CSCs) are used in the innermost high η-regions. Their benefit lies in their
speed, as they can process the higher track rate present in the inner layers. While MDTs
and CSCs are used for precision tracking, Resistive Plate Chambers (RPCs) and Thin
Gap Chambers (TGCs) are used by the triggering system and assist in the measurement
of the coordinate in the non-bending plane.

Figure 1.4.: The muon systems present
in the ATLAS detector
[22].

Figure 1.5.: Electromagnetic and
hadronic calorimeter [22].

Calorimeters

The calorimeter (Fig. 1.5) is separated into electromagnetic (EM) and hadronic, the EM
one being a liquid argon (LAr) calorimeter with lead as an absorber. It consists of a barrel
part and two end cap parts at both ends of the detector for high η-coverage. In total at
least 22 radiation lengths (X0) of material are present at any η-value.
While all the parts of the EM calorimeter are in principle the same (lead-LAr sampling
calorimeters with slight variations in granularity) this is not the case for the hadronic one.
The barrel region is equipped with a sampling calorimeter featuring steel as an absorber
and instrumented by active scintillator tiles. This tile calorimeter is then divided into a
central barrel region and two extended regions, one on each side. The end caps of the
hadronic calorimeter also use LAr as an active material, but copper as an absorber. Given
that they also use LAr and are located right behind the EM ones, they share the same
cryostat for the liquid argon.
The forward region is also equipped with a LAr calorimeter. It is segmented into three
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1.2. The LHC and the ATLAS Experiment

modules. The first one, primarily for electromagnetic measurements, uses a copper ab-
sorber while the other ones, optimised for hadronic measurements, use tungsten.

Inner Detector

The centremost part of the detector is the Inner Detector: amongst other things respon-
sible for track reconstruction, vertex measurements and momentum determination. It
can be subdivided into three systems, from the outermost to the inner: the Transition
Radiation Tracker (TRT), the Silicon Microstrip Tracker (SCT) and ultimately the Pixel
Detector. All of those systems are depicted in Figure 1.6, while Figure 1.7 gives a detailed
view of the ATLAS pixel layers.

Figure 1.6.: ATLAS Inner Detector
[22].

Figure 1.7.: ATLAS Pixel Detector
[23].

Straws with a diameter of 4mm make up the TRT. They provide only spatial information
along the R-φ coordinate with an intrinsic resolution of 130µm. The SCT uses double
sided strip modules with a strip pitch of 80 µm in the barrel region and end caps. Com-
pared to the roughly 350 000 read-out channels of the TRT, the 63m2 area of the SCT
features about 6.3 million read-out channels.
Despite being the smallest detector subsystem in the Inner Detector, the Pixel Detector
has over 80 million channels and features the highest resolution. Having a nominal pixel
size of 50×400 µm2, this yields an intrinsic resolution of about 10µm in R-φ and 100 µm
in z-direction for the worst case of one hit clusters. In total, three layers of detectors are
used in the barrel region and in the end cap region.

Insertable B-Layer (IBL)

The phase-0 upgrade of the ATLAS detector includes the insertion of a fourth pixel layer
into the ATLAS pixel detector. This is achieved by removing the old beam pipe and
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1. Introduction

replacing it by a new one featuring a smaller diameter, thus giving space for an additional
layer of pixels. This layer is the so-called Insertable B-Layer [23] and will provide even
better vertexing and b-tagging capability.
The schematic layout of IBL with three staves around the new beam pipe is given in
Figure 1.8, a render of the inserted IBL sensors is shown in Figure 1.9.

Figure 1.8.: Transverse schematic of the
IBL [23].

Figure 1.9.: Render of innermost parts
of the pixel detector with
inserted 4th layer [23].

1.3. Semiconductor Pixel Sensors

It is of interest to reconstruct the point of interaction, the so-called primary vertex.
Furthermore, there are some particles created which do not decay immediately, but do
not live long enough to pass through the entire detector either. The most prominent
example are hadrons containing a b-quark. As their life-time is dominated by the decay
of the heavy quark (i.e. the b-quark) which is mediated by the weak interaction, the fact
that the corresponding CKM matrix elements are small leads to a long mean life-time (as
dictated by the exponential decay law) of those hadrons. The long mean life-time together
with a Lorentz boost enables those particles to traverse several hundreds of micrometers
before decaying. This subsequent decay vertex is called the secondary vertex. Precise
track reconstruction gives rise to b-tagging, a technique to identify hadrons containing a
b-quark. To be able to perform b-tagging, it is necessary to resolve the primary vertex as
well as the tracks pointing towards it, hence a tracking detector with sufficient resolution
is desired.
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1.3. Semiconductor Pixel Sensors

1.3.1. Energy Loss in Matter

Charged particles passing through matter will deposit energy via ionisation and atomic
as well as lattice excitation. This can be exploited for the purpose of particle detection,
especially if prepared in a way to provide spatial resolution.
The mean energy loss per distance travelled, i.e. the stopping power, is given by the
Bethe-Bloch formula:

〈
−dE
dx

〉
= Kz2Z

A

1
β2

[
1
2 ln

(
2mec

2β2γ2Wmax

I2

)
− β2 − δ(βγ)

2

]
(1.1)

With:

K = 4πNAr
2
emec

2 (1.2)

Wmax = 2mec
2β2γ2

1 + 2γme/M + (me/M)2 (1.3)

The various variables are summarised in Table 1.1. A plot of the stopping power of anti-
muons in copper is given in Figure 1.10, the section where it is appropriately modelled
by the Bethe-Bloch equation is indicated.

Variable Explanation
NA Avogadro’s number
re classical electron radius
z charge number of incident particle
Z atomic number of absorber
A atomic mass of absorber
β v = βc
me electron mass
c speed of light in vacuum
γ Lorentz factor
Wmax max. energy transfer in single collision
I mean excitation energy
δ(βγ) density effect correction to ionization energy loss
M incident particle mass

Table 1.1.: Variables appearing in the Bethe-Bloch equation.

The Bethe-Bloch equation describes the mean energy loss per unit distance well in the
range 0.1 . βγ . 1000. At higher energies, radiative processes need to be considered,
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Figure 1.10.: Stopping power (normalised to the density of the material) 〈−dE/dx〉 for
anti-muons in copper [1].

lower energies require shell corrections.
Despite that, the regime where the Bethe-Bloch equation holds is usually the one of inter-
est in high energy physics. In this region the stopping power for a given material mainly
depends on β (with just slightM dependence inWmax). Another interesting feature about
the Bethe-Bloch equation is that it features a broad minimum over a large range of βγ.
A particle in this region is called minimal ionising particle (MIP), which again holds true
for many particles in high energy physics. As a rule of thumb, they experience a mean
stopping power of roughly 1.5MeV cm2 g−1.
A very important limitation to the Bethe-Bloch equation is that it does not describe the
energy loss of electrons or positrons very well. This is due to two effects, firstly due to the
low mass of them and secondly in the case of electrons, scattering on the same particle.
For electrons, Møller scattering also has to be taken into account, as is the case with
positrons and Bhabha scattering.
Equation 1.1 only yields the average stopping power, but does not describe the distri-
bution for individual particles. In rare cases, secondary electrons can be released by the
primary particle passing through the detector leading to larger ionisations, the so-called
delta electrons. Such high energy collisions are the cause of the distribution not being a
symmetric Gaussian. Instead, this leads to a skewed distribution, featuring a long tail at
high deposited energies, which can be described by a Landau distribution. The skewness
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1.3. Semiconductor Pixel Sensors

depends on the detector thickness. For thicker detectors the distribution approaches a
Gaussian. For thin absorbers, including thin Si sensors, the Landau distribution fails in
its description as shown by H. Bichsel [24]. This deviation has also been experimentally
observed by S. Meroli et al. [25]. They fitted the measured energy loss distributions for
thin silicon layers via a convolution of a Landau and normal distribution. Figure 1.11
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Figure 1.11.: Probability density function for energy losses in 1.2 cm Ar gas according
to Bichsel (solid line) and the Landau description (dotted line) [24].

shows Bichsel’s straggling functions f(∆) compared to the Landau description. It can
be seen that the mean deposited energy 〈∆〉 is a bad measure when working on a single
particle level (e.g. for particle identification). Rather, the most probable value ∆p should
be used.
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Unlike charged particles, photons cannot directly ionise matter, instead there are three
effects which dominate the photon-matter-interaction in different energy regimes. At low
energies up to O(10) keV, the photoelectric effect dominates. The incident photon is
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fully absorbed by an electron, which is emitted in this process. At higher energies, the
Compton effect takes over, during which again an electron is released, but the photon is
not fully absorbed, but re-emitted with a decreased wavelength. At energies sufficient to
produce e+e−-pairs, i.e. slightly above 1MeV, pair production is possible and will become
the dominant effect of photon-matter-interaction at even higher energies.
The cross section of these effects for carbon and lead are shown in Figure 1.12, the
Feynman diagrams are given in Figure 1.13. σp.e is the cross section for the photoelectric
effect, σCompton for the Compton effect and κnuc as well as κe for pair production (in
nuclear and electron field). Additionally, the coherent scattering cross section σRayleigh

and nuclear reaction interactions (σg.d.r., Giant Dipole Resonance) are given.

Z

e−

γ

e−

γ

γ

e−

e−

Z Z

e−

γ
e+

Photoelectric Effect Pair Production

Compton Scattering

Figure 1.13.: Feynman diagrams for interactions of photons with matter, Z depicts a
nucleus.

1.3.2. Signal Generation in Silicon

In semiconductors, the creation of electron-hole pairs, which induce a signal on electrodes
when drifting in an electric collection field, is the key mechanism used in particle detec-
tion.
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While the band-gap in silicon is 1.1 eV at room temperature, it requires a mean deposited
energy of 3.67 eV for the formation of an electron-hole pair. This is due to a large fraction
of deposited energy going into lattice vibrations because of momentum conservation. This
has also effects on the variance of the number of released charge carriers N by a deposited
energy E. It is reduced by the so-called Fano factor F , compared to the default Poisson
process, i.e. σN =

√
FN . Using N = E/Ei where Ei is the required energy for the

creation of an electron-hole pair, this yields an energy resolution of σE/E =
√
FEi/E.

For the purpose of charge separation, silicon is doped and operated as a reversely bi-
ased pn-diode. This provides an electric field for charge collection via drift in this field.
Furthermore, it removes intrinsic charge carriers from the depletion zone, allowing the
detection of the induced charges. Additionally, the doped regions can be manufactured
and used as the required electrodes. By applying a bias voltage, the depletion zone in the
bulk is increased until the sensor is fully depleted. The depletion depth is given by [1]:

W =
√

2ε (V + Vbi) /Ne (1.4)

In Equation 1.4, ε is the dielectric constant of silicon, V is the applied bias voltage and
Vbi the built-in voltage, N the doping concentration and e the elementary charge. The
built-in voltage is obtained by integrating over the electric field in the intrinsic space
charge region of the pn-junction.
Using typical values for a 300µm silicon detector, a MIP releases about 29 · 103 electron-
hole pairs when passing through the sensor, which requires roughly 70V to fully deplete
[26].

1.3.3. Signal Collection in Silicon Detectors

Once charge carriers are released in the silicon bulk, they start to move due to two
processes: diffusion and drift. Diffusion is a random walk process and thus leads to a
Gaussian broadening of the charge cloud. Drift is due to the total electric field present in
the sensor.
The drift velocity of charge carriers is given by ~v = µ~E. Using a larger electric field
than required for full depletion allows faster charge collection. The important material
constant is the charge carrier mobility µ, which differs for electrons and holes. Via the
drift velocity and the electric field, the drift time can be computed. Using the Einstein-
Smoluchowski relation to relate the diffusion constant D to the charge carrier mobility
D = µkBT (where kB is Boltzmann’s constant and T the temperatur) it is possible to
estimate the broadening, given the drift time. Using the previous example of a 300µm
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silicon sensor and a bias voltage twice the required one for full depletion, this yields
a maximum drift time of roughly 5 ns for electrons and 16 ns for holes. The Gaussian
broadening due to diffusion can be computed to be about σ ≈ 4µm [26].
An important theorem is the Shockley-Ramo theorem [27, 28], which states that the
current induced in an electrode is given by the instantaneous drift of the charge carriers
in the field of the electrode, and not the charge collected by it:

i = q~v ~Ev (1.5)

Where q is the charge of the charge carrier, ~v is the instantaneous velocity and ~Ev the
weighting field [28].

1.3.4. Semiconductor Sensor Design

For spatial reconstruction of tracks, detectors need to provide spatial resolution. This
is achieved by implementing electrodes in one or two dimensions in the sensor, yielding
either strip or pixel detectors. Having a segmented pixel structure allows to reconstruct

(d) (e)

B

)c()a( (b)

Figure 1.14.: Cluster formation with and without magnetic field [26].

hit positions in two dimensions. The important figure is the pixel pitch d. It is important
to note, that the pixel pitch is not equal to the electrode size, but the distance between
two pixels. If a pixel detects a hit, the spatial resolution is at worst σ = d/

√
12. This is

due to the fact that there is no additional information where the particle actually hit the
pixel and the hit probability density is assumed to be flat across the pixel. The resolution
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can be increased if additional information is available. This is the case when more than
one pixel is hit, yielding a cluster of hit pixels. In the case of a two pixel cluster, the hit
position probability distribution is not flat, but peaks somewhere between the hit pixels.
Figure 1.14 (a-c) shows cluster formation due to hits in-between pixels as well as due to
inclined tracks. Additionally, a magnetic field can deflect the tracks of the charge carriers
via the Hall effect (Fig. 1.14 (d-e)). The angle of this deviation is known as the Lorentz
angle.
Reconstructing the exact hit position from the cluster is not trivial. In the simplest
treatment, the hit position is simply derived by a centre of gravity (COG) calculation. If
additional information on the collected charge is available, this can be used to weigh the
hit positions:

XCOG =
∑

cluster Sixi∑
cluster Sj

(1.6)

Where xi and Si are the position and charge signal of hit pixel i. Corrections to this clus-
tering algorithm can be done via the η-correction algorithm. It is based on the fact, that
charge sharing is non-linear due to the shape of the diffusion cloud. As the η distribution
has to be obtained from data, it is a data-driven correction algorithm. Additionally, when
incoming tracks are heavily inclined, other algorithms than the COG should be used, for
example the head-tail position finding algorithm [29].

1.3.5. Signal Processing

As soon as the signal has been induced, it must be processed. Semiconductor detectors
can be divided into monolithic and hybrid detectors, depending on whether the read-out
electronics are located in the same bulk of semiconductor (monolithic) or attached via
some sort of connection, usually bump bonds, to the sensor (hybrid). While the upside of
hybrid pixel sensors is that the read-out electronics per pixel can be quite sophisticated,
allowing fast parallel read-out of all pixels at once, they introduce more material into the
detector and feature a larger pixel size, limited by the size of the read-out pixel and the
interconnection technology. Monolithic sensors on the other hand can be easily manufac-
tured with a very small pixel pitch, but have a slower read-out.
Of course, different technologies can be more advanced than others which is reflected in
the cost and yield a supplier can deliver in a given time. Ultimately, every choice has
to be economically viable and is bound by financial as well as time constraints and the
current state of research.
Therefore, the different types are used in different applications. For the LHC experiments,
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the read-out time has to be very fast which is a major reason hybrid pixel sensors are
used in the ATLAS pixel detector.

1.3.6. The ATLAS FE-I4 Read-Out Chip

The read-out electronics used in the IBL, the Front-End-I4 (FE-I4), is the successor of
the one used in the existing pixel detector (FE-I3 [30]). An upgrade was required since
the FE-I3 is incapable of dealing with the higher hit rates which are present in proximity
of the interaction point. Additionally, it is not able to deal with the higher fluences in
terms of radiation hardness.
The FE-I4 features a smaller pixel size, 250×50 µm2 compared to 400×50 µm2 for the
old FE. In total 26 880 pixels are read out by the FE-I4, arranged in 80 columns along
the direction of the long pixel edge, and 336 rows, yielding a roughly quadratic active
area. Despite having smaller pixels, the FE-I4 has a larger active area (in total as well as
fractional terms) than the FE-I3. This is since the total pixelated area is larger, whereas
the inactive area housing the additional logic has remained the same size.

Figure 1.15.: Analogue stage of an FE-I4 pixel [31].

The analogue section of each pixel of the FE-I4 (Fig. 1.15) consists of a two stage charge
sensitive amplification circuit followed by a discriminator stage. Several digital to ana-
logue converters (DAC) allow tuning of the individual pixels, e.g. they allow to steer
the discharge current or set the discriminator threshold. This discriminator threshold is
essential for understanding the signal value which will be ultimately read out by the FE.
The signal after the discriminator can either be in a high or a low state, depending if the
input voltage is below or above the threshold value. The duration of this pulse in clock
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DiscriminatordOut:dQdLarge

DiscriminatordOut:dQdSmall

Clock

1 2 3 4 5 6 7

1 2

Signal:dQdLarge

Signal:dQdSmall
Threshold

Figure 1.16.: ToT for different charges, the high charge results in a ToT 7 hit, whereas
the small charge results in a ToT 2 hit.

cycles is related to the charge collected by the pixel. This value is called ToT, which is
short for time over threshold (Fig. 1.16). The threshold value, but also the discharge
current (which controls the steepness of the falling slope of the signal), influences the final
ToT value. Thus, a ToT tuning and calibration is required to obtain a correct charge
read-out.
For tuning, but also for testing purposes, a charge injection circuit is located in front of
the amplification stages, allowing a well defined charge to be injected into the amplifier.
The digital sections of the read-out circuits are arranged so that four adjacent pixels share
some of the digital circuitry. The output of the discriminator of the analogue section is fed
to a hit processing stage which computes the ToT. While this part of the digital circuitry
is unique, the part for triggering and transmission is shared by the four adjacent pixels. If
any of the pixels in the four pixel block detects a signal, all four pixels are read out. Given
that they are located side by side, this reduces the read-out load, since often clusters of
more than one pixel in close proximity detect a hit, and if it is in the same block of four
pixels, only the read-out of one digital block is necessary.
Additionally, the FE-I4 was designed to have a lower material budget and power con-
sumption than the FE-I3. Furthermore, the read-out speed was increased from 40Mb/s
to 160Mb/s. These modifications make the FE-I4 a feasible candidate for use in the
outer layers of the ATLAS inner tracking detector for the Phase-II upgrade planned for
the ATLAS detector during the upgrade phase of the LHC to the High-Luminosity-LHC
(HL-LHC) [32].
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To determine the properties of newly developed detectors as well as read-out chips, a
beam telescope at a testbeam facility can be used. A beam telescope is a hardware set-
up, used to instrument a beam line for the purpose of track reconstruction at a level
of individual tracks for each charged particle crossing the telescope. With those tracks,
various analyses can be performed. E.g. expected hit positions can be extrapolated and
efficiency studies carried out.

2.1. Hardware Set-Up: The Telescope

The crucial components of the telescope are the reference pixel sensors and their read-out
hardware. To achieve a good spatial resolution, they have a relatively small pitch size.
While in principle the number of reference planes is arbitrary, usually six are used. This
is a trade-off between resolution and material budget. While increasing the number of
planes increases the resolution by contributing with additional spatial information, the
extra material increases multiple scattering, and thus acts against this improvement.
In an actual test beam set-up the so-called device under test (DUT) is also placed inside
the telescope, such that it intersects the particle trajectories. Via the reconstructed tracks,
the hit positions can be extrapolated and different types of analyses can be performed.
Figure 2.1 shows a schematic of a complete testbeam set-up, whereas a picture of the
telescope planes with four inserted DUTs is shown in Figure 2.2.
In addition to the reference sensors and their read-out hardware, further components
dedicated to temporal synchronisation as well as triggering are necessary.
While in principle any sensor could be used as a reference, the current generation of DESY
pixel telescopes, which originated from the EUDET telescope, all use the Mimosa26 pixel
sensor.

2.1.1. Mimosa26

The Mimosa26 is a monolithic active pixel sensor (MAPS) developed by IPHC in Stras-
bourg. It features 576×1152 pixels with a pitch of 18.4 µm in both directions, giving an
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Figure 2.1.: Schematic of the telescope layout depicting read-out hardware (top) as well
as software (bottom) and their interconnection.

Figure 2.2.: Telescope with four ATLAS FE-I4 DUTs in the centre.

active area of roughly 13.7×21.5 mm2 (Fig. 2.3). It is read out by a rolling shutter read-
out, processing columns in parallel, row by row. One complete read-out takes 115.2 µs.
Each pixel has its individual amplification stage and features correlated double sampling
(CDS) circuitry. CDS is a technique in which the signal after the hit is recorded, as well
as the signal after resetting the pixel. This allows to subtract the base value from the
signal, which eliminates any offset and thus reduces noise.
At the end of each column, zero-suppression circuitry is implemented, so only events that
contain a hit can be stored. Afterwards, the signals from the columns get processed in
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Figure 2.3.: Mimosa26 sensor as used in the telescope [33].

18 banks of logical circuitry. Configuration of the individual registers in the Mimosa26 is
done via JTAG. The analogue as well as the digital layout can be reviewed in Figure 2.4.

2.1.2. Trigger Hardware and Trigger Synchronization

The Trigger Logic Unit (TLU) is a piece of hardware dedicated to two tasks: triggering
as well as synchronisation of the data streams [35]. Data must only be recorded when
a charged particle crosses the telescope. Usually, scintillator fingers read out by pho-
tomultiplier tubes (PMT) are used for triggering. To limit the active trigger area to a
rectangular shape, two crossed scintillator fingers are used on both ends of the telescope,
thus yielding four scintillators per telescope in a usual testbeam set-up.
The PMT signals are sent to the TLU (which can process up to four of those signals),
which then triggers a telescope read-out if the required coincidence criterium is matched.
This criterium can be set by the operator. In principle, any logical operation of the four
inputs can be set, but the typical requirement is a coincidence of all four scintillators.
The TLU is connected to all read-out systems and issues a signal on a specified line to
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Figure 2.4.: Schematic layout of the Mimosa26 [34].

trigger a read-out. While there are a total of three modes, the most important and most
powerful one in terms of functionality is the trigger-data-handshake mode.
In this mode, all recorded events receive a consecutive trigger number, which allows syn-
chronisation of all the data. The other two modes either do not exchange a trigger number
(simple-handshake) or feature no handshake at all (no-handshake).

2.2. EUDAQ: Data Acquisition

EUDAQ is the software framework used for data acquisition with the telescope [36]. The
main program of EUDAQ is Run Control, to which other parts of EUDAQ can connect
(via a TCP/IP connection) to be steered by Run Control. Run Control is therefore used
to initiate configurations as well as to start and stop the actual data acquisition. This
modular design layout is depicted in Figure 2.5, where the individual data paths to other
programs of EUDAQ can be retraced.
Other very important parts of EUDAQ are the so called Producers. Those are the
programs which read out all the individual sensors, reference planes, as well as DUTs,
and thus produce the data streams. Therefore, in a typical EUDAQ operation, usually
more than one Producer is connected to Run Control at the same time.
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2.3. EUTelescope: Event Reconstruction

Figure 2.5.: Modular layout of EUDAQ [36].

A special type of Producer is the TLUProducer, which is used to configure and interface
the TLU. For example the previously mentioned coincidence requirement is set this way.
Configuration is done via one central configuration file, which has sections for all the
individual Producers. These settings get parsed to the Producers, which then process
values from this file.
The Data Collector is the part of EUDAQ, which acquires all the raw data and writes
it to disk. Additional programs exist to monitor log messages as well as on-line plots of
the different sensors (Logger and Monitor).
Since EUDAQ is openly available and Producers for the telescope reference sensors are
provided, users have the possibility to write their own Producers to include their devices
into the telescope data stream. Integration at this early point allows easy reconstruction
without the need to merge data in retrospect.

2.3. EUTelescope: Event Reconstruction

After data acquisition, the data has to be reconstructed and analysed. EUTelescope
is the framework designed for this purpose.
EUTelescope itself is a collection of Marlin1 processors and thus, like Marlin, part of

1Modular Analysis and Reconstruction for the Linear collider
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the ILCsoft software package. Versions prior to this work only use Gear2 for geometry
description of the telescope layout and the pixel geometry. Gear is very restrictive when
it comes to pixel layouts, allowing only regularly arranged rectangular pixels.
Reconstruction can be divided into the following steps: data conversion, clustering and
hitmaking as well as alignment and track fitting (Fig. 2.6).

Figure 2.6.: Schematic overview of data processing in EUTelescope [37].

Data conversion (handled by the Format Converter processor in Fig. 2.6) is necessary
to bring the data of all different read-out systems into one compliant format used in
the reconstruction framework. After this is done, hit pixels in every event have to be
determined and grouped into clusters of which the hit position has to be derived (the
Cluster Search, Cluster Selection as well as the Hit Maker processor). Subsequently, an
alignment (Alignment processor) has to be determined. This is required, as the knowledge
of the position of the sensors has to be determined with a precision that cannot be
reached using mechanical measurements alone. With those alignment values, the final
reconstruction step can be carried out and tracks can be fitted (Track Fitter processor).
These tracks can then be used to perform an analysis, either with EUTelescope or

2Geometry API for Reconstruction
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some other framework, like it is in the case of the ATLAS pixel community, which uses
TBmonII.
Additionally, several condition databases can be used in the reconstruction. Some of
them are only of importance where non-zero-suppressed data is provided. In this case,
signal processing requires to perform cuts on signal to noise ratios of individual pixels and
clusters. This requires the pedestal and selection database. With zero-suppressed output,
they boil down to one noisy pixel collection, which can be used to mask or remove noisy
pixels in one of the early steps. The Gear and alignment databases store the geometrical
information. The Gear file contains information from the user on the set-up whereas
computed corrections are stored in the alignment database. The η-database can be used
for η-algorithm corrections to cluster positions.
While this is a rough layout of any EUTelescope analysis, this procedure is not carved
in stone but highly modular and flexible. Further steps (e.g. region of interest selection or
applying cuts on certain parameters) can be included while other steps could be omitted
(e.g. no dedicated cluster selection). Additionally, recent developments change some of
these concepts and partly get rid of non-zero-suppressed data processing in later steps,
meaning that data of this type has to be preprocessed and zero-suppression has to be
done in the initial steps.

2.4. Track Analysis - TBmonII

While no changes to TBmonII were made during this work, it is the final part of the
analysis for ATLAS pixels and thus will be briefly introduced. The whole TBmonII anal-
ysis is configured via external configuration files. After loading those configurations, the
tracks from the EUTelescope reconstruction are loaded and processed.
Various preprocessors are responsible for tasks like clustering, alignment or applying se-
lection criteria. A schematic overview of the different parts of TBmonII is given in Figure
2.7. TBmonII always requires at least two DUTs to be present in the dumped data. This
is necessary, since the active times of DUTs and telescope planes do not match. Tracks
seen by the telescope might have happened outside the DUTs active time window and are
thus not recorded. Using multiple DUTs featuring the same active time allows selection
of tracks which lie within this time window.
While at least two DUTs are required, TBmonII supports as many DUTs as included in
the testbeam set-up. It is also possible to combine multiple runs with the same set-up for
increased tracks and therefore higher statistics.
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Figure 2.7.: Schematic overview of the mode of operation of TBmonII.

After preprocession, TBmonII allows to perform various analyses on the selected tracks.
For example, hit inefficiencies can be computed from selected tracks and their intersection
on the various DUTs.

2.5. USBpix - An ATLAS Pixel Read-Out System

For the purpose of operating and testing the FE-I3 and FE-I4 in the lab or at testbeams,
a portable data acquisition (DAQ) system has been developed [38]. It consists of the
USBpix board, which forms the hardware of this DAQ system, and a read-out software
called STControl. It is based on the PixLib libraries, which is the code to interface the
ATLAS Pixel Detector read-out drivers (RODs). The software package also provides a
graphical user interface (GUI) for users to interface with the hardware, i.e. load and store
configurations, run scans, perform tuning and start testbeam data.

USBpix

The USBpix hardware (Fig. 2.8) is based on the S3 MultiIO USB Card (or Board),
featuring a Xilinx Spartan3 FPGA, an 8051 microcontroller, as well as a USB interface
and 2MiB3 of SRAM [39].
Different adapter cards can be connected to the MultiIO Board, allowing to interface
many different kinds of sensor boards (FE-I3/I4, 4-chip-modules etc.). This makes the

31MiB = 220 bytes
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USBpix DAQ system a versatile and cheap in-the-lab solution to operate the supported
FEs, without the need to acquire an expensive copy of the actual DAQ system.

Figure 2.8.: MultiIO Board with attached adapter card for FE-I4 as well as a FE-I4 on
a lab board [40].

STControl

STControl is the high level part of the DAQ software, providing the GUI and processing
user input to run scans or tune the FE. It does that by interfacing the FE via the PixLib
classes.
STControl uses the Qt4 library for the GUI, but also heavily relies on the signal/slot
mechanism provided by Qt for inter-thread communication. Aside from being able to read
out the ATLAS FEs during testbeam, the actual EUDAQ producer is part of STControl
when compiled against EUDAQ (which is necessary for testbeam operation).
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3. ATLAS Four Chip Modules for
the HL-LHC

3.1. Novel Sensor and Module Layouts

Typical sensor layouts usually consist of rectangular pixel implants on one side of the
sensor and a biasing electrode implant on the other (Fig. 3.1, left). This has the disad-
vantage that the bias voltage required for full depletion scales with the electrode distance.
In addition to that, the charge collection distance (CCD) is fixed by the sensor thickness.
As higher bias voltages are required by irradiated samples due to radiation damage (and
thus a change in effective doping concentration), pixel implants as pillars inside the sili-
con bulk (Fig. 3.1, right) with a shorter electrode distance would require a smaller bias
voltage. Furthermore, pillar electrodes have the advantage that the CCD is decoupled
from the sensor thickness, which is advantageous for some sensor technologies. Thus,
these pillar electrodes are one approach currently investigated for future pixel modules
for ATLAS.

d

d

Sensor
Thickness

MIP MIP

Figure 3.1.: New electrode implants, planar sensors (left) compared to sensors with
pillar electrodes (right), indicated is the electrode distance d.

Aside from new sensor layouts and technologies, cheap module layouts are investigated
for the upcoming ATLAS upgrades [32]. Especially larger size modules with reduced
production cost are of interest. ATLAS four chip modules (Fig. 3.2) are larger sensors
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read out by four FE-I4 read-out chips. This reduces costs, as the cost of bump bonding
mainly scales with the number of handling steps during module bonding, not module size.

3.2. Problems with the current Set-Up

New sensor and module layouts pose a challenge in read-out as well as in the description
of their geometry in any software package which processes data from them. For example,
in testbeam operation, four chip modules require the simultaneous read-out of four FEs,
which then need to be merged and put into the datastream. They also exhibit a sensor
layout which deviates from simple rectangular pixel patterns. This is partly due to the
fact that they are composed of two double chip modules with additional space in between,
as well as having prolonged pixels between the two FEs of one double chip module (Fig.
3.3). While treatment of this geometry was already supported by TBmonII prior to this

Figure 3.2.: New module layout, AT-
LAS four chip prototype.
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Figure 3.3.: Sketch of the pixel layout of
a four chip prototype.

work, the USBpix read-out system did not support the read-out of multiple chip modules.
Furthermore, EUTelescope did not allow such pixel layouts.
Thus, the aim of this work was to implement the necessary functionality for DAQ with
the USBpix framework, as well as the correct reconstruction for this data with EUTele-
scope. In consideration of future pixel layouts which might even feature staggered pixels
or similar, the framework was adapted to support even more generic geometries. Addi-
tionally, verification of correct operation as well as test cases for test-driven development
(TDD) were implemented to ensure proper functionality and quality control during the
future development process.
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EUDAQ

As USBpix had been recently updated to support FE-I4 four chip modules with the
burn-in cards by the work of J. Agricola [41], this functionality had to be added into the
EUDAQ producer of STControl.

4.1. Introduction

The burn-in card (Fig. 4.1) is an adapter card for the USBpix MultiIO board, featuring
support for up to four read-out channels. For this purpose, the FPGA firmware (FW)
had been adapted by J. Agricola, introducing four identical read-out sections for the four
FEs. Since external memory is required (the SRAM on the MultiIO board) a memory
arbiter had been implemented (Fig. 4.2), dealing with SRAM reading and writing. In
the mode of raw data writing, as in the case of testbeam mode, the SRAM is divided into
four equally sized parts, one for each read-out channel.

Figure 4.1.: The burn-in adapter card
for the MultiIO board.
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Figure 4.2.: Block overview of the FW
read-out section [41].

4.2. EUDAQ Producer integration

As the EUDAQ Producer is integrated in STControl, one Producer is running per in-
stance for STControl. Since STControl supports more than one MultiIO board per in-
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stance, as well as more than one FE being read out by one board, multiple FEs produce
data which ultimately has to be integrated into the EUDAQ data stream.
Previously, only multiple boards with one FE per board were supported. It was assumed
that all individual FEs belonged to separate sensors. If two MultiIO boards were used to
read out a double chip module (i.e. one sensor, read out by two FEs), EUDAQ had no
knowledge about this and some workarounds had to be implemented in the final recon-
struction. As this is a very error prone and user unfriendly approach, a new mechanism
was incorporated to circumvent this problem. Since a burn-in adapter can also be used
to read out a double chip module and two single chip modules, this had to be considered
as well.
The modified Producer requires the following additional parameters to be passed via the
configuration file: boards defining which boards are used and per board modules[i],
where i is the board ID, describing the module layout. All these entries have to be
comma separated values. boards is the list of all MultiIO boards which are read out by
this instance of STControl. This field was already needed in some cases. Since it is now
required for the Producer to work, it is mandatory.
The modules[i] field is there to specify the module configuration for this board, in order
of read-out channels. In the trivial case of a single chip board, the entry will be always
modules[i] = 1, which tells the Producer that there is only one FE belonging to a single
module. In the case of a four chip module attached to the board, the entry would need to
look as follows: modules[i] = 1,1,1,1 which will tell the Producer that there are four
channels to be read out, all belonging to the same module. If instead only three read-out
channels were used, reading out a double chip and a single chip module, modules[i]
= 1,1,2 would be the correct entry, given that the double chip is attached to read-out
channel one and two, and the single chip module to three, respectively. While it is not
necessary to use all read-out channels, they have to be used in ascending order. E.g. if
only two of them are used, they have to be one and two.
Entries in modules[i] always start with a 1. The absolute sequence (i.e. the sensorID)
in which modules are reconstructed in EUTelescope is given by the order of the entries
in board and subsequently the entries in modules[i].
A possible example of the relevant section in a EUDAQ configuration file can be seen
in Listing 4.1 and the schematic layout is depicted in Figure 4.3. This will result in a
four chip sensor with a sensorID of 20 (by default the first sensorID for an FEI4), two
single chip modules (21 and 22) and a double chip module (23) in EUTelescope. This
is done by passing the module configuration via the begin of run event (BORE), which
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is an event entry in the data format, allowing additional information to be stored in the
data.

[ Producer . USBpixI4 ]
. . .
boards = 10 ,137
modules [ 1 0 ] = 1 ,1 ,1 ,1
modules [ 1 3 7 ] = 1 ,2 ,3 ,3
. . .

Listing 4.1: Possible section of the EUDAQ USBpixI4 producer configuration.
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Figure 4.3.: Schematic of the USBpix set-up, as described by Listing 4.1.

4.3. EUDAQ Converter Plug-In

By calling the appropriate EUDAQ converter plug-in, the framework is able to process
any foreign data format. Therefore, the converter plug-in has to be provided by the
user and could be seen as an extension to the Producer. This design was motivated to
reduce the risk of data corruption, as this allows the original data to get stored without
further processing and the later offline reconstruction is responsible for the error prone
interpretation of the data.
As the different revisions of the FE-I4 use slightly varying bit-masks in their data, there
were two different converter plug-ins to process FE-I4A and FE-I4B data. They only
varied in their included preprocessor directives, mainly defining macros for interpretation
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of data.
To improve this, the converter plug-ins have been refactorised. The main difference is that
the preprocessor define macros have been replaced by a templated class, featuring inlined
methods to interpret the data. It is templated in the varying bitmasks, exploiting compile
time function execution (CTFE) to compute required bitshifts for data processing, which
depend on the variable bitmask. This way, multiple converter plug-ins could be merged
into one abstract USBpix FE-I4 converter plug-in, which is implemented and instantiated
with different bitmasks for the multiple revisions.
The converter plug-in reads in the module configuration attached to the BORE and creates
appropriate sensors according to the number of chips belonging to a module. Since the
data attached to the raw events is raw FE data, offsets have to be applied to create a single,
continuous sensor in the reconstruction. In terms of the internal FE pixel numeration, the
origin (i.e. pixel 0|0) is located on the upper left corner on the FE. As EUTelescope
has a convention of setting the origin on the lower left corner, the pixels indices need to
be shifted. The situation for a four chip module is shown in Figure 4.4.
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Figure 4.4.: FE layout on a four chip sensor, FE origins are indicated by a dot, the
EUTelescope origin by a cross. The x direction is also referred to as
columns, whereas y corresponds to rows.

The case of a single and double chip module can be traced back to the four chip layout by
merely taking FE I or FE I and II into account. This has been exploited in the converter
plug-in, and thus allows treatment of multiple sensor layouts with just one converter
plug-in.
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4.3.1. Laboratory Tests

To test if the producer and converter plug-ins work, a test with a radioactive source was
carried out in the laboratory. A 90Sr source was used to irradiate the sensor, it mainly
decays via β− decay, yielding an electron with an average energy of 0.546MeV. The decay
product 90Y continues to undergo β− decay, emitting a 2.28MeV electron [42]. The higher
energetic electron can penetrate the sensor and read-out chip, and can thus be detected by
a scintillator below the sensor to trigger a read-out. For triggering, a TLU was used. The
coincidence criterium was set to trigger a read-out for every hit in the scintillator. Data
was collected via the Producer with help of EUDAQ’s Run Control to test the Producer’s
functionality. It was later imported in EUTelescope to verify proper operation of the
converter plug-in. In Figure 4.5, the hit map after the clustering step in EUTelescope
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Figure 4.5.: Hits of a 90Sr source on a four chip modul, using EUDAQ as the DAQ
framework with a scintillator to issue triggers to the TLU. The USBpix
converter plug-in was configured to read out a modules[i] = 1,1,1,1
board.

can be seen. As the FEs were not tuned, FE III and IV (cf. Fig. 4.4) detect more hits
than I and II. The increased hits in column 79 and 80 are due to the prolonged pixel
implants in those pixels.
To test the functionality when multiple modules are attached to one burn-in card, the
same four chip sensor set-up was used. However, the module entry was set to modules[i]

35



4. Modifications to STControl and EUDAQ

= 1,1,2,2 or modules[i] = 1,1,2,3 in the configuration. The resulting hit maps for
the case of modules[i] = 1,1,2,2 are shown in Figure 4.6 and 4.7.
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Figure 4.6.: Hit map after clustering for
sensor 20, corresponding to
FE I and II.
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Figure 4.7.: The same for sensor 21,
corresponding to FE III
and IV.

The data is processed as expected. It can be seen that in comparison to the initial case,
where they were treated as part of the four chip module, FE III and IV on sensor 21
are rotated. This is due to their rotated alignment on the four chip module (Fig. 4.4),
which is ignored when only treated as a double chip. Aside from the source spot, the
noisy pixels match their expected position. The same test has also been carried out with
a configuration of modules[i] = 1,1,2,3. The results again match the expectation and
can be reviewed in Appendix A.1.
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5. EUTelescope

5.1. Introduction

The EUTelescope framework provides a collection of Marlin processors which can
be adjusted to the needs of individual reconstructions and analyses. Figure 5.1 shows
the sequence of a standard ATLAS pixel analysis in EUTelescope. Each of the steps
represents one execution of Marlin with a well defined steering template. The steering
template is an XML file which tells Marlin which processors have to be called and
contains sections with configuration parameters for all those processors.

Telescope
rawxData

megfxEUDAQ:

DataxConversion
CONVERTER

NoisyxPixelxDB

GroupingxHitxPixels
CLUSTERING

ComputingxCluster
Centre:

HITMAKER

ObtainingxTelescope
Position:

ALIGNMENT

Searchingxfor
Tracks:
FITTER

Dumped
Tracks

PrehAlignxDB AlignxDB

Figure 5.1.: Typical EUTelescope analysis for ATLAS pixel testbeams.

5.1.1. LCIO Data Format

The underlying data structure used is the LCIO (Linear Collider I/O) framework, it is
again part of ILCsoft. A C++ as well as Java implementation (with corresponding
APIs) exist and additionally, a Fortran interface to the C++ implementation.
It is important to understand that LCIO is a format on an event basis, meaning that
all the information of one trigger belongs together in this format. This event data can
be stored in various collections, the most important one being TrackerData which stores
zero-suppressed raw data, the TrackerPulse used for storing clusters, the TrackerHit
storing hits and ultimately the Track collections storing the final reconstructed tracks.
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For detectors which have non-zero-suppressed data there is also the TrackerRawData
collection, but all processors introduced during this work only deal with zero-suppressed
data by convention. Therefore other means (e.g. some processing steps before the actual
analysis) of converting the original data to zero-suppressed one have to be taken.
Each entry in a collection contains a 64 bit field, the cellID field, which can be used to
encode additional information. Maintaining this 64 bit field is internally done, meaning
that the user does not have to worry about little or big endian1 encoding as well as
differences in 32 and 64 bit architectures. The cellID field is used to store information on
the detector ID (i.e. which detector plane the raw data, cluster or hit belongs to) as well
as masking noise or other quality parameters. This is necessary due to the event-based
structure of the format, where all data of one trigger is bunched together. Aside of the
collections, every file also contains a header which stores various run related values, e.g.
run number or time stamps.

5.1.2. Geometry API for Reconstruction (GEAR)

Via Gear it is possible for users of EUTelescope to provide geometric data on the
telescope set-up. This does not only include the absolute positions and orientations of
sensors, but also their geometric pixel layout.
For each plane in the telescope set-up, there is a ladder and sensitive node in the XML
file. While this should in principle allow to specify a plane and the sensitive volume in it,
this additional ladder information is not used in EUTelescope.
Gear itself will then parse this file and via a manager class provide this information
globally throughout all parts of EUTelescope. Individual Marlin processors will then
be able to obtain all this information via the specified ID in the Gear XML file.

5.2. Previous way to interface LCIO Tracker Data in
EUTelescope

EUTelescope provides classes to interface the different collection types. The Tracker-
Data stores all its information in a C++ std::vector<float>. The LCIO framework
does not dictate in any way how information is stored in there, this is done by EUTele-
scope. For this purpose EUTelescope introduces classes representing pixels. Every

1Endianness is the convention of which byte is stored at which address in memory. In big endian
the most significant byte is stored at the lowest memory address, whereas in little endian the least
significant byte is stored at the lowest memory address.
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pixel can for example contain three entries: one for the X index, one for the Y index and
one for the signal recorded by that pixel. Each hit pixel therefore stores three values in
the vector in a well defined order. When this information is later read back, this ordering
is crucial and therefore also the pixel type used to encode this data is stored in the cellID
field.
To easily read information from this collection EUTelescope provides a templated class
for interfacing TrackerData, namely the EUTelSparseDataImpl<T>. The template pa-
rameter T is the pixel type, allowing to interface the data with any pixel type.
Clusters in EUTelescope use a TrackerPulse collection, the raw hits belonging to the
cluster are additionally stored in a TrackerData collection. This means that also clus-
ters need to be interfaced by a pixel class. There are several clustering algorithms, the
sparse clustering algorithm is the most natural and thus will be discussed in more detail
later on. For this algorithm, two templated classes EUTelSparseClusterImpl<T> and
EUTelSparseCluster2Impl<T> had been introduced.
The other collections do not need an interfacing class because they do not have an object
which needs to be interpreted in a certain way, contrary to the std::vector<float> in
the TrackerData.
As mentioned, there are specific pixel classes used to interface hits. The most used pixel
class is the EUTelSimpleSparsePixel, it is a description of a pixel with X and Y index
as well as a discrete signal value.

ATLAS Pixel (APIX) Classes in EUTelescope

The APIX community introduced several new processors and several classes related to
ATLAS pixel data processing. For that purpose the EUTelAPIXSparsePixel had been
introduced replacing the EUTelSimpleSparsePixel for ATLAS data. It additionally con-
tains fields for the time information of the pixel hit as well as the FE ID on which the
hit took place. To process this additional data, several specific classes, some of them
processors, have been introduced. For example a EUTelAPIXSparseClusterImpl was
implemented as a cluster collection for APIX clusters.

Redesign of the Pixel Implementation in EUTelescope

As the specific APIX pixel and cluster classes required distinct subroutines in various
processors, if not even individual processors, this introduced a lot of duplicated code
which made refactorisation and maintenance a very tedious if not impossible task. As a
consequence all this specific code was removed and the required functionality was fully
merged into the already existing framework or generic new processors which can also be
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used to operate on other data than APIX.
For this two new pixel types were introduced, the EUTelGenericSparsePixel replaces the

EUTelBaseSparsePixel

+getXCoord(): short
+getYCoord(): short
+getSignal(): float

EUTelGenericSparsePixel

+getTime(): float

EUTelGeometricPixel

+getBoundaryX(): float
+getBoundaryY(): float
+getPosX(): float
+getPosY(): float

EUTelSimpleSparsePixel EUTelAPIXSparsePixel

+getChip(): short
+getTime(): short

(removed)
(deprecated)

Figure 5.2.: Unified Modeling Language 2 (UML) class diagram for pixel classes in
EUTelescope with their most important mutator methods to process
the pixel’s data.

EUTelSimpleSparsePixel as well as the EUTelAPIXSparsePixel, and can be considered
as the basic pixel type in EUTelescope (Fig. 5.2). It maintains entries for the pixel
indices (X,Y), the charge, as well as the hit time. Moreover, a pixel class used in the
new geometric processors was introduced, the EUTelGeometricPixel. It inherits from
the EUTelSimpleSparsePixel and has extra fields for a pixel’s dimensions and position
in space.
While EUTelAPIXSparsePixel was removed from the framework completely, the EUTel-
SimpleSparsePixel should be considered deprecated and not used anymore. It is merely
there for backward compatibility and intended to be removed in future versions.

Redesign of Tracker Data interfacing and the Cluster Classes

Originally, different cluster classes could only be used with certain pixel types, as the inter-
pretation of the TrackerData was done by the cluster class itself, rather than reusing any
code. Therefore the EUTelSparseDataImpl<PixelType> class was refactorised and the
EUTelTrackerDataInterfacer interface as well as the implementation EUTelTracker-
DataInterfacerImpl<PixelType> were introduced as classes templated in the various
pixel types (Fig. 5.3).
This allows clusters to be independent of their underlying pixel type. It is achieved via
object composition, combining the previously mentioned tracker data interfacing class and
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EUTelTrackerDataInterfacer

+getSparsePixelAt(unsigned int index, EUTelBaseSparsePixel* pixel): EUTelBaseSparsePixel*
+size(): unsigned int

EUTelTrackerDataInterfacerImpl
-TrackerDataImpl* _trackerData

+EUTelTrackerDataInterfacerImpl(TrackerDataImpl* data)
+addSparsePixel(PixelType* pixel): void
+getSparsePixelAt(unsigned int index, PixelType* pixel): PixelType*

PixelType

Figure 5.3.: UML 2 class diagram for the classes interfacing LCIO tracker data.

the cluster implementing class. The cluster implementation (implementing the EUTel-
SimpleVirtualCluster interface) is therefore also templated in the pixel type (Fig. 5.4).

EUTelGenericSparseClusterImpl
+EUTelTrackerDataInterfacerImpl<PixelType> _rawDataInterfacer

+EUTelGenericSparseClusterImpl(TrackerDataImpl* data)

PixelType
EUTelTrackerDataInterfacerImpl

-TrackerDataImpl* _trackerData

+EUTelTrackerDataInterfacerImpl(TrackerDataImpl* data)
+addSparsePixel(PixelType* pixel): void
+getSparsePixelAt(unsigned int index, PixelType* pixel): PixelType*

PixelType

EUTelSimpleVirtualCluster

#TrackerDataImpl* _trackerData

+getClusterSize(Int& xSize, Int& ySize): void
+getClusterInfo(Int& xPos, Int& yPos, Int& xSize, Int& ySize): void
+getClusterGeomInfo(float& xPos, float& yPos, float& xSize, float& ySize): void
+getCoG(float& xCoG, float& yCoG): void
+size(): unsigned int
+getTotalCharge(): float
+trackerData(): TrackerDataImpl*

Figure 5.4.: UML 2 class diagram of the new cluster classes featuring a composition
rather than an inheritance design approach.

The new cluster classes are designed to contain a collection of hit pixels which are con-
sidered to belong together. Unlike in the old approach there are now three key elements,
all dedicated to one simple task: raw data interfacing with EUTelTrackerDataInter-
facerImpl<PixelType>, cluster administration (EUTelGenericSparseClusterImpl) and
cluster finding by the clustering processor itself. Originally, the cluster finding algorithm
was implemented in the raw data interface and the clustering processor mainly called the
specific method and stored the result in a cluster object.
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Old Cluster Classes

While the old cluster classes have been updated to use the EUTelTrackerDataInter-
facerImpl<PixelType>, they do not have the same superclass as the new cluster classes
(EUTelSimpleVirtualCluster). This is due to the fact that their parent class requires
implementation of signal to noise ratios which are ill defined for zero suppressed clusters
as dealt with in this work.
The way to go would be to subclass from EUTelSimpleVirtualCluster and define an
interface for non-zero-suppressed clusters. As this goes far beyond the scope of imple-
menting a new pixel geometry, this has not been done. The lack of this unification results
in the necessity for two different hit making processors and is one of the big open issues
in the EUTelescope development.

5.3. The new Geometry Framework

An additional layer to the geometry description has been introduced in EUTelescope.
An extension to Gear already existed for the upcoming General-Broken-Line (GBL) fit-
ter, the EUTelGeometryTelescopeDescription. It uses ROOT’s TGeo geometry package
to create a representation of telescope planes which are used in GBL. As for GBL only
the spatial material distribution was necessary, the whole sensor was represented by one
box but no detail on the substructure was stored.
To achieve this, the functionality of EUTelGeometryTelescopeDescription was extended
so it can store pixel layouts of sensors while retaining the functionality required by GBL.
The EUTelGenericPixGeoDescr was introduced as a purely abstract class to be imple-
mented for the various different pixel layouts, e.g. for an ATLAS four chip module or a Mi-
mosa26 layout. There are two abstract methods which have to be implemented. The void
createRootDescr(char const * name) as well as the getPixName(Int X, Int Y). The
first creates the corresponding nodes and volumes in ROOT’s geometry framework2,
whereas the second method needs to return the name of the node corresponding to the
pixel in the ROOT geometry model.
Additionally, the interface dictates to implement the inverse map of the above operation,
retrieving a pixel’s indices from a node. As this functionality is not yet used anywhere in
the EUTelescope framework, it is not actively implemented in the included cases. The
EUTelGenericPixGeoMgr is the responsible class to maintain and take ownership of the
individual EUTelGenericPixGeoDescr objects, i.e. it will create, maintain and destroy

2For more information on this, refer to the chapter on geometry in the ROOT user’s guide.
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EUTelGeometryTelescopeGeoDescription

+getPixGeoDescr(Int planeID): EUTelGenericPixGeoDescr*
+initializeTGeoDescription(string geoName): void
+getInstance(GearMgr* _g ): EUTelGeometryTelescopeGeoDescription&

EUTelGenericPixGeoMgr

+addPlane(Int planeID, string geoName, string planeVolume): void
+addCastedPlane(Int planeID, ..., string planeVolume): void
+getPixGeoDescr(Int planeID): EUTelGenericPixGeoDescr*

EUTelGenericPixGeoDescr

+getSensitiveSize(float& x, float& y, float& z): void
+getSensitiveSize(float& x, float& y): void
+getPixelIndexRange(Int& minX, Int& maxX, Int& minY, Int& maxY): void
+createRootDescr(char const * name): void
+getPixName(Int X, Int Y): string
+getPixIndex(char const *name ): IntPair

FEI4Single FEI4FourChip Mimosa26GeoDescr GEARPixGeoDescr

TGeoManager

1..*

1

Figure 5.5.: UML 2 class diagram of the new geometry manager and classes connected
to it.

them when necessary. A special implementation is the GEARPixGeoDescr which is used
within the new framework when no other description is provided. It creates a sensor
layout consisting of rectangular pixels as described by the Gear file. While all other
EUTelGenericPixGeoDescr objects could be considered as a stateless utility class, a util-
ity design pattern was not possible as the Gear wrapper description does have a state,
governed by the Gear description. Therefore the EUTelGenericPixGeoMgr was designed
to reuse objects if the same geometry is loaded for multiple planes (Fig. 5.5).
Users developing EUTelescope processor never need to work with the EUTelGeneric-
PixGeoMgr. They interface the individual EUTelGenericPixGeoDescr via the getPix-
GeoDescr(int planeID) method of the EUTelGeometryTelescopeDescription.
An example of an implementation of a EUTelGenericPixGeoDescr is given in Appendix
B. It is based on the ATLAS four chip module prototype layout.

5.4. Modified Reconstruction Chain

Due to the new geometry framework and cluster management, several processors were
modified or newly introduced. This includes mainly processors in the early stage of
reconstruction, as in the later alignment and fitting steps hit objects are used and their
implementation remained unchanged. For detailed information on all new or heavily
modified processors, refer to Appendix C.
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5.4.1. The Converter Step

In this first step, the data is converted from its native format, which is unique to any
DAQ systems, to the LCIO format. For this purpose there exists a Marlin processor,
namely the EUTelNativeReader. This processor is closely related to EUDAQ and uses
certain EUDAQ classes. Every data associated to an event stored in EUDAQ has a
specific type, which can be processed via so-called DataConverterPlugin managed by
the PluginManager in EUDAQ. The EUTelNativeReaders can make use of that and use
those converters to process the EUDAQ raw data and store them in LCIO files. This is
the step in which the detector raw data is interpreted and converted.
Once the data is translated into the LCIO format, processors to mask noisy pixels are
executed. Originally two processors existed, the EUTelHotPixelKiller and the EUTel-
APIXHotPixelKiller. The APIX specific processor was necessary due to the different
pixel implementation of APIX. The APIX processor was removed from the framework and
the EUTelHotPixelKiller is deprecated. Profiling the CPU usage of EUTelHotPixel-
Killer revealed improper memory allocation leading to unnecessary memory reallocation
in this processor. Both these processors have been replaced by the EUTelProcessor-
NoisyPixelFinder. The EUTelProcessorNoisyPixelFinder counts the firing frequency
of each pixel, defined as the amount of events the pixel fired divided by the total event
count and cuts on this value. Pixels above the threshold are considered noisy and written
out in a separate database.

<execute>
<proc e s s o r name="AIDA"/>
<proc e s s o r name="Universa lNat iveReader "/>
<proc e s s o r name="NoisyPixelMaskerM26"/>
<proc e s s o r name="NoisyPixelMaskerAPIX"/>
<proc e s s o r name="Save"/>
<proc e s s o r name="EUTelUtilityPrintEventNumber"/>

</execute>

Listing 5.1: Possible execute node of a converter steering template for telescope and
APIX data.

In Listing 5.1 an example of which processors are called during the converter step is
shown. The AIDA processor is responsible for histogram generation within the framework
and typically called in every reconstruction step. Afterwards the converter and noisy
pixel treatment processors are called. While there is only one call of the converter which
deals with all the data, the noise treatment processor is called for APIX and telescope
data individually. The Save processor saves the output LCIO file which will be read in
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5.4. Modified Reconstruction Chain

in the next step of the reconstruction chain. The EUTelUtilityPrintEventNumber will
just print a message after having processed a certain amount of events to keep the user
informed on the progress. It does not do any reconstruction work and can be omitted if
this information is not required.

5.4.2. The Clustering Step

In this step, the previously created noisy pixel collections are read in. Explicit loading of
the noisy pixel collection is necessary, since they are stored in an external LCIO file. Af-
ter that the clustering processors are called. Originally two clustering processors existed,
the EUTelClusteringProcessor and EUTelAPIXClusteringProcessor. While the APIX
processor was removed, the EUTelClusteringProcessor was slightly modified. The al-
gorithm for sparse clustering was initially implemented in two different ways, related to
the EUTelSparseClusterImpl<T> and EUTelSparseCluster2Impl<T>. As this was mod-
ified, also the corresponding algorithms were updated. The duplicated implementation
EUTelSparseCluster2Impl<T> was removed and the actual cluster finding routines were
rewritten. EUTelClusteringProcessor provides multiple clustering routines for various
types of data (zero-suppressed as well as non-zero-suppressed). This violates the design
concept of EUTelescope, where processors should do simple and single tasks only and
not be large, monolithic structures which cover every possible task.
For this reason the EUTelProcessorSparseClustering and EUTelProcessorGeometric-
Clustering were introduced. The EUTelProcessorSparseClustering does sparse clus-
tering for zero-suppressed data in the same way as the old clustering did. The EUTel-
ProcessorGeometricClustering is also a type of sparse clustering, but uses the actual
pixel volumes to search for adjacent hit pixels.
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Figure 5.6 depicts a hit map from EUTelProcessorGeometricClustering, it shows the
cluster position on the sensor in units of pixel indices, regardless of their actual spatial
position. As the geometric clustering also obtains the actual spatial layout of the pixels, a
hit map showing the spatial position on the sensor is also filled, it is given in Figure 5.73.
The given example hit maps are taken from the newly introduced Aconite-4chip example in
EUTelescope and show an ATLAS four chip module. This explains the space between
the two double chip modules as well as the increased hit rate in the prolonged pixels in
the middle.
Any future ATLAS testbeam reconstruction should refrain from using the old clustering
processor. For telescope data the EUTelProcessorSparseClustering should be used in
addition to the EUTelProcessorGeometricClustering for more complex pixel layouts of
the DUTs.

<execute>
<proc e s s o r name="AIDA" />
<proc e s s o r name=" LoadNoisyPixelDB " />
<proc e s s o r name=" ClusteringMimosa " />
<proc e s s o r name=" ClusteringAPIX " />
<proc e s s o r name=" NoisyClusterMaskerM26 " />
<proc e s s o r name=" NoisyClusterMaskerAPIX " />
<proc e s s o r name="NoisyClusterRemoverM26 " />
<proc e s s o r name="NoisyClusterRemoverAPIX " />
<proc e s s o r name=" Save " />
<proc e s s o r name=" EUTelUtilityPrintEventNumber " />

</ execute>

Listing 5.2: Possible EUTelescope processors executed in the clustering step.

After execution of the clustering processors, noise treatment processors are invoked (List-
ing 5.2). The noisy pixel treatment has been updated so that only dedicated noisy pixel
processors care about noisy pixels, i.e. no other processor applies cuts on noisy pixels, but
the cuts are applied prior to them. This is done by EUTelProcessorNoisyClusterMasker
which masks any cluster containing a noisy pixel by setting a flag and EUTelProcessor-
NoisyClusterRemover which removes masked clusters and provides a new collection of
clusters which are noise-free.

3Note that the spatial histogram does not have any information on the exact pixel layout, therefore the
binning does not correspond to pixels and binning artefacts can occur. As this is a control plot to
check during reconstruction, this poses no problem but should be kept in mind.
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5.4.3. The Hitmaker Step

In the hitmaker step actual hit positions on the sensor are derived from the created clusters
(see Listing 5.3 for an example of Marlin processors executed during the hitmaker step).
As previously discussed, the new cluster classes require a different hitmaker, the EUTel-
HitMakerTwo. This processor simply retrieves all the hit pixels from a cluster object and
uses their spatial information to derive the correct hit position. It exploits its knowledge
of the pixel’s dimensions, allowing for a modified determination of hit position compared
to the simple COG approach as given in Eq. 1.6.

<execute>
<proc e s s o r name="AIDA" />
<proc e s s o r name="HitMakerTwoM26" />
<proc e s s o r name="HitMakerTwoAPIX" />
<proc e s s o r name=" Cor r e l a to r " />
<proc e s s o r name=" PreAl igner " />
<proc e s s o r name=" Save " />
<proc e s s o r name=" EUTelUtilityPrintEventNumber " />

</ execute>

Listing 5.3: Possible EUTelescope processors executed in the hitmaker step.

Output of the hitmaker are hit objects, this is the point where all the different cluster
implementations are merged into one common object used in the further reconstruction.
In the hitmaking step also the physical orientation of the sensor is applied. That means if
the sensor is mounted mirrored or the x and y direction are flipped, the hit is transformed
into the global system. In Figure 5.8 the output of the Aconite-4chip example is given for
sensor 21, an ATLAS FE-I4 single chip module. As the sensor is mounted in a way that
the x axis is flipped, this is specified in the Gear file and results in a hit map as given
in Figure 5.9 in the global telescope coordinate system. Any shift would have also been
applied in this step.
As hits have a spatial position associated to them, it is also possible to make a rough
alignment by assuming that tracks are not inclined with respect to the normal direction
of the telescope planes. This is done by the EUTelCorrelator and EUTelPreAlign pro-
cessors. Examples of such correlation plots can be seen in Figure 5.10 and 5.11 for the
four chip module of the Aconite-4chip example (sensor 20). It shows the correlation of
hits (in the global telescope frame of reference) from the first telescope plane and from
the investigated plane, in this case sensor 20. Again the characteristics of this layout
can be seen, the prolonged pixels in the centre cause the two prominent entries in the x
correlation histogram and the missing entries in the y one are due to the space between
the two double chip modules.
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Figure 5.8.: Hit in the local frame.
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Alignment corrections derived in this step are stored in a separate LCIO file. Alignment
files are used in a bottom-up fashion, i.e. even when the final alignment is obtained, the
pre-alignment derived in this step has to be applied initially.

5.4.4. Alignment and Track Fitting

The final two steps are alignment and track fitting. As they have not been changed during
this work, they will be discussed only briefly.
Alignment is done by applying the previously obtained pre-alignment and then using the
MillepedeII framework. This results in a second alignment database. As the hits remain
unchanged, no new LCIO collection, aside from the alignment database, is created.
In the final reconstruction step, the track finding, all the alignment collections are applied
and a pattern recognition algorithm is invoked on the aligned hit collections. In the case
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5.4. Modified Reconstruction Chain

of APIX the Deterministic Annealing Filter (DAF) fitter is used. A DAF fitter is an
iterative Kalman filter with reweighted observations [43].

5.4.5. Track Dump

The final step, and actually part of the fitting Marlin execution step, is exporting
the obtained tracks in a way that TBmonII can process them. The processor is called
EUTelAPIXTbTrackTuple and has been completely rewritten during this work and a new
file format has been introduced. To differentiate the different file versions also a version
number has been introduced, allowing TBmonII to correctly process old, new and even
future revisions of the file format.
A major difference is that the undoing of the alignment is not done by this processor any-
more, but hits have to be unaligned before by a separate processor. Undoing the alignment
is necessary, as TBmonII was designed to obtain hits in the local frame of reference and
thus does not need to know anything about the telescope set-up and alignment.
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6. Results with the updated Version
of EUTelescope

6.1. The Aconite-4chip Example

As already mentioned, an example case has been introduced in EUTelescope which
uses all the new processors for a correct reconstruction. The example uses data obtained
during the November 2013 planar pixel sensor testbeam of ATLAS at DESY. The set-up
uses the Aconite telescope with all six telescope planes active and two DUTs in between.
One is an ATLAS four chip prototype and the other a single chip module acting as a
reference plane. The run chosen for this example is 1085, in which the beam spot was in
the middle of the four chip module.

6.2. Geometry Verification Tests

To verify that the new geometry framework provides a correct description, its outputs
have been compared to the old clustering. For this purpose, a Python program has been
written to compare hits on an event basis.
These tests have been carried out on real testbeam data: one data set with a double chip
module and one with a four chip module.

6.2.1. Double Chip Module Results

In x direction, the double chip features 2 × 79 pixels with 250µm pitch, and two pixels
with 450µm pitch in the centre, yielding a total length of 4.04 cm. If all of the 160 pixels
are assumed to be equally sized, they would have to be 252.5µm long. This description
via Gear was compared to the results obtained with the new geometry framework.
Positions in the old hitmaker are computed the following way:
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6. Results with the updated Version of EUTelescope

posi = (i+ 0.5) pi −
si

2 (6.1)

Where i is the pixel index, pi is the pixel pitch and si the total length of the sensor. As
the first pixel index i starts with 0, this yields the correct pixel centre position with the
origin located in the middle of the sensor.

x-position on sensor [mm]
-20 -15 -10 -5 0 5 10 15 20

y-
po

si
tio

n 
on

 s
en

so
r 

[m
m

]

-8

-6

-4

-2

0

2

4

6

8
nEntriesHisto

Entries 146297

0

10

20

30

40

50

60
nEntriesHisto

Entries 146297

Number of entries

E
nt

rie
s

Figure 6.1.: Hit map of the investigated double chip.

As with the four chip modules, the prolonged pixels detect more hits due to their larger
area, which is clearly visible in the hitmap of the investigated sample (Fig. 6.1). For
hits in those pixels, one expects a difference in reconstructed hit position of half their
pixel pitch, i.e. 450µm

2 − 252.5µm
2 ≈ 0.98mm, which can be seen in the distribution of

∆x = xgeo − xold (analogous for ∆y) shown in Figure 6.2 (and Fig. 6.3 for ∆y).
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While the ∆y distribution features no deviations, the shape of the ∆x meets the expecta-
tion: the difference in reconstructed hit positions is a linear function in pixel index where
the slope equals the difference in pixel pitch, i.e. ∆px = (250 − 252.5)µm = −2.5µm
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per pixel. This linear offset makes a jump in the centre due to the prolonged pixels
present there. The maximum offset is thus for hits in pixel 79, leading to a deviation of
79px = 0.1795mm. The hitmap (Fig. 6.1) reveals a rough cut-off due to the scintillator
active area for positive x, whereas in the negative region the beam spot is more washed
out, leading to a rough edge in the ∆x distribution (Fig. 6.2) for positive values and a
more continuous drop for the negative ones. Moreover, the fact that the beam spot is not
centred on the sensor can be seen.
To quantify the behaviour of the offset, a 2D histogram showing the correlations of ∆x
and xgeo is shown in Figure 6.4 (and the same for y as shown in Figure 6.5). The deviation
is expected to increase as: ∆x = (i+ 0.5)∆px. Combined with Eq. 6.1 this yields:

∆x = ∆px

px

x+ sx

2
∆px

px

(6.2)

px being the pitch of the correct description, i.e. 250µm. This yields the following values:

∆px

px

= −0.01 (6.3)
sx

2 = 20.2mm (6.4)

The correlation plots given in Figure 6.4 and 6.5 exhibit the behaviour discussed above.
To quantify the linear slopes, a profile histogram was derived and two fits (y = p0 + p1x)
were performed in two regions Ri: [−20.2,−0.7] and [0.7, 20.2].
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Figure 6.4.: Correlation of ∆x and xgeo
(the actual position on the
sensor).
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The obtained values were:

Region R1:

• offset = (−0.2021± 0.0009)mm

• slope = −0.0100± 0.0001

Region R2:

• offset = (−0.2019± 0.0009)mm

• slope = −0.0099± 0.0001

These values agree with the derived expectations of offsetexp = 0.202mm and slopeexp =
0.01. Additionally, ∆x has been determined space-resolved on the sensor. The resulting
histogram is given in Figure 6.61. As expected, ∆x increases towards the centre of the
chip, where it makes a jump and no dependence on the y position can be seen.
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Figure 6.6.: Spatially resolved ∆x for the double chip module analysis.

Some features of the Gear implementation of the pixel geometry are surprising: while
the pixel pitch pi, the pixel count ni and the total sensor size si are trivially related,
si = pi × ni, this relation can be violated in the Gear description. As double chip
modules mostly consist of 250µm pixels, it is very tempting to use this value for the pixel
pitch, but increase the total sensor size to 40.4mm, taking into account the prolonged
pixels. As the position is reconstructed according to Eq. 6.1, this will retrieve the correct
position for any pixels (except the prolonged one) on the first sensor, but lead to an
offset corresponding to twice the additional length of the prolonged pixels, i.e. 0.4mm
for any pixels on the second sensor. Performing the same analysis reveals this behaviour.
In addition to the two peaks at 0 and 0.4mm, small peaks corresponding to hits in the
prolonged pixels at 0.1 and 0.3mm are present in the ∆x distribution (Fig. 6.7). The
spatial and correlation plots exhibit the expected structure, featuring the jump on the
second chip, as can be seen in Figure 6.8 and 6.9.

1The deviations are only computed for pixels which contain at least one hit. Therefore, the shadow of
the beam spot can be seen, and only pixels within feature a deviation different from 0. This is the
case for all 2D plots showing ∆x (and ∆y).
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Figure 6.8.: Mean ∆x spatially resolved
on the sensor.
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Figure 6.9.: Correlations of ∆x and xgeo.

6.2.2. Four Chip Modules

The same analyses were also performed for the Aconite-4chip example. As the layout
features a 1.58mm gap between the two double chip modules, a deviation in reconstructed
y position was also expected.
The ∆x distribution (Fig. 6.10) features the same behaviour as in the double chip module
case (Fig. 6.2), which is expected, as a four chip module consists of two double chip
modules and thus features the same layout in x direction. In y direction, the same shape
of the distribution (Fig. 6.11) is expected without the peaks caused by the prolonged
centre pixels. Again, no dependence on the other direction is observed if looking at the
spatially resolved mean ∆x and ∆y (Fig. 6.12 and 6.13).
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Figure 6.11.: ∆y for the same data set.
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Figure 6.12.: Spatially resolved ∆x.
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Figure 6.13.: Spatially resolved ∆y.

6.3. Test-Driven Development

To verify the functionality of EUTelescope, the most recent version is automatically
downloaded, compiled and test cases are executed. As several new Marlin processors
were introduced, they had to be included in the test builds. As the Aconite-4chip example
was made publicly available, the newly introduced test cases for the new processors are
based on this example.
All the reconstruction steps in the example are executed and their proper completion is
checked. The results of these tests are uploaded to a web-based testing sever and the
development team is informed if any of them fail. As they run on a daily basis and a
history of their status is recorded, it is easy to track down a failed test to a specific date
and thus to corresponding changes in the software framework at that time. This leads to
an easier and more efficient maintenance of the whole EUTelescope software package.

6.4. Toy-Box Straight Line Simulation

A small straight line simulation has been written in pyLCIO. It simulates six telescope
planes and two standard ATLAS FE-I4 layouts (without any prolonged edge pixels) which
are perfectly aligned with respect to each other. Straight lines are fitted through the
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telescope and the hit pixel is geometrically determined. In this simple model, this results
in a single hit cluster in exactly this pixel.
One track is simulated per event, each telescope sensor thus detecting exactly one hit
pixel per event, as they are assumed to be 100% efficient. For the first ATLAS plane,
different pixels had different efficiencies. For every hit, a random number was generated
and depending on the efficiency, the hit was written into the data stream or discarded.
The base efficiency was set to 0.8, i.e. unless otherwise specified, this was the global
efficiency. Pixels were selected to form the TBmonII logo and given an efficiency of
100%. Furthermore, a row under the TBmonII logo was given an efficiency gradient from
0% to 100%. To further probe the reconstruction resolution, pixels for which both indices
modulo 30 are equal (i.e. (x mod 30) = (y mod 30)), were given an efficiency of 0.5.

Column
0 10 20 30 40 50 60 70

R
o

w

0

50

100

150

200

250

300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Efficiency Map DUT 20

Figure 6.14.: Efficiency map as obtained from TBmonII for the simulated straight line
data.

The obtained data was reconstructed via the new geometric clustering processor and the
new hitmaker. Ultimately, the data was dumped via the new track dump processor and
imported into TBmonII, where it was analysed. The resulting efficiency map is shown in
Figure 6.14 and exhibits the introduced characteristics as discussed before.
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7. Summary and Outlook

7.1. Summary

During this work, the analysis framework for the ATLAS pixel testbeams has been up-
dated and improved in several aspects. Data acquisition with the USBpix framework has
been updated to be able to process data with burn-in adapter cards, allowing to read
out up to four FEs with a single MultiIO board. This is especially important for data
acquisition with the ATLAS four chip modules. For this purpose, the EUDAQ Producer
in STControl was modified and the desired new functionality implemented.
Accompanying these changes, the EUDAQ converter plug-in was updated. Multiple old
converter plug-ins were merged into a new, refactorised one. The new converter plug-in is
able to process data provided by the updated USBpix Producer, but is completely down-
ward compatible to old data at the same time. Correct operation of the updated DAQ
software was verified in the laboratory with a radioactive source.
The reconstruction framework EUTelescope was improved to support more arbitrary
pixel geometries, allowing to reconstruct ATLAS double and four chip modules without
the need for error prone workarounds. This was achieved by introducing a new pixel ge-
ometry framework and expanding the EUTelescope geometry manager, which is based
on ROOT’s geometry libraries. The pixel geometry manager was implemented with re-
spect to possible further applications, especially providing the possibility for Geant4-like
navigation, allowing the geometry to be used in other applications, e.g. in external sim-
ulation toolkits or for geometry-based tracking.
To fully exploit the new functionality of the pixel geometry manager, the pixel and cluster
implementation in EUTelescope has been reworked, leading to multiple new Marlin
processors. Aside from the newly introduced clustering based on geometric proximity, the
default clustering processor has been updated and made easier to use. Additionally, a new
noise treatment scheme and corresponding processors have been written. The processor
interfacing EUTelescope and TBmonII, the track dumper, has been reimplemented to
be able to deal with the new classes.
To verify and provide a test case, the Aconite-4chip example has been introduced in EU-
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Telescope, giving users a starting point if they want to base their reconstruction on the
new processors. This example is also included in the nightly test builds, giving developers
immediate warning in case of failure within the new processors.
The geometry description was verified by reconstructing ATLAS double and four chip
modules and comparing reconstructed hit positions on an event basis. Hits were re-
constructed with an old version of EUTelescope as well as the current version. The
resulting deviations can be understood by the various limitations and peculiarities of the
old Gear pixel layout description.
Finally, a small straight line track simulation was written for the telescope with the aim to
verify the new geometric hit processors, as well as the interface between EUTelescope
and TBmonII.

7.2. Outlook

7.2.1. USBpix

The USBpix Producer has been updated to support read-out of the burn-in cards in
testbeam operation. Data from each FE is read out in a separate thread (the multiple
data producing threads) and processed by the EUDAQ Producer (the single consumer
thread). This poses a classical multi-producer, single-consumer multi-process synchroni-
sation problem. Currently, this problem is poorly solved as the producer threads will be
put to sleep (i.e. keep the BUSY line raised) until the consumer thread is finished. Data
is currently passed via Qt events from the producer threads to the consumer, and a global
boolean is used for interprocess synchronisation. Using a first in, first out (FIFO) buffer
and semaphores for synchronisation, this dead time could be decreased to a minimum,
allowing faster DAQ at testbeams.

7.2.2. Geometry

As the implemented pixel geometry manager was kept as generic as possible, it would
be possible to reuse it in other programs, for example in TBmonII, which would result
in one pixel layout description during the whole testbeam reconstruction and analysis.
Furthermore, it would be advantageous if various other processors in EUTelescope
would exploit the features provided by the updated telescope geometry manager, as it
supplies easier implementation of geometry related functionality.
EUTelescope needs to be updated to use one central alignment file, which would make
exporting the data to TBmonII much easier, since only one alignment file has to be
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undone. In particular, this operation would take minimal implementation effort when
using the ROOT geometry libraries, as this transformation is provided by the library.

7.2.3. Simulation

Continuing the idea of the straight line track simulation which was implemented to verify
the very basic functionality of the newly introduced processors, this idea could be ex-
panded and developed into a more sophisticated simulation. This would allow to verify
and test various processors, especially the ones concerning alignment and track fitting. By
way of example, testbeam studies aiming at high track rates, to investigate the properties
of the tested DUTs under more realistic conditions, would become possible. Adapting
the tracking algorithms to match or approximate the ones used in ATLAS would allow
to conduct not only hit inefficiency studies, but to exploit the telescope as a vertexing
device, operating it similarly to the real pixel detector and performing tracking studies.
As such changes must be verified, a proper simulation toolkit becomes necessary. Initial
implementations already exist in the AllPix Simulation Framework, which is a Geant4
based simulation with the main focus on the implementation of the various digitisers.
Expanding such a framework to a general telescope simulation could help improve track
reconstruction and enable future studies of tracking in general.
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A. STControl Producer and
EUDAQ

A.1. Verification with a Four Chip Module

The case for modules[i] = 1,1,2,3 has been tested in the laboratory, the same way as
discussed in Section 4.3. The resulting plots from EUTelescope match their expectation
completely.
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Figure A.1.: Hits on sensor 20, corresponding to a double chip, consisting of FE I and
II of the four chip module.
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Figure A.2.: Hits on sensor 21, corre-
sponding to a single chip
(FE III).
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Figure A.3.: Hits on sensor 21, corre-
sponding to a single chip
(FE IV).
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B. Implementation of a
EUTelGenericPixGeoDescr - An
Example

The ATLAS four chip module used in this example consists of two double chip modules.
Each double chip module has twice 79 normal sized pixels and two prolonged in the
middle. The exact layout is depicted in Figure 3.3. Therefore the layout in TGeo is based
on two double chip modules.

1 FEI4FourChip : : FEI4FourChip ( ) : EUTelGenericPixGeoDescr ( 4 0 . 4 , 3 5 . 1 8 , 0 . 0 2 5 , // s i z e X, Y, Z
2 0 , 159 , 0 , 671 , //min max X,Y
3 93.660734 ) // rad l e n g t h
4 {
5 // Create t h e m a t e r i a l f o r t h e s e n s o r
6 matSi = new TGeoMaterial ( " S i " , 28 . 0855 , 1 4 . 0 , 2 . 3 3 , _radLength , 45.753206 ) ;
7 S i = new TGeoMedium( " F E I 4 S i l i c o n " , 1 , matSi ) ;
8
9 /∗ Make a box f o r t h e s e n s i t i v e area

10 MakeBox t a k e s t h e h a l f o f s i z e i n mm as arguments ∗/
11 plane = _tGeoManager−>MakeBox ( " s e n s a r e a _ f e i 4 f o u r " , Si , 2 0 . 2 , 1 7 . 5 9 , 0 . 0 1 2 5 ) ;
12
13 // Create vo lumes f o r t h e d o u b l e c h i p
14 TGeoVolume∗ d ou bl e c h ip = _tGeoManager−>MakeBox ( " f e i 4 d o u b l e " , Si , 2 0 . 2 , 8 . 4 , 0 . 0 1 2 5 ) ;
15
16 // Create vo lumes f o r t h e d i f f e r e n t r e g i o n s
17 TGeoVolume∗ normalRegion = _tGeoManager−>MakeBox ( " f e i 4 n o r m r e g " , Si , 9 . 8 7 5 , 8 . 4 , 0 . 0 1 2 5 ) ;
18 TGeoVolume∗ c e n t r e R e g i o n = _tGeoManager−>MakeBox ( " f e i 4 c e n t r e g " , Si , 0 . 4 5 , 8 . 4 , 0 . 0 1 2 5 ) ;
19
20 // D i v i d e t h e r e g i o n s t o c r e a t e p i x e l s
21 TGeoVolume∗ normalCol = normalRegion−>Divide ( " c o l " , 1 , 79 , 0 , 1 , 0 , "N" ) ;
22 normalCol−>Divide ( " p i x e l " , 2 , 336 , 0 , 1 , 0 , "N" ) ;
23 TGeoVolume∗ c e n t r e C o l = centreRegion −>Divide ( " c o l " , 1 , 2 , 0 , 1 , 0 , "N" ) ;
24 centreCol −>Divide ( " p i x e l " , 2 , 336 , 0 , 1 , 0 , "N" ) ;
25
26 //And p l a c e them t o make a d o u b l e c h i p
27 doublechip −>AddNode ( normalRegion , 1 , new TGeoTranslation ( − 1 0 . 3 2 5 , 0 , 0 ) ) ;
28 doublechip −>AddNode ( centreRegion , 1 ) ;
29 doublechip −>AddNode ( normalRegion , 2 , new TGeoTranslation ( 1 0 . 3 2 5 , 0 , 0 ) ) ;
30
31 // P l a c e two d o u b l e c h i p s f o r a f o u r c h i p module
32 plane−>AddNode ( doublechip , 1 , new TGeoTranslation ( 0 , − 9 . 1 9 , 0 ) ) ;
33 plane−>AddNode ( doublechip , 2 , new TGeoTranslation ( 0 , 9 . 1 9 , 0 ) ) ;
34 }
35
36 void FEI4FourChip : : createRootDescr ( char const ∗ planeVolume )
37 {
38 // Get t h e p l a n e as p r o v i d e d by t h e EUTelGeometryTelescopeGeoDescr ipt ion
39 TGeoVolume∗ topplane =_tGeoManager−>GetVolume ( planeVolume ) ;
40 // F i n a l l y add t h e s e n s i t i v e area t o t h e p l a n e
41 topplane−>AddNode ( plane , 1 ) ;
42 }

Listing B.1: Constructor and implemented createRootDescr(...) method of an AT-
LAS four chip module geometry class.
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The whole geometry is prepared in the class’ constructor. The plane will be the TGeo-
Volume holding a representation of the whole geometry layout (Listing B.2, Line 11). The
layout itself is composed of double chips (doublechip) (L. 14) which by itself is made
out of two normalRegion, i.e. the regions with 79×336 normal pixels, separated by a
centreRegion (L. 17.18). The Divide calls divide the volumes in a Geant 3 compliant
syntax (L. 21-24). After preparing all the individual components, they are placed to form
the double chip (L. 27-29) and finally two doublechip are placed into the plane to create
the final plane (L. 32-33).

1 std : : s t r i n g FEI4FourChip : : getPixName ( int x , int y )
2 {
3 char b u f f e r [ 1 0 0 ] ;
4 int d ou bl ec h ip = 1 ;
5 // I f y i n d e x i s l a r g e r than 335 t h e n we are on d o u b l e c h i p two ( t h e upper one )
6 i f ( y > 335)
7 {
8 do ub le c hi p = 2 ;
9 y −= 3 3 6 ;

10 }
11 i f ( x < 79 )
12 {
13 // i n normalRegion_1
14 s n p r i n t f ( b u f f e r , 100 ,
15 " / s e n s a r e a _ f e i 4 f o u r _ 1 / f e i 4 d o u b l e _%d/ fei4normreg_1 / col_%d/ pixel_%d " ,
16 doublechip , x+1, y +1);
17 }
18 e l s e i f ( x == 79 )
19 {
20 // i n centreRegion_1 , col_1
21 s n p r i n t f ( b u f f e r , 100 ,
22 " / s e n s a r e a _ f e i 4 f o u r _ 1 / f e i 4 d o u b l e _%d/ f e i 4 c e n t r e g _ 1 / col_1 / pixel_%d " ,
23 doublechip , y +1);
24 }
25 e l s e i f ( x == 80 )
26 {
27 // i n centreRegion_1 , col_2
28 s n p r i n t f ( b u f f e r , 100 ,
29 " / s e n s a r e a _ f e i 4 f o u r _ 1 / f e i 4 d o u b l e _%d/ f e i 4 c e n t r e g _ 1 / col_2 / pixel_%d " ,
30 doublechip , y +1);
31 }
32 e l s e
33 {
34 // i n normalRegion_2
35 s n p r i n t f ( b u f f e r , 100 ,
36 " / s e n s a r e a _ f e i 4 f o u r _ 1 / f e i 4 d o u b l e _%d/ fei4normreg_2 / col_%d/ pixel_%d " ,
37 doublechip , x−80, y +1);
38 }
39
40 // Return t h e f u l l p a t h
41 return std : : s t r i n g ( b u f f e r ) ;
42 }

Listing B.2: Implementation of the getPixName(...) method for the example.

This layout results in the given name of the node, representing an individual pixel. It is
a file-system-like string, the directories being the different nodes placed into each other.
Each pixel node will start with sensarea_fei4four_1 as this is the name of the upper-
most node plane. The first subnode will be the one representing the double chip, i.e.
fei4double_i where i is either 1 or 2 for the first or second placed double chip. After-
wards it has to be differentiated if the pixel is in the prolonged region (fei4centreg_1) or
in the normal region (fei4normreg_i). Ultimately the correct col and pixel, according
to the divisions, has to be chosen. This way a given pixel index can be translated into a
node, as done by the getPixName() method implemented in Listing B.2.
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C. Newly introduced Marlin
processors in EUTelescope

C.1. Noise Treatment Processors

EUTelNoisyPixelFinder

This processor is key to the noisy pixel treatment in EUTelescope, as it creates the
databases of pixels which are considered to be noisy. For this purpose it is intended to be
called right after data conversion. It counts the amount of registered hits for each pixel
over a subset of all events and then normalises it to the subset size. A cut is applied to
this overall hit detection frequency, pixels which detect a hit more often than this cut
value are considered to be noisy and appended to the created noisy pixel collection.
It should be noted that EUTelescope has no way of knowing anything about the active
time of a sensor, thus if working with a sensor which is only active during a small time
window during a full telescope read-out, the cut hit frequency will naturally be lower.
The processor’s parameters can be reviewed in Table C.1.

EUTelNoisyClusterMasker

The EUTelNoisyClusterMasker operates on the output of any clustering processor and
is the second step in noisy pixel treatment. It requires a noisy pixel collection as an input
and then will mask any clusters in the LCIO pulse collection which contains a noisy pixel
as defined by the noisy pixel database. It will do this by modifying the original collection,
setting a flag for pulses which belong to a noisy cluster, therefore no new output collection
is created. The noisy clusters are still present in the collection. Processor parameters can
be reviewed in Table C.2.
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Variable Name Description Variable
Type

Default
Value

ZSDataCollectionName LCIO collection from EU-
TelNativeReader contain-
ing raw hits

string "zsdata"

NoOfEvents Size of event subset which
will be used in this proces-
sor

int "100"

SensorIDVec Sensor IDs of detectors for
which the processor should
run

vector<int> empty

MaxAllowedFiringFreq The hit detection cut off
value

float 0.2

HotPixelDBFile Name of the LCIO output
file containing the noisy
pixel database

string "hotpixel.slcio"

ExcludedPlanes Sensors which appear
in the input collection
(ZSDataCollectionName)
but should be excluded

vector<int> empty

HotPixelCollectionName Name of the LCIO collec-
tion in the output file

string "hotpixel"

Table C.1.: Parameters of EUTelNoisyPixelFinder.

Variable Name Description Variable
Type

Default
Value

InputCollectionName LCIO collection from
clustering processor con-
taining cluster pulses

string "cluster"

HotPixelCollectionName Name of the loaded noisy
pixel database

string "hotpixel"

Table C.2.: Parameters of EUTelNoisyClusterMasker.

EUTelNoisyClusterRemover

The final step of noise treatment is the creation of a noise free cluster collection. For this
purpose EUTelNoisyClusterRemover is used, who will read in a previously masked (by
EUTelNoisyClusterMasker) cluster pulse collection and create a new collection with only
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cluster pulses which have not been flagged as noisy. The new cluster pulse collection will
link individual pulses against the original underlying raw LCIO::TRACKERDATA (usually
named original_zsdata), this collection must therefore not be deleted. A summary of
processor parameters can be found in Table C.3.

Variable Name Description Variable
Type

Default
Value

InputCollectionName LCIO collection from
clustering processor con-
taining cluster pulses in
which noisy clusters have
been flagged

string "noisy_clus-
ter"

OutputCollectionName Name of the new, noisy
cluster free cluster pulse
collection

string "noise-
free_clus-
ters"

Table C.3.: Parameters of EUTelNoisyClusterRemover.

C.2. Clustering Processors

EUTelProcessorSparseClustering

The EUTelProcessorSparseClustering processor replaces the old sparse clustering al-
gorithm in EUTelClusteringProcessor for zero-suppressed data. Unlike the old EUTel
ClusteringProcessor it does not incorporate any noisy pixel treatment, which therefore
has to be done afterwards with the newly introduced noisy pixel treatment scheme and
processors. In addition to all other functionality it also allows to apply a time cut, given
that your sensor provides this information and it is included in EUTelescope.

+1

-1

+1-1-2

A

B

C

Figure C.1.: Sparse Clustering Distance.
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Along with the temporal cut, which is the maximum difference in detector specific time
units, the spatial cut is the only user tunable value. It is given in distance of pixel indices
squared. Figure C.1 illustrates how this is understood. The distance between the red pixel
and the pixel marked with A is 1 in horizontal direction and 0 in vertical, the squared
distance is therefore 12 + 02 = 1. Pixels touching at one corner (case B) have a distance
of 1 in both directions, the sparse distance squared is therefore 12 + 12 = 2. Case C has
a distance of 2 in horizontal direction and 1 in vertical, giving a squared sparse distance
of 22 + 12 = 5.
Thus for the typical case of clustering the red pixel with A and B, the cut value has to
be set to 2. If it were set to 1, only pixel A would be considered to belong to a cluster
with the red pixel. Since the most natural requirement is pixels to be touching at least
at one corner, the default value is set to 2. A summary of important parameters is given
in Table C.4.

Variable Name Description Variable
Type

Default
Value

ZSDataCollectionName Input raw data collection
name

string "zsdata"

PulseCollectionName Name of output pulse col-
lection storing clusters

string "cluster"

TCut Maximum time difference
in detector specific time
units, for hits belonging to
the same cluster

float max(float)

HistogramFilling Switch for turning his-
tograms on or off

bool true

ExcludedPlanes Planes to be excluded from
the clustering

vector<int> empty

SparseMinDistance-
Squared

The maximum distance in
pixel units, two hits are al-
lowed to be apart for them
to belong to the same clus-
ter, squared

int 2

Table C.4.: Parameters of EUTelProcessorSparseClustering.
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EUTelProcessorGeometricClustering

The geometric clustering processor is very much like the sparse one, with the major dif-
ference that the proximity requirement for pixels is not based on their indices, but arises
from the geometric spatial mapping on the sensor. Consider the situation shown in Figure
C.2 where the regular pixel pattern is interrupted by a long pixel composed of two normal
pixels. Using the index scheme shown in the schematic, the long pixel would not be clus-

2|4 3|4 4|4 5|4

2|5 3|5 4|5 5|5

2|6 3|6 5|6

Figure C.2.: Geometric Clustering Proximity.

tered together with the pixel on the right, adjacent to it with a default sparse clustering,
assuming a distance cut of 2, which corresponds to the usual touching requirement. This
is due to the limitation imposed by assuming a coherent pixel pattern all over the sen-
sor. Other cases where sparse clustering fails, include sensor layouts where there is some
inactive material between two pixels. In this case, sparse clustering will wrongly assume
that pixels aside of that area are adjacent, despite them being not.
EUTelProcessorGeometricClustering circumvents this problem by deriving the clus-
tering proximity requirement via the geometric layout, thus its name. It will cluster
together any pixels which touch at least in one point, no user set distance cut has to
be applied. The time cut is the same as in EUTelProcessorSparseClustering. The
important parameters of this processor are summarised in Table C.5.

C.3. Other Processors

EUTelHitMakerTwo

This processor arised from the necessity of treating new cluster objects differently than
the old ones, given that they do not derive from a common base class anymore. It is used
in the exact same way as the old hitmaker (EUTelProcessorHitMaker) and has identical
parameters.
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Variable Name Description Variable
Type

Default
Value

ZSDataCollectionName Input raw data collection
name

string "zsdata"

PulseCollectionName Name of output pulse col-
lection storing clusters

string "cluster"

TCut Maximum time difference
in detector specific time
units, for hits belonging to
the same cluster

float max(float)

HistogramFilling Switch for turning his-
tograms on or off

bool true

ExcludedPlanes Planes to be excluded from
the clustering

vector<int> empty

Table C.5.: Parameters of EUTelProcessorGeometricClustering.

EUTelAPIXTbTrackTuple

The EUTelAPIXTbTrackTuple is the interface between EUTelescope and TBmonII. It
exports the reconstructed tracks and predicted points from any track fitting processor
for later analysis in TBmonII. For this three collections have to be provided, the raw
tracker data, the tracks and unaligned points for these tracks. EUTelAPIXTbTrackTuple
will not undo any alignment and the appropriate processor has to be called prior to this
one. Table C.6 gives an overview of all the parameters.

Variable Name Description Variable
Type

Default
Value

InputTrackCollection-
Name

Name of track collection string "fittracks"

InputTrackerHit-
CollectionName

Name of unaligned hit col-
lection

string "fitpoints"

DutZsColName Name of raw tracker data
collection

string "zsdata_apix"

OutputPath Name of output ROOT file string "NTuple.root"
DUTIDs sensorIDs of all DUTs

which should be dumped
vector<int> empty

Table C.6.: Parameters of EUTelAPIXTbTrackTuple.
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