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SUMMARY

We study the class of penalized spline estimators, whichyegimilarities to both regression
splines, without penalty and with less knots than data pparid smoothing splines, with knots
equal to the data points and a penalty controlling the roaghiof the fit. Depending on the num-
ber of knots, sample size and penalty, we show that the thiearproperties of penalized regres-
sion spline estimators are either similar to those of regoassplines or to those of smoothing
splines, with a clear breakpoint distinguishing the cagésprove that using less knots results in
better asymptotic rates than when using a large number aékidde obtain expressions for bias
and variance and asymptotic rates for the number of knotpandlty parameter.

Some key word$lean squared error; Nonparametric regression; Penadtyrd®sion splines; Smoothing splines.
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2 G. CLAESKENS, T. KRIVOBOKOVA, J. D. OPSOMER

1. INTRODUCTION

Penalized spline smoothing has gained much popularity treclast decade. This smoothing
technique with flexible choice of bases and penalties caridyeed as a compromise between
regression and smoothing splines. In this paper we obtgimpatetic properties of such estima-
tors and relate them to known asymptotic results for regrassplines and smoothing splines,
which can be seen as the two extreme cases, with penalizedspltuated in between.

The combination of regression splines, with number of kiegs than the sample size, and a
penalty has been studied by several authors. O’Sulliva8@)Ll@sed penalized fitting with cubic
B-splines for inverse problems. He used a set of knots éiffiefrom the data and a penalty
equal to the integrated squared second derivative of threesfinction. O’Sullivan splines are
discussed by Ormerod & Wand (2008). Kelly & Rice (1990) andgdgeet al. (1997) used B-
spline approximations to the smoothing splines, which tteled hybrid splines. Schwetlick
& Kunert (1993) decoupled the order of the B-spline and thiévdive in the penalty function.
This same idea has been promoted by Eilers & Marx (1996) wkd asdifference penalty on
the spline coefficients. Many applications and exampleseofapzed splines are presented in
Ruppert et al. (2003).

There is a rich literature on smoothing splines, which wdlgirdy briefly touch here. Ref-
erence books are Wahba (1990), Green & Silverman (1994) ahdrik (1999). For smoothing
splines, the penalty is the integrated squajthdierivative of the function, leading to a smoothing
spline of degre@q — 1, with ¢ = 2 a common choice. Rice & Rosenblatt (1981, 1983) study the
estimator’s integrated mean squared error and effectswidary bias, see also Oehlert (1992)
and Utreras (1988). Wahba (1975) and Craven & Wahba (19v8¥iigated the averaged mean
squared error, in connection with the choice of the smogtiparameter. Cox (1983) studied

convergence rates for robust smoothing splines. Speckr#8b) obtained the optimal rates of
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Asymptotic properties of penalized spline estimators 3

convergence for smoothing spline estimators, and NychR85)Lobtained local properties of
smoothing splines.

For regression splines, the integrated mean squared ea®istudied by Agarwal & Stud-
den (1980), and Huang (2003a,b) who obtained local asymptxults by considering the least
squares estimator as an orthogonal projection. Importedrétical results on unpenalized re-
gression splines are obtained by Zhou et al. (1998).

Theoretical properties of penalized spline estimatordes® explored. Some first results can
be found in Hall & Opsomer (2005), who used a white noise mwtation of the model to
obtain the mean squared error and consistency of the estinkauermann et al. (2008) work
with generalized linear models. Li & Ruppert (2008) used@malent kernel representation for
piecewise constant and linear B-splines and first or secothet alifference penalties. Their as-
sumption on the relative large number of knots, thus cloged¢@moothing splines case, allowed
them to ignore the approximation bias.

In this paper we provide a general treatment, any order ofespind general penalty, and we
study with one theory the two asymptotic situations, eittiese to regression splines or close to
smoothing splines. One of our main results is that we find ar clereakpoint” in the asymptotic
properties of the penalized splines, with the boundary betwthe two types of behavior de-
pending on an explicitly defined function of the number oftsnthe sample size and the penalty
parameter. Depending on the value of this function, the a$ytic results are related to those of
regression splines or to those of smoothing splines. Angstang finding is that it is better to
use a smaller number of knots, thus close to the regresslmesrase, since that results in a

smaller mean squared error.
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4 G. CLAESKENS, T. KRIVOBOKOVA, J. D. OPSOMER

2. ESTIMATION WITH SPLINES
2-1. Notation and model assumptions

Based on datéY;, z;), with fixedz; € [a,b],7 =1,...,n anda,b < oo with true relationship
Y = f(w:) + &, 1)

we aim to estimate the unknown smooth functjgn) € CP*([a, b]), ap + 1 times continuously
differentiable function, with penalized splines. The desilse; are assumed to be uncorrelated

with zero mean and varianeé > 0.

2:2. Penalized splines with B-spline basis functions

The idea of penalized spline smoothing with B-spline basiefions traces back to O’Sullivan
(1986), see also Schwetlick & Kunert (1993). Classicalhsiines are defined recursively, see
de Boor (2001, ch. IX). Let the value denote the degree of thB-spline, implying that the
order equalp + 1. On an intervala, b], define a sequence of knots= kg < K1 < -+ < kg <
kr+1 = b. In addition, defingp knotsk_, = k_p4+1 =--- = k_1 = ko and another set of

knotskg4+1 = kx4+2 = - - = KK+p+1. 1he B-spline basis functions are defined as

1,k <o < Kjp1
Nj71(x) = )
0, otherwise
r — Kj K — X
———LNj (@) + —LEE Ny (@),
Kjtp — Kj Kjtp+1 — Kj+1

Njpt1(z) =
forj = —p,..., K. Thereby the conventiod/0 = 0 is used. With the use of the additional knots,
this gives precisely< + p + 1 basis functions.

We define the penalized spline estimator as the minimizer of

K b K
> BiNjpra(z)}? +>\/a { Z BiNjp+1 ()} 9 da, 2

Jj=-p Jj=-p

>y -
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Asymptotic properties of penalized spline estimators 5

where the penalty is the integrated squagddorder derivative of the spline function, which is
assumed to be finite. Since tfye+ 1)st derivative of a spline function of degrget- 1 contains
Dirac delta functions, it is a natural condition to hayvel p. However, in Section 5 we treat the
case of truncated polynomial basis functions whete p + 1. The penalty constarnit plays the
role of a smoothing parameter. For a fixedletting A\ — 0 implies an unpenalized estimate,
while A — oo forces convergence of thgh derivative of the spline function to zero, with the
consequence that the limiting estimator i$ga— 1)th degree polynomial. From the derivative
formula for B-spline functions (de Boor (2001), ch. X),
K
{Z ﬁij,erl }(q Z Njpi1- q ﬁq
Jj=-p J=—p+q

where the coeﬁicient§§q) are defined recursively via

B = p(8; — Bi-1)/ (Kjep — k),

B = (p+1-q) (B = B [ (kjrpr1-g — 55), 4= 2.3, 3

We rewrite the penalty term in (2) a)s@tAflRAqﬁ, where the matrixk has elements?;; =
JPN; pi1-g(@)Nipy1—g(z)dz, for i,j = —p+gq,...,K and A, denotes the matrix corre-
sponding to the weighted difference operator defined |n|(6)ﬂ A,B. For the special
case of equidistant knots, i.e; —x;_1 =d foranyj = —p+1,..., K, there is an explicit
expression of the matrid, in terms of the matrixv,, corresponding to theth difference op-
erator, defined recursively v;@ — Bj-1, ﬁ(q [3 - ﬁj(q 11), qg=2,3,.... Inthis
case A, = 67 1V,.

Further, define the spline basis vector of dimensiorx (K +p+1) as N(z) =

{N_pps1(x),..., Nk ps1(x)}, then x (K + p+ 1) spline design matrixV = {N(z1)?, ...,

N(zn)'}, and letD, = ALRA,. With this notation, the penalized spline estimator takes t
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6 G. CLAESKENS, T. KRIVOBOKOVA, J. D. OPSOMER

form of a ridge regression estimator
f=N(N'N +AD,)"'NtY, (4)

wheref = {f(z1),..., f(z,)} andY = (Y1,...,Y,)t. This estimator has been considered in
Ormerod & Wand (2008), who gave it the name O’Sullivan splorgust O-spline, estimator and
presented an efficient algorithm for computation of the iafr,. A slightly modified version
of (4), known as the P-spline estimator, has been introdlgelilers & Marx (1996). They
used equidistant knots and a combination of cubic splipes §) and second order penalty £

2). Moreover, only the diagonal elements of the tridiagonatnr R were taken into account,
resulting in the simpler penalty matri¥—*V4Vs, with ¢ = [*{ N 5(z)}2dz. Sincec andd are
constants, they can be absorbed in the penalty constaets &I Marx (1996) motivated the
difference penalty as a good approximation to the penglfy Since these simplifications do
not influence the asymptotic properties of the estimatoruseethe general estimator (4) for our

theoretical investigation.

2-3. Regression splines

An unpenalized estimator with = 0 in (4) is referred to as a regression spline estimator.

More precisely, the regression spline estimator of ofgder 1) for f(x) is the minimizer of

S AYi~ fugle))? = | min z{y_m, ,

=1 z)eS(p+1;k)
where

Slp+ 1;k) = {s(-) € CP"1a,b) : sis a degree polynomial on eacl;, /@jﬂ]}, p > 0,

is the set spline functions of degrpavith knotsx = {a = kg < k1 < - -+ < kg < Ki+1 = b}

andS(1; ) is the set of step functions with jumps at the knots. SiNgg,1(-), 7 = —p,..., K
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Asymptotic properties of penalized spline estimators 7

form a basis foiS(p + 1; k), see Schumaker (1981, ch. 4),
Frea(z) = N(@)(N'N)"IN'Y € S(p+ 1, 1). (5)

Further, we denote withy(-) = N(-)3 € S(p + 1, k) the bestL., approximation to functiorf.
The asymptotic properties of the regression spline esdjnjfégg(m) have been studied in Zhou

et al. (1998), where the following assumptions are stated.

(Al) Leté = maxo<;j<k(kj+1 — k). There exists a constat > 0, such that
§/ minp<j<k(kj41 — k) < M andd = o(K1).

(A2) For deterministic design points € [a,b],7 = 1,...,n, assume that there exists a distribution
function Q with corresponding positive continuous design dengiguch that, withQ,, the
empirical distribution ofc1, . .., 25, Sup,e(q 4 [@n(2) — Q(z)| = o(K1).

(A3) The number of knot#( = o(n).

Zhou et al. (1998) obtained the approximation bias and neeias

E{frog(l')} - f(:L') = ba(x) + 0(5p+1)’ (6)

var{ freg ()} = %N(m)G_th(x) +o{(né)""}, (7)
whereG = ff N(z)!N(z)p(z)dz and the approximation bias
(p+1) K ks
) > iy o) (@) (501 — 55)P T By <M> , (8

=0

ba (x5 1) =
P+ 1) p+1)! Kj+1 — Kj

with By, 41 (+) the (p + 1)th Bernoulli polynomial, see p. 804 of Abramowitz & StegudT2).

2-4. Smoothing splines

The smoothing spline estimator f@(-) in (1) arises as a solution of the minimization problem

n b
: S (@)
fomin 1{}/; F@)}? + 2 /a {r (w)}zdx] ; )

=
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8 G. CLAESKENS, T. KRIVOBOKOVA, J. D. OPSOMER

where) > 0 andW ?[a, b] denotes the Sobolev space of orgere. W9[a,b] = {f : f hasq —

1 absolute continuous derivativ,eﬁ{f@) (z)}2dx < oo}. It turns out thatf,(z), the solution

of (9), is the natural polynomial spline function of degrge— 1 with knots atz;. Namely,
fss(az) is a polynomial of degreg — 1 on [z, z2] and [z,_1,x,] and of degre€q — 1 on
(zi,ig1), © = 2,...,n — 2 with jumps in the(2¢ — 1)st derivative only at the knots. It has
been proven, see e.g. Utreras (1985), thatfE- fis)2} = O(\/n) + 020 (n'/C0—1 \~1/(20),

so that\ = O(n'/(1129)) provides the optimal rate of convergence, as longa®¥ ' — oc.
The differentiability assumption for smoothing splingsg 177?) is weaker compared to regres-
sion splines casef(e CP™1) if p > ¢q. We refer to Eubank (1999) for further discussion of the

theoretical properties of smoothing splines.

3. AVERAGE MEAN SQUARED ERROR OF THE PENALIZED SPLINE ESTIMATOR

We investigate the average mean squared error (AMSE) ofdhaligzed spline estimator and
discuss the optimum choice of smoothing paramatand number of knot#’. Similar asymp-
totic results could be obtained using the mean integratedrsd error (MISE) instead of the
average mean squared error. Compare, for example, Wahb®) (f® the average mean squared
error and Rice & Rosenblatt (1981) for the mean integratedusyl error for smoothing splines
or Zhou et al. (1998) for the average mean squared error andvad & Studden (1980) for the
mean integrated squared error for regression splines. Witlbemmler & Reinsch (1975) de-
composition, the average bias and variance can be expredgsehs of the eigenvalues obtained

from the singular value decomposition
(NN)~Y2D (N'N)~Y/? = Udiag(s)U", (10)

where U is the matrix of eigenvectors and is the vector of eigenvalues;. De-

note A = N(N'N)~!/2U. This matrix is semi-orthogonal wittl’A = I'x,,,; and AA* =
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Asymptotic properties of penalized spline estimators 9

N(N'N)~1Nt. We can rewrite the penalized spline estimator (4) as
f=A{I, + rdiag(s)} TAtY (11)
= {I, + A Adiag(s) A"} T AA'Y = {I,, + \ Adiag(s)A"} 7 [ . (12)

Equation (12) clearly shows the shrinkage effect of inalgdihe penalty term. Equality (11)

provides an expression that is straightforward to use taiolhe average mean squared error

AMSE(f) = RCEN)

E{(f -
K+p+ )\2 K+p+1 232 1

e
n
o? 375 t ¢
= — — 1 4 NI, — AAYf,
n z:: 1—1—)\3 n 32::1 (1+ Xsj)? +nf( )

wheref = {f(x1), -, f(zn)} andb = A’ f with components;. SinceA A" is idempotent and

AA'f = E(f,,) We obtain that

_ Kiptl o2 Ktptl N H
AMSE(F) = 2_:1 m+ ; n(1+ As;)?
+%Z {E{frog xj)} — f(%)r' 13)
7j=1

The first term in (13) is the average variance, the second iethe average squared shrinkage
bias which is due to the penalization, and the last term isatfegage squared approximation
bias, which can be obtained from (6) and is due to repreggatinarbitrary function by a linear
combination of spline functions.

We now study the optimal orders of the smoothing parameterd of the number of knots’.

With the constang; introduced in Lemma 3 in the Appendix, define
Kq= (K +p+1-—q)(Aey)"/Cp~1/C0), (14)

THEOREM 1. Under assumptions (Al1)—(A3) the following statements:hold

(@) IfK, <1landf(-) € CP*l[a,b],

AMSET) = O (%) +0 (2—2}(*}) L O(K-2+D),
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10 G. CLAESKENS, T. KRIVOBOKOVA, J. D. O°PSOMER

and for K ~ Cn!'/(?»+3) with C; a constant, anc\ = O(n?) withy < (p +2 — q)/(2p +
3), the penalized spline estimator attains the optimal rateaivergence fof € C?*[a, b]

with AMSE f) = O(n~(2p+2)/(2p+3)),

(b) If K, >1andf(-) € Wia,b],

_ 1/ (201 A oy

n

and for A = O(n!/(2a+1)) such that\n?¢~! — oo and K ~ Cyn” withv > 1/(2¢ + 1) and
C> a constant, the penalized spline estimator attains thenmgtirate of convergence for

f € W[a,b] with AMSE f) = O(n24/(1+20)),

Case (a) withK, < 1 results in the asymptotic scenario similar to that of regjoes splines.
The average mean squared error is determined by the avespgpi@atic variance and squared
approximation bias. The shrinkage bias becomes negligislsmall A, that is fory < (p +
2 —q)/(2p + 3). The asymptotically optimal number of knots has the sameroad that for
regression splines, that & ~ C;n!/(?»+3), Case (b) withK,, > 1 results in the asymptotic
scenario close to that of smoothing splines. The average regaared error is dominated by
the average asymptotic variance and squared shrinkagelbiagaverage squared approximation
bias is of the same asymptotic order as the average shriftagéor K, = 1 and of negligible
order for K, > 1. The asymptotic order of the average mean squared errondgaly on the
order of the penalty and the bound of the average mean squared error is predigesaime as
known from the smoothing spline theory, up to the averagarmsgliapproximation bias, which
is negligible fork, > 1.

The assumption on the smoothness of the funcfi@man be somewhat weakened in case (a).

The assumptiorf € CP*! can be replaced by a slightly weaker assumptfos W?*!, since
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481 according to Barrow & Smith (1978) the expression for theragimation bias (8) holds for
482 f(-) € Wrtl as well. See also the discussion in Agarwal & Studden (1986ark 3.3.
483 The result of Theorem 1 suggests that the convergence rgienalized spline estimators is
484 faster if K, < 1, sinceq < p is assumed. Thus, it is advisable to prefer a small numbenaisk
485 in practice. However, there is still a need for a practicatigline for choosing” and )\, so that
486 K, < 1is satisfied. This is planned to be addressed in a separake wor
487
488 4. ASYMPTOTIC BIAS AND VARIANCE
489 We derive the pointwise asymptotic bias and variance in begtmptotic scenarios.
490 _ .
THEOREM 2. Under assumptiongA1) — (A3), the following statements hold:
491
. p+1
492 (@ IfK,<landf(-) e CP*'[a,b],
493 E{f(2)} — f(x) = balx; p+ 1) + ba(x) + 0(8""1) + 0o(An~157%),
494 9
so5 var{f(z)} = N (@)(G + ADy/n) " G(G + AD, /n) "' N'(2) + o{ (nd) '},
496 (b) IfK,>1andf(-) € Wia,b],
497 7 54 1/2
E{f(z)} — f(z) = ba(z; ) + bx(z) + 0(67) + o{(A/n) <},
498
? o -1 N -1 —1/(2q)
499 var{f(z)} = ;N(ac)(G +ADy/n) T G(G + ADy/n) " N*(z) + o(n™"(A/n) ).
500 The shrinkage bia, is defined as (z) = —An~! N (2)(G + AD,/n)~1D,3, whereG and3
501 are given in Section-3.
502
To better understand the shrinkage biggz), we show in the Appendix thaky(z) =

503

“AN(@)HALW S (7) fn with H = G+ ADy/n, W = diag ({177 [£0 Nj (1)t )
504

ands\? (1) = (s (r_psq), .., s\ (i)} for somer; € [y, Kjipri-gl = —P+ ..., K.
505
506
507
508

509
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For equidistant knots angd= ¢ = 1, this simplifies to

A1) & _ _
ba(z) = 5853) > iy i) (@) [(ﬁjﬂ — ) {(H Yjsa+ (H 1)j+1,K+2}
=0

@ =) { (H )jaza + (H o craf |,

where sgfl)(x) = sgfl) is a constant fors;(-) € S(2;x). Since|(H™1); ;| = rl=7lO(s71) for
somer € (0,1), see Lemma 1, th(—:‘H‘l)j,l decrease exponentially with growingwhile the
(H™1); 42 increase with growing. Thus, forj close to[K/2], both(H ~'); k42 and(H 1),
are small, implying thab, (x) has much bigger values far near the boundaries. Similar, but
somewhat more complicated expressions can be obtaineddi@ general settings. In contrast
to the approximation bias, the shrinkage big&r) depends on the design density:).

As already discussed in the previous section, the apprdiximand shrinkage bias play differ-
ent roles in the two asymptotic scenarios. To show this, wtga both bias terms together with
the standard deviation of the penalized spline estimatadenarios withi, < 1 andK,; > 1in
Figure 1. The true functiolfi(x) = cos(27z) is evaluated at = 15000 equally spaced points on
(0,1) and the errors are taken to be independent with distributioh, 0.32). We used B-splines
of degree three and a second order penalty, basdd en5 equidistant knots fok, < 1, and
based o = 1000 for K, > 1. The penalty\ was determined by Generalized Cross-Validation
(GCV) in both cases. FaK, < 1, one observes that the order of both bias components is the
same. IfK, > 1, the approximation bias is extremely small, while the dkage bias is about
10 times larger than that fdc, < 1. In both cases, the shrinkage bias has bigger values near the
boundaries. The variance of the estimator is bigger in ¢gse> 1. In general, the variance of

the penalized spline estimator is bigger near the boursladige to the structure of the matrix

H~! see Lemma 1 in the Appendix.
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577 5. PENALIZED SPLINES USING TRUNCATED POLYNOMIAL BASIS FUNCTIMNS
578 Ruppert & Carroll (2000) used truncated polynomials asdfasictions. For truncated polyno-
579 mials of degree based or inner knotsz < k1 < --- < ki < b, the penalized spline estimator
580 is defined as the solution to the penalized least squaresiorit
581
n K
582 Z{Y; — F(x)a)}? + Ap Z a?ﬂ,,
i=1 j=1
583
584
585 (@ (b)
586 g g
587
588 g, g,
589 . °1
590 I 00 02 0.4 06 08 10 ‘ 0.0 072 04 06 0'8 10
291 (©) (d)
592 N o
593 7 o
594 g3 e
595 58] g
596 g 00 02 of;- _(-)16 08 10 T 0.0 072 04 06 0'8 10
597
Fig. 1. Example of pointwise bias and variance of two pe-
598 nalized spline estimators witk, < 1 (dashed line) and
599 K, > 1 (solid line). Panel (a) shows the approximation
600 bias, (b) the shrinkage bias, (c) the standard deviation and
(d) the true mean functiotos(27z).
601
602
603
604

605
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625 with F(z) ={1,z,...,2", (x — k1), ..., (z — kr)" } anda = (ao, ..., ax4p). The result-
626 ing estimator is a ridge regression estimator given by
627
fp=F(F'F+\,D,) 'F'Y, (15)
628
629 where F' = {F(z1)!, ..., F(z,)'}* and D, is the diagonal matrix diagf,1x), indicating
630 that only the spline coefficients are penalized.
631 The ridge penalty imposed on the spline coefficients cantssgewed as a penalty containing
632 the integrated squareg -+ 1)th derivative of the spline function. Indeed,
633 K
{F(2)a}®) = play, + 91" apipliy, 00 (@)-
634 =
635 Since the derivative of an indicator function is a Dirac ddiinction (see e.g. Bracewell, 1999,
636 p. 94), which integrates to one, it follows that
637 , X
2
+1 _ 2 2

s / [{F(@)0}*]" dz = (p) ]z::l o2y,
639 In general, the results of Theorem 1 are not applicable talfrsd splines with truncated poly-
640 nomials since Lemma 3 does not hold foe= p + 1. We use the equivalence of truncated poly-
641 nomial and B-spline basis functions to arrive at asymptbi&s and variance expressions, see
642 the appendix for more details. We obtain that oy < 1,
643

B (@)} — F(@) = balsp+ 1) — 22 Ny HITE, 5P () 4 0(67H) + o(An—1577)
644 P = DalT:P (ph)2n p+1°f
645 =0("™) + O(In~157P), (16)

R 2

646 var(f,(x)} = Z=N(z)H 'GH'N'(z) + of (nd) '} = O{(nd) "}, (17)
647

wheres™ (k) = 6P (k1), ¥ (k2) — s (k). sV (kixe) — 5P (kxc—1)}". It follows
648

that takingK ~ Cyn'/(?P3) and), = O(n?) with v < 2/(2p + 3) leads to the optimal rate of
649
650
651
652

653
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convergence. FaK, > 1, we obtain that

; )‘175_70Jrl —1t (p+1) 1
E{fp(x)} — f(z) = ba(x;p + 1) — WN(UC)H Virsf (k) +o(0P)

+o{(An~HPHD/Cr+Y — O(5PH) 4 Of(An~1)PHD/Cr+1Y (18)
2

var{ fp(z)} = %N(x)H‘lGH_th(m) +ofn~! (An )P/ CrHLY (19)

= O{n~t(an~H )/ Cr+1)y

Taking A ~ C3n?/(P3) and K = O(n”) with 7 > 1/(2p + 3) leads to the optimal rate of con-
vergence, which is the same as in cd§g< 1, that isn~(2P2)/(r+3)_ Thus, if the truncated
polynomials basis is used, there is no difference betweeratymptotic scenarios and the opti-

mal rate of convergence is reached in either case.

6. DiscussiON

The results in this paper and in particular Theorem 1 prosidleeoretical justification that a
smaller number of knots leads to a smaller averaged meamnestjgeror. Moreover, we are able
to characterize through, in (14) the relation betweef’, A andn which determines the break-
point between a “small” and “large” number of knots, or in@tiwords, between the asymptotic
scenario close to that of regression splines on the one hahthat of smoothing splines on the
other hand. Results of this paper also show that using ttedgelynomial basis functions leads
to the optimal rate of convergence independent of the assommade on the number of knots.

Penalized splines gained a lot of their popularity becadigbeolink to mixed models where
the spline coefficients are modeled as random effects, semtizrck et al. (1999), and earlier
Speed (1991) for the case of smoothing splines. An intergstipic of further research would
be a detailed study of the asymptotic properties of the edtima in this setting, building further

on Kauermann et al. (2008) who verified the use of the Laplapeoximation for a generalized
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mixed model with a growing number of spline basis functioos K, < 1, but not for K, >

1. Since mixed models are related to Bayesian models usingpadgstribution on the spline
coefficients, this could also bring additional insight iny®aian spline estimation, see e.g. Carter
& Kohn (1996); Speckman & Sun (2003).

The results of this paper are expected to hold for the morergéclass of likelihood based
models, in particular for the generalized linear modelsdsdauermann et al. (2008); a detailed
study is interesting, though beyond the scope of the cupaper. Other worthwhile routes of
further investigation include models for spatial data,omporating correlated errors and het-

eroscedasticity.

APPENDIX. TECHNICAL DETAILS

For use in the subsequent proofs, we defie,, = (N'N)/n, Hi ., = Gx.n + AD,/n and H =

G + AD,/n and state the following results:

(R1) Lemmas 6.3 and 6.4 in Zhou et al. (199BF ), o = maxi<icxipr1 Sy it HGxh gl =

7j=1
0(571), maxi < j<K+p+1 HG;(,ln - Gil}i7j| = 0(571), maxi<; j<K+p+1 |{GK,n - G}i,j| =

o(9).

(R2) Under (A1)—(A3)max_piq<j<k f: Njpr1(w){f(u) — sp(u)}dQn(u) = o(6P12), see Lemma 6.10

in Agarwal & Studden (1980) and thus{E; () — s(2)} = N ()G, 2N (f — s) = o(67*1),
with f = {f(z1),..., f(zn)}t @ndsy = {sy(z1),...,s¢(za)}. If f € Wa,b], then B freg(z) —

s(@)} = o(69).

(R3) [{Gx, }ij| < cs~1rli=il for some constants> 0 andr € (0, 1), see Lemma6.3in Zhou et al. (1998).

Before proving the two Theorems, we need the following thremmas.

LEMMA 1. There exist some constantss (0,1) and ¢o > 0 independent o’ and n such that

|{H;§n il < ool for K, < 1 and|{HI}}n igl < cod M1+ K20)~Lrli=il for Ky > 1.
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Asymptotic properties of penalized spline estimators 17
Proof. We apply Theorem 2.2 of Demko (1977) tq,l Hk ,, With hya.x the maximum eigen-
value of Hg ,. First we verify the necessary conditions. The band diagonatrix Hg , has
{H;{}n i; =0 for |i — j| > p, with p <gq. Since Hg, is a symmetric positive definite matrix,
its spectral norm equals its maximum eigenvalug,x, so that||h ! Hr nll2 = bt |Hr nll2 =
hox(Max,oo.—1 2 He  Hic n2)/2 = 1. Similarly, [[hmaxHg! ll2 = Panasx/Panin | hnin H 3 ll2 =
Pmax/hmin- Thus, Theorem 2.2 of Demko (1977) applies MXHH}_{},L ijl < e rli=il for some
¢* > 0 which depends only opandh,,.x /hmin- It remains to find the lower bound faéx,, ... The matrix
Hp., is similar to Hy ,, = Gren(Ixc4pi1 + )\/nG;(%QDqG;(%Q) and thus has the same eigenvalues.
According to Corollary 2.4 of Lu & Pearce (2000) we can bouéng .. from below with the product of the
minimum eigenvalue ofix ,, and the maximum eigenvalue 0fx 41 + A/nG;(?TCQDqG;(?éz). The
minimum eigenvalue of7 x ,, has the lower bouné,é for some¢, independent of{ andn, according
to Lemma 6.2 of Zhou et al. (1998). The maximum eigenvaluélgf, 1 + )\/nG;fDqG;f) is

1 4+ K29). With this we findhyax > 6od for K, < 1 and hypax > 600(1 + K29) for K, > 1. Setting
q q q q

co = ¢ /¢ proves the lemma. O

From Lemma 1, it immediately follows thatH " [l = O(57") for K, <1 and ||Hg! [lec =

O{6~'(1+ K29)~'} for K, > 1.

LEMMA 2. The following statements holdiax; <; j<x+p41 [{H g, — H ' }ijl = o(671) for K, <

1 andmax1§i7j§K+p+1 |{H;(}n — Hﬁl}i7j| = 0{571(1 + Kqu)il} for Kq > 1.

Proof. First, we represent

(G+ADy/n)"" = (G = Grm + Grcn + ADy/n) "
= (Gxn + ADg/n) "' + (Gm + ADg/n) (G — G)

x{I — (Ggn+ADy/n) " HGrm — G)} " (Grm +ADy/n) L.
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Applying Lemma 1 and (R1), one finds maxi<; j<iipr1 {Hg, —H '}i | =
maxi < j< K tpt1 [[H o (Ghon — G {Ikipt1 — Ho (Gren — G)Y P Hic ligl, - from  which  the

result is immediate. O

A study of asymptotic properties of spline estimators vigeevalues goes back to at least Utreras
(1980), see also Utreras (1981, 1983). Speckman (1981) £88mded these results and a version of that

we use below. Lemma 3 is adopted from Speckman (1985, equ), 2ée also Eubank (1999, p. 237).
LEMMA 3. Under design condition (A2) and for the eigenvalues obthing10),
s1=--=8,=0, s;=n""(—q)?%, j=q+1,...., K+p+1,

whereé; = ¢1{1 + o(1)} with ¢; is a constant that depends only @and the design density andl) con-

verges td) asn — oo uniformly forji,, < j < j»,, for any sequences,, — co andja, = o(n?/2¢+1),

With a slightly different assumption on the design densigmely that the design density is regular in the
sense thatfor=1,...,n, ff p(x)dz = (2i — 1)/(2n), Speckman (1985) obtained the exact expression

of the constant as, = 727( [* p(x)!/(29) dar) =24

Proof of Theorem 1Let us begin with case (a), thatis, < 1. First, we rewrite

K+p+1 K+p+1

1 1
Trase 17 ST (A1)
j; (14 Xs;)? j;—l I+ n16(j — q)2}2
= -1/(29) (K
_ (& e du
- ( n ) /0 (1 + u29)2 tg—ltrg, (A2)

with K, defined in (14) and, = O(1) as the remainder term of the Euler-Maclaurin formula. Noiagis
a series expansion around zerq df+ z)=2 = Z;‘;O(—l)j (7 + 1)z for0 < = < 1 we easily find

2qj

/quiu—Ki(—l)j('Jrl) 1~ K,
o (Fwap ” Tr T YT g T e

wherec, = 2 F1(2,1/(2¢); 1+ 1/(2q), — K2) denotes the hypergeometric series, see Abramowitz & Ste-

gun (1972, Ch. 15), converging for afy, < 1 andg > 0. With this, we obtain that the average variance
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in case (a) equals

Kir o? K
g 1—|—)\SJ _;{02(K+p+1_Q)‘i‘q_l"'rq}:O(_)'

n

Consider now the second term in (13). Bearing in mind mga =16 (K+p+1-—¢?<1land
that the functionc(1 + x)~2 < z for 0 < 2 < 1, we can bound the average squared shrinkage bias with
K+p+1

A AS ;i A A2
2 b S K X b= K p 1= 05Dy,
j=1

with 3y = (N*N)~'N"f. Further, adding and subtracting from f in 3, we find

35Dy = B'DyB +2(f — 55)' N(N'N) " Dy(N'N) ' N's;
+(f = s,)'N(N'N)"'D,(N'N)"IN*(f — s¢)

= B'Dyf3 + 0o(671) + o(57772),

where (R2) was applied to obtain the orders of two last teBime the penaltg’ D, was assumed to be
finite, see below (2), the average shrinkage bias in (13)l@sriderO(\2n~2K29). Finally, the average
squared approximation bias in (13), has the asymptotia@d& —2(»+1)) for a functionf € CP+'[a, ],

as follows from (8). We now choose orders &f and A, so that they ensure the best possible rate of
convergence. As shown in Stone (1982),a 1 times continuously differentiable function has the optima
rate of convergence (2»12)/(2p+3) |t is straightforward to see that choosifg~ C;n'/(2p*+3)  with

C, a constant, implies the average variance and the averagesstapproximation bias to have the same
order O(n~(2p+2)/(2+3))  The shrinkage bias is controlled by the smoothing paramet€hoosing

A = O(n(P+2-9)/(2r+3)) palances both bias components, whilealues of a smaller asymptotic order
make the shrinkage bias negligible.

Let us now consider case (b) withi, > 1 and first find the order of the average variance. Since the

expansior(1 + z)~2 diverges forr = 1, we first exclude this value from the sum in (A1) as follows

K+p+1 1 jr—1 1 K+p+1 1
E S E 5+ .|_ E
2
= (1+ Xsy) Pt (1+Xs;)2 P +1 (1+Xs;)2
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wherej* is such thatn=1¢; (j* — ¢)?¢ = 1. The integral representation of the average variance is

+p+

o Z _ o (@A ‘1/(2”/1—(*"151)”(2‘” du (A3)
1—|—)\sj n \n 0 (1 + u?9)?

2 /a0 V@D K, d 2
+ (cl—) / T, (A9
no\n 14016 v/ea (1 +u?) n

with 7, = O(1) as a constant, including/4 and two remainder terms of the Euler-Maclaurin formula. For

K, = 1only the firstintegral and a constant are present. If theme suchj* thatAn—1¢; (j* — ¢)?? = 1,
then we obtain one integral with the upper bound less tharandenother integral with the lower bound
larger than one directly, with, updated correspondingly. Since the upper limit of the irakig less than

one, we use the series expansioriiof- x)~2 as in case (a) and obtain for the integral in (A3),

2 /= —1/(2q) = 1/(2q)
o (@) {1 _ (@) }52 = 0 (/131 en),
n n n

with & = 2 Fy(2,1/(2¢); 1+ 1/(2q), —{1 — (A\n~1¢,)"/(29129) as a converging hypergeometric series.

Changing the integration variable to its reciprocal, ons @ the integral in (A4),

o2 [Ea) VD
n (_) [K;—4qc3 —cs{l— (/\n_lél)l/@q)}‘lq_l} (4g—1)"'=0 (nl/(2q)—1/\—1/(2q)) ’

n n

where c3 = 2 F1(2, (49 — 1)(2¢)"; (6¢ — 1)(2¢) ", —K;?) and ¢3 = 2 F1(2, (49 — 1)(2¢)™"; (6¢ —
1)(29)71, —{1+ (\n~1¢;)"/(29}=24) both are hypergeometric series converging for aliy >

1 and ¢ > 0. Thus, for case (b) withK, > 1 the average variance has the asymptotic order
O(n'/(=1\=1/(29), Sincex(1 + x)~2 < 1/4 for anyz > 1, the average squared shrinkage bias for
K, > 1is bounded by

K+p+1 K+p+1

A : Asj : A
J=q+1 J=q+1

With this, the average squared shrinkage bias is of oftler/n) for K, > 1. It is straightforward to
see that\ = O(n'/(29+1)) balances the average squared shrinkage bias and the avaragee. Finally
the average squared approximation bias will not dominaetierage mean squared error if the number

of knots satisfiedX ~ Cyon”, with v > 1/(2¢ + 1) andC5, as a constant. This implies that the average
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961 approximation bias is of the same order as the average shslarekage bias if{, = 1 and is negligible
962 with the orderO(n=""), with v/ > 2¢/(2¢ + 1) for K, > 1. Thus, AMSE f) = O(n~2¢/(0+20)) ]
963 Proof of Theorem 2L et us first consider the bias. We represent
964 . . A 1 1,
f(@) = freg(x) — EN(x)HI_{,anGK"EN Y

965

with freg(:c) defined in (5) and find
966
967 E(f(0)} = £(@) = {3/@) = f@)} + E{fregla) = 57(2)}

A _ _ 1
968 + N (@) H i, DyGry N'— (f = 57 + 55).
969 According to Barrow & Smith (1978), it holds tha (z) — f(z) = ba(x;p + 1) + o(6PT) for K, < 1
970 andb,(x; q) + 0(d?) for K, > 1, due to different smoothness assumptions mad¢ (©n The order of
971 the second component is given by (R2). Let us cons}dé(x)H;(}anﬁ/n with 3 = G;(?nNtsf/n =
972 (N*N)~1N's;. Using the definition of penaltyp, and noting thatsgff) (z) = (N(2)3)@ = N, (2)A,B
973 with N, (z) = {N_p+qp+1—¢(2), ..., Ni pr1—4(2)}, we can apply the mean value theorem and rewrite
974 A 1 At t A 1 Aty (@)
_nN( )HKanﬁ___N KnA N _EN( ) KnA WS ( )7

975

where W = dmg(Z”” L NG g )dm) and 7= (T_piq,-..,7k)" With some 7;¢€
976 [Kj, Kj+p+i—qls J = —P+q, ..., K. Further, we represent
977 \ \
076 - EN(x)H—lA;Ws? (1) — EN(x)(H;{}n ~ HHAW s (r)

A A _ _
= —CN(@)(G +ADy/n) Dy = SN (@) (Hyl, — H™)AW sy (7)
979 N
= by — SN(2)(Hl, — HHALW s (7).

980 " '
981 It remains to show that\N(z)(Hy!, —H_l)AZWs(fq)(T)/n and \H! DG N'(f —sf)/n
982 are of negligible asymptotic order for bottkK, <1 and K, >1. Since N;.(-) <1, one
083 finds ||W|s = O(d). Moreover, by definition ||[A;|lcc = O(679), see also Lemma 6.1 in

Cardot (2000). Thus, with Lemmas 1, 2 anMisgf‘) (T)]leo = O(1) it is straightforward to
984

see that for K, <1, AN(z)(Hg), — H*l)AfZngﬂ)(T)/n =o(M™1679) and for K,>1,
985
986
987
988

989
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1009 AN (2)(Hil, = H-O)ALW s (1) /n = of A= 1679(1 + K29)1} = of (\/n)/2K3(1 + K24)~1} =
1010 of(A\/n)'/?}, sinceK (1 + K29)~* < 1/2 for K, > 1. From (R2) follows thatG ! N*(f — sf)/n is
1011 a vector with elements of ordeté?**) for f € CP*'[a,b] ando(4?) for f € W[a,b]. Using the same
1012 arguments as above we obtaitV (z)H ', D,G !, N*(f — s5)/n = o(An~16P*14) for K, < 1 and
1013 AN (2)H ! DyGy N'(f = s5)/n = of (\/n)}/?} for K, > 1. Thus, if K, < 1,
1014 E{f(2)} — f(x) = ba(z;p + 1) + bx(z) + 0o(6P7Y) + o(An"1679) = O(8P1) + O(An~1679)
1015 _
and if K, > 1,
1016
E{f(x)} = f(2) = ba(x;q) + ba(2) + 0(67) + o{ (A/n)'/*} = O(87) + O{(\/n)'/*}.
1017
1018 The differentiability assumption of is not crucial here and is made only for consistency with FTheo
1019 rem 1. Finally, let us consider the variance y/fz)} = 02]\7(a:)HIz_’lnGKyan_’lnNt(:r)/n. Adding and
1020 subtracting in the same fashion as abéie' andG, one finds fork, < 1,
R 2
1021 var{ f(x)} = %N(m)(G +AD,/n) " G(G + AD,/n) ' Nt (x) + o({nd} ') = O({ns} ™)
1022

and fork, > 1,

1023 )
var{ f(z)} = %N(x)H‘lGH_th(x) +o({n " (\/n) VK, (1 4+ K29)7%})

1024
2
— L N(@)(G+ADy/n) " 'G(G + ADy/n) ' N'(z) + o({n~" (\/n) "/ 2D})
1025 "
= O({n~}(A/n)~ /DY), O
1026
1027 Proof of (16)—(19).From the alternative definition of B-splines as scaled- 1)th order divided dif-
1028 ferences of truncated polynomials, see de Boor (2001, Ch. IX
1029 ) .
Njpr1(@) = (D) D (kjppr1 = m5)[k5, s Rjapral(@ =), 5= =p,. . K, (A5)
1030
1031 where [k;,...,Kj1pt1](z — )% denotes the(p+ 1)th order divided difference ofz —-)! as a
function of knotsk; for fixed z. In case of equidistant knots, (A5) simplifies W, ,1(z) =
1032
(=1)P*TV5=PV, 1 (z — -)% /p!. B-spline and truncated polynomial basis functions spanstime set
1033
1034
1035
1036

1037
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of spline functions (de Boor, 2001, Ch. IX), thus there exasquare and invertible transition matfix
such thatV = F'L.

The equivalence of theenalizedspline estimatorg and?p is not automatic, but will follow when there
is equality of the penalties. We work out the case of fittinthv-splines and obtaining the same penalized
estimator agp in (15) with Dp as penalty matrix. Using the equality = F'L for the penalized estimator
fp implies that we can write it aﬁp = N(N'N + \,L'D,L)~"'N'Y. Thus, fitting with B-splines yields
an equivalent estimator ﬁ)p if we use the penalty termthDpL instead o\ D . This penalty matrix can
be obtained as follows. By writing (x)3)®) = 3" N1 (2)8% = S0 I, oy (@) (8 — 7))

we find that

K

/ @] e = 3 - a0

j=1
Thus, L can be found from the equatigp!)?3'L D, L3 = Zlﬁil(g;p) - ﬁJ(’i)l)?. For equidistant knots
ﬁj(.”“) = (ﬁj(.p) - ﬁj(.’i)l)/é, according to (3), and one obtains that

K
(p)2B'L D, LA = (68 F))2 = 676!V, V1.

i=1

Thus, for equivalence of the estimators the penalty masirgiB-splines with equidistant knots should
beL'D,L = 5*2PV§)+1VP+1/(p!)2. We can find the optimal asymptotic orders fgrand \ as well as
the pointwise bias and variance, following the argumentlénproof of Theorem 2, though by replacing
ADy by A6V} V11 /(p)?. For K, > 1, then due to the penalty matrjdl | [|oo = O{6~ (1 +

An~16=2r=1) =11 Proceeding in the same manner as in the proof of Theorem Zybtaén (18) and

(19). O
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