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Abstract

There are two popular smoothing parameter selection methods for spline smoothing.

First, smoothing parameters can be estimated minimizing criteria that approximate

the average mean squared error of the regression function estimator. Second, the

maximum likelihood paradigm can be employed, under the assumption that the

regression function is a realization of some stochastic process. In this article the

asymptotic properties of both smoothing parameter estimators for penalized splines

are studied and compared. A simulation study and a real data example illustrate

the theoretical findings.

Keywords: Average mean squared error minimizer; Maximum likelihood; Oracle

parameters.

1 Introduction

Since works of Grace Wahba and co-authors, smoothing splines with the cross-validated

smoothing parameter have become an established nonparametric regression tool. One

of the attractive features of spline smoothing is its direct link to Bayesian estimation of

stochastic processes, as first noticed in Kimeldorf and Wahba (1970). Employing this

link, an unknown smoothing parameter can be estimated from the corresponding like-

lihood function. Large parameter dimension of smoothing spline estimators makes this

∗Courant Research Center “Poverty, equity and growth” and Institute for Mathematical Stochastics,
Georg-August-Universität Göttingen, Wilhelm-Weber-Str. 2, 37073 Göttingen, Germany

1



technique often unappealing in practice, so that instead, low-rank splines are employed,

see e.g. Ruppert et al. (2003). The idea is to replace an unknown smooth function by

a spline, with the number of knots being far less than the number of observations and

use penalized least squares for estimation. Such low-rank spline estimators can also be

interpreted as best linear unbiased predictors in a certain mixed model, making it possible

to utilize the maximum likelihood paradigm for (smoothing parameter) estimation.

Hence, the smoothing parameter choice for spline estimators can be carried out

not only minimizing criteria that approximate the average mean squared error of the re-

gression function estimator (such as cross-validation), but also employing the maximum

likelihood principle. Apparently, both approaches implicate different assumptions on the

underlying data generating process. If the true regression function is a realization of a

certain stochastic process, then Wahba (1985), Stein (1990) and Kou (2003) have shown

for smoothing splines that the cross-validated and the maximum likelihood smoothing

parameter estimators are asymptotically equal in the mean, but the maximum likelihood

estimator, which is optimal in this case, is less variable. If the true regression function

belongs to a Sobolev space, then Wahba (1985) have found that the maximum likeli-

hood based smoothing spline estimator is asymptotically sub-optimal. In spite of this

disappointing result, the small sample performance of the maximum likelihood estimators

reported in the extensive simulation studies (see e.g. Kohn et al., 1991) appeared to be

rather attractive. Therefore, the (asymptotic) properties of the smoothing parameter es-

timators are of interest. In their unpublished technical report, Speckman and Sun (2001)

aimed to prove consistency and asymptotic normality of both smoothing parameter es-

timators, if the regression function belongs to a Sobolev class. However, some of these

results are restricted to regression functions that satisfy natural boundary conditions.

The small-sample and asymptotic properties of both smoothing parameter estima-

tors in the special case of low-rank spline smoothers have got less attention. Kauermann
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(2005) obtained the probability for the maximum likelihood smoothing parameter esti-

mator to undersmooth, in a setting with a fixed number of knots, while Reiss and Ogden

(2009) concentrated on the geometry of both criteria. In this article general low-rank

smoothers are considered. The consistency and asymptotic normality of both smoothing

parameter estimators under fairly general assumptions on the underlying data generating

processes are proved. In particular, obtained constants in the asymptotic variances of

the smoothing parameter estimators shed light on the small-sample performance of both

criteria.

The paper is organized as follows. Basic definitions and assumptions are presented

in Section 2. Both smoothing parameter selectors are introduced and studied in Section

3. Some practical issues concerning the performance of the maximum likelihood estima-

tor are discussed in Section 5. A small simulation study and a real data example are

presented in Sections 4 and 6, respectively. Technical details are given in the Appendix

and in the Supplementary materials.

2 Penalized splines

Let n observed values (yi, xi) originate from the model

Yi = f(xi) + εi, (1)

for some sufficiently smooth unknown function f , deterministic xi ∈ [0, 1] and i.i.d. εi,

such that E(εi) = 0, E(ε2i ) = σ2 > 0 and E(ε4i ) < ∞, i = 1, . . . , n. The spline-based

estimator of f is defined as the solution to

min
s(x)∈S(p,τ)

(
1

n

n∑
i=1

{yi − s(xi)}2 + λ

∫ 1

0

{
s(x)(q)

}2
dx

)
, (2)
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where S(p, τ) is the (k+ p+ 1)-dimensional set of spline functions of degree p based on a

set of k inner knots τ = {0 = τ0 < τ1 < . . . , τk < τk+1 = 1}. For technical reasons, in the

subsequent proofs the degree of the spline p is set to p = 2q−1, but in principle any p ≥ q

can be used. A special case with τi = xi, i = 1, . . . n and spline functions satisfying the

so-called natural boundary conditions s(j)(0) = s(j)(1) = 0, j = q, . . . 2q − 1 defines the

smoothing spline estimator. In this article only low-rank spline smoothers with k = o(n)

and λ > 0 are considered and referred to as penalized spline estimators, see Wand and

Ormerod (2008).

Any spline function of degree p can be represented as a sum of a polynomial of

degree p and a linear combination of truncated polynomials of the same degree based on

τ , that is

s(x) =

q−1∑
i=0

βi+1x
i +

p∑
i=q

ui−q+1x
i +

k∑
i=1

up−q+1+i(x− τi)p+ = X(x)β +Z(x)u = C(x)θ,

where (x − τi)+ = max(x − τi, 0), X(x) = (1, x, . . . , xq−1), Z(x) = {xq, . . . , xp, (x −

τ1)
p
+, . . . , (x − τk)

p
+}, β = (β1, . . . , βq)

t, u = (u1, . . . , uk+p+1−q)
t, C(x) = {X(x),Z(x)}

and θ = (βt,ut)t. Plugging in this matrix representation of s(x) into (2) and solving it

with respect to θ results in

f̂(x) = C(x)θ̂ = C(x)(CtC + λnD̃)−1CtY , (3)

where C = {C(x1)
t, . . . ,C(xn)t}t, Y = (Y1, . . . , Yn)t, the penalty block-diagonal matrix

D̃ = diag(0q,D), with D =
∫ 1

0
Z(q)(x)tZ(q)(x)dx. Note that in practice this particular

decomposition of C(x) = {X(x),Z(x)} may be numerically unstable, since the truncated

polynomial basis is often bad conditioned (see e.g. de Boor, 2001, p.84). Therefore, in

practice, other equivalent representations of C(x) based on B-splines are used, see Durban

and Currie (2003) and Fahrmeir et al. (2004).

Further, the following assumptions are made.
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(A1) For deterministic design points xi ∈ [0, 1], assume that xi = Q{(2i − 1)/(2n)},

i = 1, . . . , n for a strictly increasing Q : [0, 1] → [0, 1], Q ∈ L2[0, 1], such that

supx∈[0,1]Q
′
(x) ≥ const > 0. Let also ρ(x) = 1/Q

′{Q−1(x)}.

(A2) The number of equidistant knots k satisfies k = const nν , ν ∈ (1/(2q), 1).

(A3) The smoothing parameter λ = λ(n) > 0 with λ→ 0 is such that λn→∞, n→∞.

(A4) f ∈ W q[0, 1] = {f : f ∈ Cq−1[0, 1],
∫ 1

0
{f(x)(q)}2dx <∞}.

Here and subsequently, “const” denotes a generic positive constant. Assumption (A1)

ensures certain regularity of the data points and is adopted from Speckman (1985). As-

sumption (A2) follows from Theorem 1 of Claeskens et al. (2009) and is crucial in this

study. Apparently, the penalized spline estimator (3) has two unknown control parameters

– the number of knots k and the smoothing parameter λ. In practice, the typical approach

is to first fix k to some value and then choose λ in a data-driven way. Claeskens et al.

(2009) defined the variable Kq = const λk2q as the maximum eigenvalue of λn(CtC)−1D̃

and showed that λ is identifiable (can be estimated consistently) if and only if Kq →∞,

which is equivalent to (A2) and (A3). This choice of k ensures also that the approxima-

tion bias is negligible and two estimators with different number of knots (both satisfying

(A2)) are indistinguishable in terms of the average mean squared error.

3 Smoothing parameter estimation

3.1 Two smoothing parameter selectors

First, let model (1) and assumptions (A1) – (A4) hold. Let also An(λ) = n−1
∑n

i=1{f̂(xi)−

f(xi)}2. Then, it is reasonable to choose a λ that minimizes the average mean squared

error Ef{An(λ)}, where Ef denotes the expectation under the model (1). Since in practice

f is unknown, some asymptotically unbiased estimators of Ef{An(λ)} are used instead,
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e.g. Mallows’ Cp, defined by Cp(λ) = n−1Y t(In − Sλ)2Y {1 + 2tr(Sλ)/n}, where Sλ =

C(CtC + λnD̃)−1Ct denotes the smoothing matrix. Note that

Ef{Cp(λ)} − σ2

{
1− 4tr(Sλ)

2

n2

}
= Ef{An(λ)}

{
1 +

2tr(Sλ)

n

}
= Ef{An(λ)} {1 + o(1)} ,

due to tr(Sλ)/n = constλ−1/(2q)n−1 = o(1), as follows from Lemma 1 in the Appendix and

(A3). In fact, other well-known criteria like generalized cross validation (GCV, Craven

and Wahba, 1978) and Akaike information criterion (AIC, Akaike, 1969) are also asymp-

totically unbiased estimators of Ef{An(λ)}, see Supplementary materials. The smoothing

parameter estimator under (1) is defined as λ̂f = arg minλ>0 Cp(λ), and the corresponding

estimating equation with TCp(λ̂f ) = 0 (see e.g. Section 5.1. in van der Vaart, 1998, for

the formal definition) is given by

TCp(λ) =
1

n

[
Y t(In − Sλ)2SλY

{
1 +

2tr(Sλ)

n

}
− Y t(In − Sλ)2Y

tr(Sλ − S2
λ)

n

]
.

Let now (A1) – (A2) still hold, but instead of (1) the data follow

Yi = F (xi) + εi = X(xi)β + σu

∫ 1

0

(xi − t)q−1+

(q − 1)!
dW (t) + εi, εi ∼ N (0, σ2), (4)

i = 1, . . . , n, where
∫ 1

0
(xi−t)q−1+ dW (t) is a (q−1)-fold integrated Wiener process (Wahba,

1990). The best linear unbiased predictor of F based on n data pairs (yi, xi) coincides

with the smoothing spline estimator with the smoothing parameter σ2/(nσ2
u), as shown

in Kimeldorf and Wahba (1970). Under model (1), a smooth f ∈ W q[0, 1] was estimated

solving a minimization problem (2) over a finite dimensional spline space S(p, τ). Under

model (4), one can proceed in a similar way and estimate (predict) F (x) from

Yi = X(xi)β +Z(xi)u+ εi, i = 1, . . . , n, u ∼ N (0, σ2
uD

−1), ε ∼ N (0, σ2In), (5)

with ε = (ε1, . . . , εn)t. Since D is a symmetric positive definite matrix by definition, its

inverse exists and is unique. Model (5) is a linear mixed model. The best linear unbiased
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predictor for θ = (βt,ut)t is known to be θ̃ = (CtC + σ2/σ2
uD̃)−1CtY (see e.g. Robin-

son, 1991). Thus, f̃(x) = C(x)θ̃ equals f̂(x) defined in (3) with the smoothing parameter

σ2/(nσ2
u). Parameters λ = σ2/(nσ2

u) and σ2 are estimated from the corresponding re-

stricted log-likelihood (see Patterson and Thompson, 1971) lr(σ
2, λ;Y ) = l(β̃, σ2, σ2

u;Y )−

log |X tV −1λ X|/2, where V λ = In + σ2
uZD

−1Zt/σ2, β̃ = (X tV −1λ X)−1X tV −1λ Y and

l(β, σ2, σ2
u;Y ) is the log-likelihood for the mixed model (5). Plugging in σ̂2 = Y t(In −

Sλ)Y /(n− q) into lr(σ
2, λ;Y ) results in the profile restricted log-likelihood for λ

−2lp(λ;Y ) = (n− q) logY t(In − Sλ)Y + log |V λ||X tV −1λ X|.

More details on the (restricted profile) log-likelihood are provided in the Supplemen-

tary materials. The corresponding smoothing parameter estimator is denoted by λ̂r =

arg minλ>0{−lp(λ;Y )} and the estimating equation for λ̂r is taken to be

TML(λ) =
1

n

[
Y t(Sλ − S2

λ)Y − Y t(In − Sλ)Y
tr(Sλ)− q
n− q

]
.

3.2 Oracle smoothing parameters

Before the asymptotic properties of both smoothing parameter estimators are considered,

let us compare oracle smoothing parameters under both frameworks. Oracle smoothing

parameters are explicitly defined in Table 1 and are not available in practice, since they

depend on the unknown model parameters. According to this definition, λf and λr are

the oracle smoothing parameters in case the data are modeled according to the true data

generating processes. If the data are modeled according to (4), but originate from (1), the

corresponding oracle smoothing parameter is denoted by λr|f . That is, λr|f is a smoothing

parameter one would get in the mean from the likelihood, in case the data are sampled

from (1). The reverse situation defines λf |r. Since the data can either follow model

(1) (frequentist framework) or be a realization of the stochastic process (4) (stochastic
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Model (1) is estimated Model (4) is estimated

Data follow model (1) λf = arg minλ>0 Ef{An(λ)} λr|f = arg minλ>0 Ef{−lp(λ;Y )}

Data follow model (4) λf |r = arg minλ>0 Eβ{Cp(λ)} λr = σ2/(nσ2
u)

Table 1: Definition of oracle smoothing parameters. Ef and Eβ are expectations under
models (1) and (4), respectively.

framework), one is interested to compare the performance of λr|f and λf , as well as of λf |r

and λr. All oracle smoothing parameters depend on the sample size n, which is omitted

in the notation.

First, let the true data follow model (1) and compare λr|f and λf . Note that

Ef {TML(λ)} = Ef {TCp(λ)}+R(λ), (6)

with R(λ) = n−1[f tS2
λ(In − Sλ)f − σ2{tr(S3

λ) − q} + o(1)]. Derivation of this equation

is given in the Supplementary materials. Representation (6) makes clear that λr|f is

biased with respect to λf , unless R(λr|f ) is not negligible. Following Wahba (1985), let

Wmq[0, 1] = {f ∈ W q[0, 1] : ‖s̄(mq)p ‖2 < M < ∞}, m ∈ [1, 2], M independent of k, s̄p as

the best L2[0, 1] approximation of f ∈ W q[0, 1] by S(p, τ) and ‖s̄(mq)p ‖2 is defined in the

Appendix in (7). The set Wmq[0, 1] is related to a Besov space with certain boundary

conditions (see Section 3 in Cox, 1988) and a larger m corresponds to a smoother space.

Then, up to constants, the result of Wahba (1985) holds also for penalized splines.

Theorem 1 Let model (1) with f ∈ Wmq[0, 1], m ∈ [1, 2] and (A1) – (A3) hold. Then,

λr|f =

[
n
‖s̄(q)p ‖2 c(ρ){1 + o(1)}

σ2c(q, 2, Kq)

]− 2q
2q+1

,

λf ≥

[
n
‖s̄(mq)p ‖24q c(ρ){1 + o(1)}

σ2c(q, 2, Kq)

]− 2q
2qm+1

,
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with equality in the last expression for m = 2. Here c(ρ) and c(q, 2, Kq) are constants

defined in Lemma 1 in the Appendix.

This theorem implies that λf/λr|f → ∞ and, hence, Ef{An(λr|f )}/Ef{An(λf )} → ∞

as n → ∞, for m ∈ (1, 2]. In a much more general framework this is also shown in

Lukas (1993) and Lukas (1995). Summarizing, if f satisfies certain additional smoothness

assumptions, then the average mean squared error minimizer λf automatically adapts,

resulting in a faster rate of convergence for f̂(λf ). In contrast, λr|f is not able to utilize

these additional properties of f and the convergence of f̂(λr|f ) depends on the used q

only. Consequently, if f is any smoother than W q[0, 1], then f̂(λr|f ) is asymptotically

sub-optimal and undersmooths f compared to f̂(λf ) for n→∞.

Now, let the data follow (4) and consider λf |r and λr.

Theorem 2 Under model (4) and assumptions (A1) – (A2) it holds λf |r = λr{1 + o(1)}.

Hence, in the stochastic framework both oracle smoothing parameters are asymptotically

equal and optimal, which agrees with the result of Wahba (1985) for smoothing splines.

3.3 Properties of smoothing parameter estimators

The following theorem states the properties of λ̂r and λ̂f in the frequentist framework.

Theorem 3 Let model (1) and assumptions (A1) – (A4) hold. Then,

λ̂r
λr|f

P−→ 1 and
λ̂f
λf

P−→ 1, as n→∞.

Moreover, for n→∞

(λr|f )
−1/(4q)

(
λ̂r
λr|f
− 1

)
D−→ N

(
0, 2 c(ρ) C1(q)

)
and

(λf )
−1/(4q)

(
λ̂f
λf
− 1

)
D−→ N

(
0, 2 c(ρ) C2(q)

)
,
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where c(ρ) is defined in Lemma 1 in the Appendix and

C1(q) = sinc{π/(2q)} q

12q2 − 3
,

C2(q) = sinc{π/(2q)} q(12q2 + 8q + 1)

15(8q2 − 2q − 1)
,

with sinc(x) = sin(x)/x.

According to this result and Theorem 1, varf (λ̂r/λr|f ) = O
(
n−1/(2q+1)

)
and varf (λ̂f/λf ) =

O
(
n−1/(2qm+1)

)
, m ∈ [1, 2], being larger for smoother functions. This exceedingly slow

convergence rate of both smoothing parameter estimators agrees with known results for

kernel regression, see e.g. Rice (1984) or Härdle et al. (1988). Apparently, the variances

of λ̂f and λ̂r depend on the corresponding oracle smoothing parameters, implying that

the ratio varf (λ̂f )/varf (λ̂r) can grow with n and this rate is fastest for f ∈ W2q[0, 1].

Also, the C2(q)/C1(q) is relatively large and increases with q (e.g. C2(2)/C1(2) = 65/9

and C2(4)/C1(4) = 405/17). Consequently, in finite samples the variance of λ̂f can be

hundreds times larger than the variance of λ̂r, especially for larger sample sizes and

smoother functions, see also Section 4. Another interesting finding is that the constant

C1(q) decreases for growing q, while C2(q) is several times larger and increases with q.

That is, using a larger q has a smaller effect on the variability of λ̂r, but significantly

increases the variance of λ̂f , at least in small samples.

The properties of λ̂f and λ̂r in the stochastic framework (with λf |r = λr{1 + o(1)},

according to Theorem 2) are given in the following theorem.

Theorem 4 Let model (4) and assumptions (A1) – (A2) hold. Then,

λ̂r
λr

P−→ 1 and
λ̂f
λf |r

P−→ 1, as n→∞.

Moreover, for n→∞

(λr)
−1/(4q)

(
λ̂r
λr
− 1

)
D−→ N

(
0, 2 c(ρ) C3(q)

)
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and

(λf |r)
−1/(4q)

(
λ̂f
λf |r
− 1

)
D−→ N

(
0, 2 c(ρ) C4(q)

)
,

where c(ρ) is defined in Lemma 1 in the Appendix and

C3(q) = sinc{π/(2q)} 2q

2q − 1
,

C4(q) = sinc{π/(2q)} 4q(2q + 1)

3(2q − 1)
,

with sinc(x) = sin(x)/x.

Smoothing parameter estimators in the stochastic framework for smoothing splines of

order 1 and 2 have been already studied in the literature. Known results for smoothing

splines give the ratio of two variances varβ(λ̂f )/varβ(λ̂r) to be 2 = C4(1)/C3(1) for q = 1

(Stein, 1990) and 10/3 = C4(2)/C3(2) for q = 2 (Kou, 2003). This agrees with the results

of Theorem 4, which also holds for low-rank smoothers and general q.

4 Simulations

In this section the theoretical findings are illustrated by a simulation study. Three

functions are considered: the first f1(x) = 6β30,17(x)/10 + 4β3,11(x)/10, with βl,m(x) =

Γ(l +m){Γ(l)Γ(m)}−1xl−1(1− x)m−1, also used in Wahba (1985) (left top plot in Figure

1), the second f2(x) = sin(2πx) and the third function is obtained as a realization of a

stochastic process (5) with p = 2q − 1 = 3, k = 40 equidistant knots, β = (1.5,−0.02)t

and σ = σu = 0.1 (left bottom plot in Figure 1). In the frequentist framework the er-

rors εi are assumed to be i.i.d. zero mean normal with σ = 0.1. The covariate values

are taken to be xi = i/n with i = 1, . . . , n (similar results hold for non-equidistant, but

sufficiently regular xs). All three functions are estimated with penalized splines of degree

p = 2q − 1 = 3 based on equidistant knots with k ranging from 10 to 40 with step size 1.
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Figure 1: Effect of the sample size for q = 2: For n = 1000 (bold) and n = 350 (dashed)

plots of Ān(λ̂f )/Ān(λ̂r) depending on number of knots (middle plots) and boxplots for λ̂f
and λ̂r averaged over number of knots (right plots) for f1 (top left), f2 (middle left) and
f3 (bottom left).

The number of Monte Carlo replications is 1000.

Figure 1 summarizes the simulation results for two sample sizes n = 1000 (bold) and

n = 350 (dashed). The second column of Figure 1 shows the ratio Ān(λ̂f )/Ān(λ̂r), where

Ān(·) denotes the sample mean of An. For n = 1000 Mallows’ Cp performs much better

than the maximum likelihood for the first two fixed functions and somewhat worse in the

third stochastic setting. Note that as soon as enough knots are taken (about 15 − 20 in

this setting, which makes (A2) to fullfil), Ān(·) remains nearly constant as a function of
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Figure 2: Effect of the penalty order for n = 1000: For q = 2 (bold) and q = 4 (dashed)

plots of Ān(λ̂f )/Ān(λ̂r) depending on number of knots (middle plots) and boxplots for λ̂f
and λ̂r averaged over number of knots (right plots) for f1 (top left) and f2 (bottom left).

k. In a smaller sample of n = 350 the ratio Ān(λ̂f )/Ān(λ̂r) for the first two functions

is much closer to one, than for n = 1000. This can be attributed not only to a smaller

variance of λ̂r, but also to a smaller ratio λf/λr|f , as visible from the box plots of es-

timated smoothing parameters in the last column of Figure 1. As expected, the ratio

of variances v̂arf (λ̂f )/v̂arf (λ̂r) is found to increase with the sample size. In particular,

for the smoothest periodic function f2 this ratio is extremely large being around 480 for

n = 1000 and 180 for n = 350. In the stochastic framework the influence of the sample

size is less pronounced.

Further, additional simulations for n = 1000 and q = 4 were run. In Figure 2 ratios

of the average mean squared errors Ān(λ̂f )/Ān(λ̂r) for q = 2 (bold) and q = 4 (dashed)

are shown. Apparently, the maximum likelihood estimator outperforms the Mallows’ Cp

based estimator, once q is increased up to 4, at least for this sample size n = 1000. In

fact, Ān(λ̂r) with q = 4 is also smaller than Ān(λ̂f ) with q = 2. Hence, the maximum
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likelihood estimator with a larger q may be preferable in practice due its larger efficiency

and stability in finite samples.

All together, the outcome of simulations, consistently with the theoretical results,

confirms that in the frequentist framework λf/λr|f , as well as v̂arf (λ̂f )/v̂arf (λ̂r), grow

with the sample size. The ratio λf/λr|f depends heavily on f , penalty order q and the

sample size n and found to be closer to one for smaller ns and larger qs. In the stochas-

tic framework both estimators perform similar, but the Mallows’s Cp based smoothing

parameter estimator is more variable.

5 Practical issues in the frequentist framework

Theorem 3 and results of Section 4 suggest that, if for a particular data set λf/λr|f is

close to one, then λ̂r is competitive to λ̂f , since its variance is much smaller. On the other

hand, a large ratio λf/λr|f would indicate that f belongs to a smoother class of functions

than assumed W q[0, 1] (see Theorem 1) and a larger q can be used for λ̂r. Hence, if one

could choose q in a data-drive way, so that λf/λr|f is closest to one, then f̂(λ̂r) would

perform better than f̂(λ̂f ), in terms of the average mean squared error. A natural way

is to look at R(λ) from (6). If for a given q the value R(λr|f ) = 0, then λr|f = λf , while

R(λr|f ) < 0 implies λr|f > λf . Since varf (λ̂r) is small even for large qs, one can expect

that an unbiased estimator of R(λr|f ) has good small sample properties. Therefore, define

R∗(q) =
[
Y tS2

λ(In − Sλ)Y − σ2{tr(S2
λ)− q}

]∣∣
λ=λ̂r

to choose the penalty order q for the estimation of λ̂r as arg minq∈N |R∗(q)|. The detailed

study of the criterion |R∗(q)| is out of the scope of this paper, but in the Supplementary

materials a small simulation study is reported, complementary to the one in Section 4.

Such data-driven choice of q is an interesting direction for further research.
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Figure 3: Left: The data, Mallows’ Cp and ML based estimates with 10 knots (indis-
tinguishable); Middle: Estimated degrees of freedom for Mallows’ Cp (bold) and ML
(dashed) based estimates; Right: Age effect estimates with Mallows’ Cp (bold), ML with
q = 2 (dashed) and ML with q = 6 (grey) smoothing parameters, all based on 40 knots.

6 Example

To illustrate high instability of the Mallows’ Cp criterion and general difficulties of smooth-

ing parameter selection in case of low signal-to-noise ratio in the data, the example on

undernutrition of children in Kenya is presented. Information on weight and height of

n = 4651 children in Kenya is obtained from the Kenyan Demographic and Health Survey

(KDHS2003, see Central Bureau of Statistics (CBS) Kenya et al., 2004). The so-called

Z-score for stunting is a common indicator for chronic undernutrition (see WHO, 1998)

and is defined as Zi = {Hi−med(H)}var(H)−1/2, where Hi is the height of ith child at a

certain age and med(H) and var(H) are the median and variance of the children heights

at the same age in some reference population of healthy children, respectively. The data

at hand are cross-sectional, that is, there are no repeated observations of the same indi-

viduals. A very low signal-to-noise ratio in the data shown in the left plot of Figure 3,

makes estimation challenging. In spite of nearly five thousand observations, the Mallows’

Cp criterion depends strongly on the number of knots chosen, selecting more complex

models for larger ks. In contrast, the maximum likelihood estimator is much more robust,

as clearly seen in the middle plot of Figure 3. For the estimation p = 2q − 1 = 3 and

equidistant knots ranging from 10 to 40 with step size 1 were used. Estimates of the age
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effect based on 40 knots with Mallows’ Cp (bold line) and with the maximum likelihood

(dashed) are shown in the right plot of Figure 3. Even though the maximum likelihood

estimator is more robust, there are some structures in the estimated curve that seem to

be implausible. The criterion |R∗(q)|, discussed in the previous section, has the smallest

value at q = 6, suggesting that the regression function might be much smoother. Indeed,

estimating the data using q = 6 (grey line in the right plot of Figure 3) gives a reason-

able result. In fact, estimating the data using sophisticated techniques with an adaptive

smoothing parameter yields the same fit.

7 Conclusion

Properties of oracle smoothing parameters for smoothing splines in the frequentist and

stochastic frameworks are well-known and in this work also shown to hold for low-rank

smoothers, under certain assumptions on the number of knots. In particular, in the

stochastic framework both – the average mean squared error minimizer and the max-

imum likelihood oracle smoothing parameter – are asymptotically equal and optimal,

while in the frequentist framework the maximum likelihood oracle smoothing parameter

is asymptotically sub-optimal. In this article, both Mallows’ Cp and maximum likelihood

smoothing parameter estimators are shown to be consistent and asymptotically normal

in the frequentist and stochastic frameworks for penalized splines. Obtained constants

in the asymptotic variances deliver interesting insights into the small-sample behavior

of smoothing parameter estimators. In both frameworks, the variance of the maximum

likelihood estimator is found to be smaller than that of the Mallows’ Cp estimator, with

the constant decreasing for growing penalty order q. Therefore, in spite of the asymptotic

sub-optimality in the frequentist framework, the maximum likelihood estimator in finite

samples and for a certain choice of q appears to be superior to the Mallows’ Cp estimator.
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Appendix. Technical details

A.1 Preliminaries

To estimate f by solving (2), usually the so-called Demmler-Reinsch basis for S(p, τ) is

employed. This basis is uniquely defined by the conditions

n∑
l=1

φk,i(xl)φk,j(xl) = δij,∫ 1

0

φk,i(x)(q)φk,j(x)(q)dx = ηiδij, i, j = 1, . . . , k + p+ 1,

for the Kronecker delta δij.

With this basis, sp(x) =
∑k+p+1

i=1 biφk,i(x) is the best least squares approximation of f

by S(p, τ), with bi =
∑n

j=1 φk,i(xj)f(xj). The best L2[0, 1] projection of f onto S(p, τ) can

be written as s̄p(x) =
∑k+p+1

i=1 bp,iφk,i(x), bp,i = {
∫ 1

0
φk,i(x)2ρ(x)dx}−1

∫ 1

0
φk,i(x)f(x)ρ(x)dx.

Under assumption (A1) it holds for any g1, g2 ∈ W q[0, 1] (see e.g. Speckman, 1985),∣∣∣∣∣ 1n
n∑
i=1

g1(xi)g2(xi)−
∫ 1

0

g1(x)g2(x)ρ(x)dx

∣∣∣∣∣ ≤ n−2const ‖g1‖L2[0,1]‖g2‖L2[0,1],

so that b2p,i = b2i {1 +O(n−1)} for any fixed i. With this, one can define

‖s̄(mq)p ‖2 :=
1

n

k+p+1∑
i=q+1

b2p,i(nηi)
m =

1

n

k+p+1∑
i=q+1

b2i (nηi)
m{1 + o(1)} =: ‖s(mq)p ‖2{1 + o(1)}, (7)
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which is a usual L2[0, 1] norm for m = 1, i.e. ‖s̄(q)p ‖2 =
∫ 1

0
{s̄p(x)(q)}2dx. Following

Claeskens et al. (2009), the approximation for ηi, derived in Speckman (1985) under

(A1), will be used

η1 = · · · = ηq = 0, ηi = n−1c̃(ρ)2q(i− q)2q, i = q + 1, . . . , k + p+ 1, (8)

with c̃(ρ) = π
∫ 1

0
ρ(x)1/(2q)dx{1 + o(1)} = c(ρ){1 + o(1)}, where o(1) converges to zero as

n→∞ and is independent of i for i = o
{
n2/(2q+1)

}
.

In practice, the basis matrix Φk = {φk(x1)t, . . . ,φk(xn)t}t, for a row vector φk(x) =

{φk,1(x), . . . , φk,k+p+1(x)}, can be obtained from the singular value decomposition of the

matrix (CtC)−1/2D̃(CtC)−1/2 = Udiag(ηk)U
t, ηk = (0q, ηq+1, . . . , ηk+p+1)

t. Then, Φk =

C(CtC)−1/2U is a n× (k + p+ 1) semi-orthonormal matrix with Φt
kΦk = In and Sλ =

C(CtC+λnD̃)−1Ct = Φk{In+λndiag(ηk)}−1Φt
k, so that tr(Slλ) =

∑k+p+1
i=1 (1+λnηi)

−l.

Note that Kq defined as the maximum eigenvalue of λn(CtC)−1D̃ can be approximated

as Kq = λ{c̃(ρ)(k + p+ 1− q)}2q. Employing (8), tr(Sl) can be explicitly calculated.

Lemma 1 If (A1) – (A3) hold, then for any q, l ∈ N

tr(Slλ) = λ−1/(2q)
c(q, l,Kq)

c(ρ)
{1 + o(1)},

where the constant c(ρ) is defined after (8) and

c(q, l,Kq) =
Γ{l − 1/(2q)}Γ{1/(2q)}

2qΓ(l)
−
K1−2ql
q

2ql − 1
2F1

[{
l, l − 1

2q

}
;

{
l + 1− 1

2q
,−K−2qq

}]
,

with 2F1[{·}; {·}] denoting a hypergeometric series.

For the proof see Theorem 1 of Claeskens et al. (2009). The constant c(q, l,Kq) can

be explicitly calculated for given values q, l and Kq and the hypergeometric series is

converging for all q, l ∈ N with 2F1[{l, l − 1/(2q)}; {l + 1 − 1/(2q),−K−2qq }] ∈ (0, 1], see

e.g. Abramowitz and Stegun (1972, Ch. 15).
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A.2 Proofs

The following lemma will be used in the proof of Theorem 1 and Lemma 3.

Lemma 2 Under (A1) – (A3) for f ∈ Wmq[0, 1], m ∈ [1, 2] it holds for any l ∈ N

1

n

k+p+1∑
i=q+1

λb2inηi
(1 + λnηi)l

= λ‖s̄(q)p ‖2{1 + o(1)}, (9)

1

n

k+p+1∑
i=q+1

(λbinηi)
2

(1 + λnηi)l
≤ λm‖s̄(mq)p ‖2{1 + o(1)}, (10)

with equality in (10) for m = 2.

Proof of Lemma 2

By definition ‖s̄(mq)p ‖2 = n−1
∑k+p+1

i=q+1 b
2
p,i(nηi)

m < M < ∞ for M independent of k →

∞, thereby (nηi)
m = c(ρ)2mq(i − q)2mq according to (8). Hence, n−1b2p,i(nηi)

m decays

exponentially with i and for any index j = j(n), such that j →∞ as n→∞ and j < k,

it holds for some ε > 0,

‖s̄(mq)p ‖2 =
1

n

k+p+1∑
i=q+1

b2p,i(nηi)
m =

1

n

j∑
i=q+1

b2p,i(nηi)
m +O(j−ε).

Let j be such that λnηj = o(1), e.g. j ∝ λ−α/(2q) for any α ∈ (0, 1) and j < k following

from (A2) and (A3). Then,

1

n

k+p+1∑
i=q+1

b2iλnηi
(1 + λnηi)l

=
λ

n

j∑
i=q+1

b2inηi{1 +O(λnηj)}+
λ

n

k+p+1∑
i=j+1

b2inηi
(1 + λnηi)l

= λ

[
j∑

i=q+1

b2i ηi
{

1 +O
(
λ1−α

)}
+O

(
λεα/(2q)

)]
= λ‖s̄(q)p ‖2{1 + o(1)},

where in the second sum (1 + λnηi)
−l ≤ 1 has been used. Also, for f ∈ W2q[0, 1]

1

n

k+p+1∑
i=q+1

(biλnηi)
2

(1 + λnηi)l
= λ2

[
j∑

i=q+1

b2i η
2
i n
{

1 +O
(
λ1−α

)}
+O

(
λεα/(2q)

)]
= λ2‖s̄(2q)p ‖2{1 + o(1)}.
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For f ∈ Wmq[0, 1], m ∈ [1, 2) one can bound

1

n

k+p+1∑
i=q+1

(λbinηi)
2

(1 + λnηi)l
≤ λm

n

k+p+1∑
i=q+1

b2i (nηi)
m = λm‖s̄(mq)p ‖2{1 + o(1)},

proving the lemma. �

Proof of Theorem 1

For f ∈ Wmq[0, 1] the lower bound for the smoothing parameter λf is found from

0 =
λ1−m

2
Ef

{
∂An(λ)

∂λ

}
=
f t(In − Sλ)2Sλf

λmn
− σ2tr(S2

λ − S3
λ)

λmn

=
1

n

k+p+1∑
i=q+1

b2i (nηi)
m (λnηi)

2−m

(1 + λnηi)3
− σ2

λmn

k+p+1∑
i=1

λnηi
(1 + λnηi)3

≤ ‖s̄(mq)p ‖2{1 + o(1)} − λ−(2qm+1)/(2q)σ
2c(q, 2, Kq)

4qn c(ρ)
{1 + o(1)},

where Lemma 1 and Lemma 2 have been applied. Similarly, the smoothing parameter

λr|f is found as the solution to

0 =
1

λ
Ef {TML(λ)} =

1

λn
f t(Sλ − S2

λ)f −
σ2

λn

{
tr(S2

λ)− q
}
{1 + o(1)}

=
1

n

k+p+1∑
i=q+1

b2inηi
(1 + λnηi)2

− σ2

λn

k+p+1∑
i=q+1

1

(1 + λnηi)2
{1 + o(1)}

= ‖s̄(q)p ‖2{1 + o(1)} − λ−(2q+1)/(2q)σ
2c(q, 2, Kq)

c(ρ)n
{1 + o(1)}.

�

Proof of Theorem 2

For a q × q null matrix 0q and R = {R(xi, xj)}ni,j=1, with

R(x, s) = cov

{∫ 1

0

(x− t)q−1+

(q − 1)!
dW (t),

∫ 1

0

(s− t)q−1+

(q − 1)!
dW (t)

}
=

∫ 1

0

(x− t)q−1+

(q − 1)!

(s− t)q−1+

(q − 1)!
dt,
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define a blockdiagonal matrix R̃ = diag(0q,R) and for l ∈ {0, 1}

r̃(l) =
tr{(R̃−CD̃

−
Ct)(In − Sλ)2Slλ}

tr{CD̃
−
Ct(In − Sλ)2Slλ}

.

Using the relationship tr{CD̃
−
Ct(In − Sλ)2Slλ} = λn tr{(In − Sλ)Sl+1

λ } implies

n Eβ{TCp(λ)} =
[
σ2tr{(In − Sλ)2Sλ}+ σ2

uλn tr(S2
λ − S3

λ){1 + r̃(1)}
]
{1 + o(1)}

−
[
σ2tr{(In − Sλ)2}+ σ2

uλn tr(Sλ − S2
λ){1 + r̃(0)}

] tr(S2
λ − S3

λ)

n

= tr(S2
λ − S3

λ)
[
σ2
uλn{1 + o(1)} − σ2{1 + o(1)}

]
.

Since λf |r is defined as the solution to Eβ{TCp(λ)} = 0, the assertion of the theorem

λf |r = σ2/(nσ2
u) {1 + o(1)} follows, with r̃(1) = o(1) and r̃(0)tr(S2

λ−S3
λ)/n = o(1) shown

in the Supplementary materials. �

The following lemma will be used in the proof of Theorem 3.

Lemma 3 Let model (1) and assumptions (A1) – (A4) hold. Then, for any l ∈ N

f t(In − Sλ)S1+l
λ f

∣∣
λ=λr|f

= σ2
{

tr(S2
λ)− q

}∣∣
λ=λr|f

{1 + o(1)} (11)

f t(In − Sλ)1+lSλf
∣∣
λ=λr|f

= o
(
λ
−1/(2q)
r|f

)
. (12)

Moreover,

f t(In − Sλ)2S1+l
λ f

∣∣
λ=λf

= σ2tr
(
S2
λ − S3

λ

)∣∣
λ=λf
{1 + o(1)} (13)

f t(In − Sλ)2+lSλf
∣∣
λ=λf

= o
(
λ
−1/(2q)
f

)
. (14)

Proof of Lemma 3

From f t(In − Sλ)S1+l
λ f =

∑k+p+1
i=q+1 λbinηi(1 + λnηi)

−(l+2) and (9) one concludes that

f t(In−Sλ)S1+l
λ f = f t(In − Sλ)Sλf{1+o(1)}. Equation (11) follows from the definition

of λr|f via
[
f t(In − Sλ)Sλf − σ2

{
tr(S2

λ)− q
}

+ o(1)
]∣∣
λ=λr|f

= 0, and (12) holds due to

f t(In − Sλ)2Sλf
∣∣
λ=λr|f

= f t(In − Sλ)Sλf
∣∣
λ=λr|f

−f t(In − Sλ)S2
λf
∣∣
λ=λr|f

= o
(
λ
−1/(2q)
r|f

)
.
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Equations (13) and (14) are proved analogously, making use of the definition of λf via{
f t(In − Sλ)2Sλf − σ2tr(S2

λ − S3
λ)
}∣∣
λ=λf

= 0 and

f t(In − Sλ)2S1+l
λ f = f t(In − Sλ)S1+l

λ f − f t(In − Sλ)S2+l
λ f

= f t(In − Sλ)Sλf{1 + o(1)} − f t(In − Sλ)S2
λf{1 + o(1)}

= f t(In − Sλ)2Sλf{1 + o(1)}.

�

Proof of Theorem 3

The theorem is proved for λ̂f only, the proof for λ̂r is completely analogous and is given

in the Supplementary materials to this article.

From the Taylor expansion 0 = TCp(λ̂f ) = TCp(λf ) + T
′
Cp(λ̃)(λ̂f − λf ), for some λ̃

between λ̂f and λf , it holds λ̂f − λf = −TCp(λf )/T
′
Cp(λ̃). Hence, one needs to show

TCp(λf )− Ef{TCp(λf )}√
varf{TCp(λf )}

D−→ N (0, 1) and
T

′
Cp(λ̃)

Ef

{
T

′
Cp(λf )

} P−→ 1.

Expressions for Ef

{
T

′
Cp(λf )

}
and varf{TCp(λf )}, given by

Ef

{
T

′

Cp(λf )
}

=
σ2

λfn
tr{(In − Sλ)S2

λ(4In − 3Sλ)}
∣∣
λ=λf
{1 + o(1)},

varf{TCp(λf )} =
2σ4

n2
tr{(In − Sλ)4S2

λ}
∣∣
λ=λf
{1 + o(1)},

are derived employing Lemma 3 and ∂Sλ/∂λ = −λ−1(Sλ − S2
λ). More details on these

equations are given in the Supplementary materials. Next, consider

n TCp(λf ) =
[
Y t(In − Sλ)2SλY {1 + o(1)} − σ̂2tr(Sλ − S2

λ)
]∣∣
λ=λf

,

Ef {n TCp(λf )} =
[
f t(In − Sλ)2Sλf + σ2tr{(In − Sλ)2Sλ} − σ2tr(Sλ − S2

λ)
]∣∣
λ=λf

+ o(1).
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Denoting di =
∑n

j=1 φk,i(xj)yj with Ef (d
2
i ) = b2i + σ2, and noting that σ̂2 = σ2{1 +

Op(n
−1/2)}, define random variables ξi

n [TCp(λf )− Ef{TCp(λf )}] =

k+p+1∑
i=q+1

(
d2i − b2i − σ2

) (λfnηi)
2

(1 + λfnηi)3
+ op(1) =:

k+p+1∑
i=q+1

ξi,

such that Ef (ξi) = o(1) and s2n =
∑k+p+1

i=q+1 varf (ξi) = 2σ4tr{(In−Sλ)4S2
λ}{1+o(1)}. Since

s2n = const λ
−1/(2q)
f and (λ

1/(2q)
f k)−1 → 0, according to (A2) and (A3), each varf (ξi) = o(1)

and there exist a constant B, such that Ef |ξi|2 = varf (ξi)+o(1) < B, i = q+1, . . . , k+p+1.

With this, the Lyapunov’s condition

s−4n

k+p+1∑
i=q+1

Ef |ξi|4 < Bs−4n

k+p+1∑
i=q+1

Ef |ξi|2 = Bs−2n = O
(
λ
1/(2q)
f

)

converges to zero as n → ∞. This proves s−1n
∑k+p+1

i=q+1 ξi
D−→ N (0, 1), or equivalently,

[varf{TCp(λf )}]−1/2 [TCp(λf )− Ef{TCp(λf )}]
D−→ N (0, 1).

Next is shown that λ̂f
P−→ λf . From varf{TCp(λ)} = O

(
λ−1/(2q)n−2

)
→ 0, n → ∞

it follows that TCp(λ)
P−→ Ef{TCp(λ)}, for any λ satisfying (A3). It remains to verify that

Ef [TCp{λf (1− ε)}] < 0 < Ef [TCp{λf (1 + ε)}], for any ε ∈ (0, 1) (see Lemma 5.10 in

van der Vaart, 1998). As shown in the Supplementary materials, for B1(λ) = n−1f t(In−

Sλ)
2Sλf > 0 and n→∞ it holds

Ef [TCp{λf (1− ε)}] = (1− ε)2B1(λf )
{

1− (1− ε)−2−1/(2q) + o(1)
}
< 0,

Ef [TCp{λf (1 + ε)}] = (1 + ε)2B1(λf )
{

1− (1 + ε)−2−1/(2q) + o(1)
}
> 0,

so that λ̂f
P−→ λf follows.

Let now consider T
′
Cp(τλf )/Ef{T

′
Cp(λf )}, where τ ∈ [1− ε, 1 + ε], for any bounded

ε > 0. Since varf
{
T

′
Cp(τλf )

}
= (τλf )

−2−1/(2q)n−2const{1 + o(1)}, it is easy to see that

varf

[
T

′
Cp(τλf )

Ef

{
T

′
Cp(λf )

}] = O
(
λ
1/(2q)
f

)
→ 0, n→∞.
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With Lemma 3, Ef

{
T

′
Cp(τλf )

}
= Ef{T

′
Cp(λf )}(4qτ + τ−1−1/(2q))/(4q + 1){1+o(1)}, where

4q τ + τ−1−1/(2q)

4q + 1
=


1− ε{1− 1/(2q)}+O(ε2), for τ = 1− ε

1 + ε{1− 1/(2q)}+O(ε2), for τ = 1 + ε

,

so that for any fixed τ ∈ [1 − ε, 1 + ε] it holds T
′
Cp(τλf )/Ef{T

′
Cp(λf )}

P−→ 1, as n → ∞.

Since P (|λ̃/λf − 1| ≤ ε) → 1 for n → ∞ and any ε > 0 due to λ̂f
P−→ λf , it follows that

T
′
Cp(λ̃)/Ef

{
T

′
Cp(λf )

} P−→ 1, n→∞. Putting all together and applying Slutsky’s lemma

proves the theorem. �

Proof of Theorem 4

The proof of Theorem 4 is analogous to that of Theorem 3 and is given in the Supple-

mentary materials to this article.
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