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Abstract

Reputation systems are fundamental for assessing the quality of user contributions in partic-
ipatory sensing. However, naively associating reputation scores to contributions allows adver-
saries to establish links between multiple contributions and thus de-anonymize users. We present
the IncogniSense framework as a panacea to these privacy threats. IncogniSense utilizes peri-
odic pseudonyms generated using blind signature and relies on reputation transfer between these
pseudonyms. Simulations are used to analyze various reputation cloaking schemes that address
the inherent trade-off between anonymity protection and loss in reputation. Our threat analysis
confirms the robustness of IncogniSense and a prototype demonstrates that associated overheads
are minimal.
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1. Introduction

Recent mobile phones are equipped with a plethora of embedded sensors, and integrate
widespread wireless technologies and complex processing capabilities. These technological fea-
tures have contributed to the emergence of a new paradigm known as participatory sensing [1].
Participatory sensing applications involve volunteers collecting sensor readings from the sur-
rounding environment using their mobile phones. The collected sensor readings are reported
to application servers, where summaries are computed and published in the form of maps and
statistics. Several practical systems based on this novel paradigm have been developed in recent
years, which include creating noise pollution maps [2] and obtaining road traffic information [3].

Participatory sensing applications are however exposed to incorrect contributions due to their
inherent open nature [4]. For example, participants may inadvertently position the phone in an
undesirable position while collecting sensor readings (e.g., phone kept in bag while sampling
street-level noise). Moreover, malicious participants may deliberately contribute bad data. Both
behaviors result in erroneous contributions, which need to be identified and eliminated to ensure
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the reliability of the computed summaries. For this purpose, reputation systems tailored to partic-
ipatory sensing have been proposed such as [4]. They assign reputation scores to the participants
based on the quality of their contributions and then use these scores to weed out bad contri-
butions. Such systems however need to observe the contributions made by each device for an
extended period of time to compute the reputation and hence, require linkability across multiple
contributions from the same device. An adversary can exploit these links to de-anonymize the
volunteers and compromise their privacy, since the sensor readings usually include spatiotem-
poral meta-data [5]. We herein propose a solution that addresses this inherent conflict between
privacy and reputation requirements. Our specific contributions can be summarized as follows:

1. We present IncogniSense, an anonymity-preserving reputation framework based on blind
signatures [6], which is agnostic to both the reputation assignment algorithm and the ap-
plication. In IncogniSense, each user picks a new pseudonym for each time period, which
is used to report sensor readings. Before the next period starts, the user transfers the rep-
utation score associated with his current pseudonym to his next pseudonym. This allows
the user to conserve his reputation across multiple periods, while limiting associations
between his contributions to a unique period.

2. IncogniSense cloaks the reputation to be transferred to prevent an attacker from linking
multiple pseudonyms. As reputation cloaking has an inherent trade-off between anonymity
protection and loss in reputation, we explore this design space by undertaking a detailed
simulation-based analysis of several cloaking mechanisms and we especially study their
resilience against linking attacks. We significantly extend our work presented in [7] by
analyzing the impact on anonymity protection of (1) transient vs. permanent reputation
scores and (2) constant vs. variable client populations.

3. We conduct a thorough threat analysis showing the robustness of IncogniSense against
reputation corruption.

4. We evaluate the feasibility of our approach by implementing a proof-of-concept on An-
droid Nexus S mobile phones. Assuming that a new pseudonym is chosen every 5 minutes,
IncogniSense only incurs an additional 2.3% of energy expenditure, which is a small price
to pay for the enhanced privacy protection offered.

The paper is organized as follows. In Section 2, we discuss related work. We introduce our
threat model in Section 3 and present the IncogniSense framework in Section 4. We analyze
the robustness of IncogniSense against threats to reputation in Section 5 and conduct a multi-
dimensional evaluation of IncogniSense in Section 6. We show the feasibility of our approach in
Section 7, before making concluding remarks in Section 8.

2. Related Work

We compare IncogniSense with existing anonymity-preserving reputation systems designed
for application domains orthogonal to participatory sensing, as this specific problem has not been
addressed in the context of participatory sensing, other than a mention of its importance as future
research [8]. To the best of our knowledge, we are the first to propose a concrete framework for
this paradigm including a proof-of-concept implementation and a multi-dimensional evaluation.
While this paper discusses our solution in the context of participatory sensing, IncogniSense
has generic applicability and is not necessarily restricted to resource-constrained devices such as
mobile phones.
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Manifold reputation architectures based on pseudonyms have been proposed for peer-to-peer
networks. For example, in [9], pseudonyms are created by Trusted Platform Modules and attested
by Certificate Authorities. In the solution presented in [10], the users utilize a set of pseudonyms
with the same reputation to collect electronic coins centralized at a third party. In contrast to
our solution, both approaches are vulnerable to identity-based attacks since users can control
an arbitrary number of pseudonyms. Another scheme presented in [11] proposes context-based,
self-certified, and Sybil-free pseudonyms built using e-tokens [12]. The users, however, cannot
change their pseudonyms once they are associated to a context. Finally, STARS [13] extends
existing peer-to-peer reputation systems by traceability and anonymity. Complete anonymity of
honest clients is however not guaranteed since the scheme reveals the identity of clients suspected
to corrupt their reputation and is subject to false positives.

IncogniSense shares the most similarities with [14] and [15], which rely on periodic pseudo-
nyms and transfer of reputation between pseudonyms. As our work builds upon the RuP algo-
rithm [14], we present a detailed comparison in Section 4.3. In short, RuP requires the clients
to create n temporary pseudonyms for each valid pseudonym and relies on probabilistic proofs.
As such, a malicious client can create multiple pseudonyms and tamper with its reputation with
a success probability of 1/n. Increasing n reduces the threats to reputation manipulation, but
increases associated overheads. In comparison to RuP, IncogniSense is robust against reputation
corruption and the clients generate only one pseudonym per period. The protocol presented in
[15], which extends the ideas from [14], is based on the concept of k-anonymity [16]. They
assume the existence of a third party server which forms groups of clients sharing the same
reputation and distributes a signature key per group to sign the pseudonyms. The clients must
however trust each other not to collude with the third party and/or other clients to reduce the
anonymity set. Moreover, the proposed protocol introduces additional overhead for the clients to
create pseudonyms as compared to [14] and our solution.

3. Threat Model and Assumptions

In this section, we present our threat model and detail our assumptions. We consider that our
adversary set includes malicious clients, application servers, and the reputation and pseudonym
manager (RPM) (described in Section 4). The adversaries follow the Dolev-Yao threat model
[17], i.e., they are able to listen to all communication, fabricate, replay, and destroy messages.
They are, however, not able to break cryptographic mechanisms.

3.1. Threats to Reputation

The goal of the adversaries, primarily malicious clients, is to corrupt the reputation system in
order to artificially increase their own reputation. Self-promotion can be achieved by means of
Sybil attacks, in which the malicious client creates an arbitrary number of identities that vouch
for each other [18]. Alternatively, malicious clients may replay old messages to gain reputation
without contributing new sensor readings.

We assume that the application server and the RPM are protected against fraudulent access
by well-established security mechanisms. Hence, adversaries are not able to access stored data,
or change the behavior of applications. Denial of service attacks are considered out of the scope
of this paper.
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Figure 1: IncogniSense framework

3.2. Threats to Anonymity

Another goal of the adversaries is to breach the anonymity of the clients. They track the inter-
actions of the clients with the reputation system and attempt to establish relationships between
successive pseudonyms and link them to a unique real identity. We assume that the reported
sensor readings do not contain any direct indication of the identity of the clients and that the
interactions of the clients with the application server are anonymized using, e.g., disposable IP
and MAC addresses and anonymous communication networks [19].

4. The IncogniSense Framework

We first provide an overview of the IncogniSense framework and detail the underlying mech-
anisms. Note that further details on the utilized blind signatures are available in Appendix A to
Appendix C. We then present our reputation cloaking mechanisms and highlight the differences
between IncogniSense and the framework proposed in [14], which forms the underlying basis
for parts of our work.

4.1. Overview and Underlying Mechanisms

The IncogniSense framework illustrated in Fig. 1 includes clients, an application server, and
a RPM (introduced in Section 3). We assume a participatory sensing application in which several
active clients collect sensor readings and report them to the application server. In this scenario,
our framework relies on two main mechanisms: (1) the utilization of periodic pseudonyms by the
clients to report the collected sensor readings, and (2) the transfer of reputation scores between
consecutive pseudonyms in order to conserve the reputation gained by the clients across multiple
time periods. In particular, the proposed solution is comprised of the following four steps, which
are repeated sequentially for each time period T .

4.1.1. Pseudonym Generation
We assume that each client has a permanent identifier ID, a private key PR, a public key

PU, and is registered with the RPM. Clients generate pseudonyms in association with the RPM
and based on blind signatures [6]. By employing blind signatures, the objective is two-fold: (1)
to ensure that each client has a unique pseudonym for each T in order to prevent Sybil attacks
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(cf. Section 3.1), and (2) to hide the generated pseudonym from the RPM in order to prevent
it from linking the pseudonym to the client’s real identity. In fact, blind signatures ensure the
authenticity of signed messages without revealing their content to the signing entity and prevent
the signing entity from linking the message content with the identity of its creator. For each
pseudonym, each client generates a new key pair (PRP, PUP), with PRP the private key and PUP

the public key. Note that the public key is available to all, while the private key is only known
by the client who generated it. Next, the client hands over the public key to the RPM for blind
signature as detailed in Appendix B. For each T , the RPM uses a different private key PRsignature

in the blind signature that determines the period of validity of the pseudonym. Moreover, the
RPM only signs one pseudonym per client per time period in order to prevent Sybil attacks. As
a result, the client uses the blindly signed pseudonym and the newly generated private key to
report sensor readings to the application server and to transfer reputation to its next pseudonyms.
If the RPM signs more than one new pseudonym for each T , the application server and the RPM
cannot link the reported sensor readings to the real identity of the client.

4.1.2. Reporting of Sensor Readings
Within T, the client periodically reports sensor readings to the application server using its

current pseudonym Pcurrent (i.e., the pseudonym valid in T ). The application server verifies the
validity of pseudonym with the RPM, evaluates the sensor reading using a reputation model, and
attributes a reputation score Rscore to Pcurrent, with Rscore ∈ Z. The application server eventually
makes use of the reputation scores to identify inaccurate contributions. Depending on the selected
reputation model, the application server can discard the contributions with low reputation scores
or reduce the weighting for such contributions in the computation of summaries. Note that the
design of both reputation algorithm and model is considered out of the scope of this paper.
Existing solutions such as [4] can however be easily integrated into our generic framework.
Next, the application server transmits Rscore to the RPM, which maintains reputation accounts
for each pseudonym and hence, adds Rscore to Pcurrent’s reputation account.

4.1.3. Generation of Reputation Tokens
Before the expiration of Pcurrent (i.e., at the end of T ), the client generates its next pseudonym

Pnext for the next time period as described in Section 4.1.1. It then transfers the gained reputation
with Pcurrent to Pnext in order to conserve it after the expiration of Pcurrent. The reputation transfer
is realized using reputation tokens RT s generated by the clients in collaboration with the RPM
to prevent reputation corruption. The transfer process also makes use of blind signatures with
Pnext being the blinded content in order to prevent the RPM from linking the client’s consecutive
pseudonyms. In fact, each client withdraws reputation scores from Pcurrent’s account and then,
deposits them using RT s in Pnext’s account, both accounts being maintained by the RPM. For
each generated RT , the client using Pcurrent indicates the reputation score to be transferred in
the RT to the RPM as detailed in Appendix C. The RPM verifies the balance of the reputation
account of Pcurrent and decrements it accordingly. The RPM has different key pairs referred to
as transfer keys, each of them being associated to a different reputation value. It thus uses the
key pair corresponding to the reputation score to be transferred on the RT to blindly sign it.
Consequently, the signing key (and not the content of the RT ) determines the reputation value
of each RT that prevent clients from manipulating RT s’ value. However, the linking between
Pcurrent and Pnext is only prevented if more than one RT is generated per T . Otherwise, the
linking is straightforward.
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4.1.4. Reputation Transfer
The client registers with the RPM using Pnext within the current T and hands over RT(s). The

RPM verifies that each RT has not been used before and credits the reputation account of Pnext

from RT’s value.

4.2. Cloaking Mechanisms

In theory, the utilization of blind signatures prevents the linking of consecutive pseudonyms.
However, in practice, the reputation transfer between two consecutive pseudonyms may reveal
insights about their succession. For example, consider the case where Pcurrent has the highest
reputation among all pseudonyms. Now assume that after reputation transfer, this same reputa-
tion score is associated with the pseudonym, Pnext. It is fairly straightforward for an adversary to
establish a link between Pcurrent and Pnext. An adversary able to track the reputation scores over
several time intervals can link pseudonyms used in different periods. To prevent such attacks, we
propose that the clients cloak their reputation scores before their transfer. Since the RPM pre-
vents unjustified reputation promotion by controlling the generation of the RTs, the clients only
transfer reputation scores lower or equal to their actual reputation. While cloaking the reputation
scores prevents a reputation analysis attack, it may cause degradation in reputation score since
it entails adding a perturbation to the same. In this section, we present three different reputation
cloaking schemes, which address this tradeoff in different ways.

4.2.1. Floor Function Reputation Transfer (Floor)
This scheme divides the entire spectrum of reputation scores into fixed reputation intervals

and classifies the clients into these reputation intervals based on their reputation scores. For the
actual transfer, the clients use the floor value of the reputation interval as reputation score and
transfer it using a single RT. Note that we use the floor value to prevent unjustified reputation
promotion. Similar to the concepts of k-anonymity [16], the scheme forms groups of pseudo-
nyms sharing the same reputation score. The larger the groups, the more indistinguishable the
pseudonyms, and the harder it is for the adversary to link consecutive pseudonyms. The anony-
mity protection is thus determined by the size of the groups, which depends on the selection of
the reputation intervals. Selecting large reputation intervals may increase the number of pseudo-
nyms within a group, but may negatively affect the reputation scores due to the coarse granularity
of the chosen reputation intervals. The size of the reputation intervals is therefore an important
design parameter for addressing the tradeoff between anonymity and reputation.

4.2.2. Transfer of Random Sets from Reputation Partition Sets (RandSet)
RandSet divides the reputation score to be transferred into multiple RTs based on a set par-

titioning (e.g., (10, 50, 250)) used by all users. For each reputation transfer, the division of the
reputation score into the set partitioning is determined by each client individually. For example,
a client can partition a reputation score of 70 into one RT of value 50 and two RTs of value 10
or 7 RTs of value 10. The client then randomly selects one or more RTs handed over to the
RPM. We refer to p as the probability that an individual RT is used to transfer reputation. In
other words, each RT is discarded and not transferred with a probability 1 − p. Both the divi-
sion and discarding mechanisms increase the entropy of the actually transferred reputation and
prevent the linkage between consecutive pseudonyms. However, discarding RTs can reduce the
reputation scores. The diminution in reputation is linearly correlated with the size of the RTs,
i.e. discarding a large RT leads to greater loss in reputation. In summary, both set partitioning
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and discarding probability influence the tradeoff between anonymity and reputation, and thus
need to be analyzed.

4.2.3. Transfer of Random Scores from Reputation Partition Sets (RandScore)
The initial reputation score is split into different RTs of predefined size as in RandSet. During

the transfer, all the RTs are transferred. However, the transferred score of the individual RTs is
lowered according to a random function. The set partitioning impacts on the entropy of the trans-
ferred scores and the loss in reputation. The range of the possible scores linearly increases with
the size of the RTs. Simultaneously, the transferred reputation statistically diminishes, as the
probability of transferring the initial RT values decreases, while the size of the RTs increases.
Note that the spectrum of possible cloaking mechanisms is not limited to the aforementioned
schemes. We have specially selected these schemes based on the diversity of their key parame-
ters to address the tradeoff between anonymity protection and reputation degradation. Moreover,
we have implemented the proposed reputation transfer schemes using blind RSA signatures as
detailed in Section 7. However, this signature scheme prevents clients from lowering the value of
the RT s without the knowledge of the RPM when applying the RandScore scheme and using per-
manent reputation scores. With permanent reputation scores, non-transferred reputation scores
gained with Pcurrent are not lost at the end of T , but can be transferred to any future Pnext. As a
result, another blind signature scheme needs to be applied in this case. For example, the scheme
proposed in [20] is based on the principles of divisible electronic cash and enables to split the
value of a RT into different coins. Each coin can then be handed over to the RPM independently
of the others. The coins cannot be linked to the identity of the user, but to the originating RT .
Therefore, the RPM obtains additional insights about the RT s that may improve its capabilities
in linking consecutive pseudonyms. We, however, consider both the evaluation as well as the
implementation of this signature scheme as future work.

4.3. Comparison with the Existing Framework

We contrast IncogniSense with the framework proposed in [14], since our work improves its
ideas. In particular, we highlight weaknesses of the RuP algorithm in terms of cryptographic
overhead and vulnerability to reputation manipulation and argue how IncogniSense addresses
these issues.

4.3.1. Algorithmic Differences
In the RuP algorithm, the client includes the time interval of validity of the pseudonym in

the blind signature. Each client creates n pseudonyms to generate a sole valid pseudonym. The
n pseudonyms are transmitted to the RPM, which randomly selects n − 1 pseudonyms and re-
quests the client to send the corresponding random values r−1. The RPM then encrypts the n − 1
pseudonyms and verifies that they are valid for the same time interval. If the verification is suc-
cessful, it signs the nth pseudonym, which becomes the valid pseudonym. The generation of
RTs also necessitates that the client prepares n messages and the RPM verifies n − 1 messages
before signing the nth message. In IncogniSense, we decouple the time interval of validity of the
pseudonym and the value of the reputation to transfer from the blind signatures by introducing
periodic signature keys and different transfer keys for each value of RT, reciprocally.
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4.3.2. Cryptographic Overhead
In [14], the client generates n key pairs, selects n values r and r−1, and executes n encryptions

to generate one valid pseudonym. The generated key pairs of non-selected pseudonyms should
not be reused to prevent the RPM from linking the pseudonyms to the client’s identity. In Incog-
niSense, the client prepares one blind signature per pseudonym, i.e., it generates only one key
pair and encrypts one message, and the RPM verifies only one signature per time interval and per
client (instead of n − 1), which significantly reduces the computational overhead if we assume a
large base of clients. Similar conclusions can be drawn for the RT generation, except that no key
pair is generated by the client.

4.3.3. Reputation Manipulation
In the RuP algorithm, the RPM cannot verify the time interval of validity of the pseudonym

included in the blinded message. It randomly verifies n − 1 of the n generated pseudonyms and
signs the nth, hoping that it contains the same time interval of validity as the verified pseudonyms.
This implies that malicious clients can generate multiple pseudonyms for a given time interval
with a probability of 1/n. If such an attack is successful, then the adversaries can seriously
compromise the reputation system (see Section 3.1). Likewise, malicious clients can generate
fraudulent RTs and increase their reputation. IncogniSense completely eliminates the possibility
of Sybil attacks and also prevents adversaries from compromising the reputation transfer process.
The utilization of periodic signature keys and the verification of already existing pseudonyms by
the RPM guarantees that each client has a unique pseudonym per time interval. Similarly, the
utilization of different transfer keys allows the RPM to easily verify and guarantee the value of
the transferred reputation, preventing malicious clients from generating falsified RTs.

In summary, IncogniSense achieves better protection against reputation manipulation, while
significantly reducing the cryptographic overhead for the client.

5. Analysis of Robustness against Threats to Reputation

We consider the assumptions and threat model presented in Section 3 and argue that Incog-
niSense is resilient against the following attacks.

5.1. Sybil Attacks
Malicious clients can attempt to generate multiple pseudonyms for a given time interval to

increase their reputation through cross-recommendations. However, IncogniSense is protected
against these attacks since the RPM maintains a list of the clients that have presented pseudonyms
for blind signature along with their validity interval. Once a pseudonym has been signed for a
given time interval, the RPM discards all other pseudonyms submitted by the same client.

5.2. Replay Attacks
Malicious clients may attempt to replay old messages for the following two reasons: (1)

artificially increase their reputation by replaying RTs, (2) debit the reputation account of honest
clients without the victims receiving the associated credit by replaying the message to be signed.
The RPM, however, maintains a list of IDs associated with each RT (see Section 4.1.4). The RPM
can thus detect malicious clients trying to corrupt the reputation system and hence, prevents both
attacks. Malicious clients are prevented from forging RTs and manipulating the reputation of
other clients, as the creation of the RTs requires the signature of the corresponding pseudonym,
which is only possible using the pseudonym’s private key.
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Table 1: Probability distribution of transient reputation scores
Attribution probability 0.25 0.35 0.25 0.10 0.05

Reputation scores 10 5 0 -5 -10

5.3. Manipulation of Reputation Accounts

Malicious clients can attempt to alter the reputation stored in the RPM. The clients, however,
do not have direct access to their reputation accounts and the RPM is protected against unautho-
rized access using standard cryptographic primitives. As such, this attack cannot be launched.

5.4. Reporting of Falsified Sensor Readings

Malicious clients can try to report falsified sensor readings on behalf of others to degrade their
reputation. IncogniSense protects clients against this attack by requesting clients to authenticate
with the application server and the RPM. These entities verify the validity of the pseudonyms
before considering their contributions and/or delivering them information. Such an attack would
only be successful if malicious clients can access the private keys of the targeted clients and those
of their respective pseudonyms, which is beyond the scope of our attacker model.

In summary, we have shown that IncogniSense is robust by design against a variety of threats
directed against the reputation system by malicious clients.

6. Analysis of Anonymity Protection

We analyze the resilience of IncogniSense against the threats to anonymity identified in Sec-
tion 3.2. In particular, we measure the level of anonymity, i.e. unlinkability, that can be achieved
by the different reputation cloaking schemes introduced in Section 4.2. In a first step, we assume
that the reputation scores are lost if they are not transferred to the next pseudonym at the end of
the period. We hence quantify the reduction in reputation score caused by the different cloaking
approaches and investigate the trade-off between anonymity protection and loss in reputation.
Next, we assume that the clients can store reputation for future use and analyze the impact of
stored reputation scores on anonymity protection for both a constant and variable population of
clients.

6.1. Transient Reputation Scores

In the following, we assume that the reputation scores are transient, i.e., their validity duration
is limited to the duration of the period in which they have been gained, and we adopt the following
simulation setup and method.

6.1.1. Simulation Setup and Method
We implemented a simulator in Java to model the behavior of clients, RPM and application

server. Each simulation run is for 100 time intervals. We repeat each simulation 100 times
and present the averaged results. All clients remain active for the duration of the simulation.
During each time interval, the clients generate 5 random sensor readings and report them to
the application server. The application server runs a simulated reputation algorithm, which ran-
domly attributes reputation scores to the pseudonyms according to the distribution presented in
Table 1. Note that the actual values of both sensor readings and reputation scores do not im-
pact the performances of the cloaking schemes in terms of linkability and can thus be selected
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Algorithm 1 Identification of potential successors for transient reputation scores
Require: RPcurrent : Pcurrent’s reputation, RPnext : Pnext’s reputation, S RTcreated : set of RT s created by Pcurrent,

S RTused : set of RT s used by Pnext

1: for all Pcurrent ∈ S Pcurrent do
2: for all Pnext ∈ S Pnext do
3: if RPnext ≤ RPcurrent and S RTused ⊆ S RTcreated then
4: create a link between Pcurrent and Pnext

5: end if
6: end for
7: end for

randomly. Moreover, we consider the study of additional reputation models and distributions as
future work.

We adopt the assumptions of our threat model (see Section 3) and assume that the RPM
and the application server are malicious internal observers. We further assume that adversaries
collude and aim at linking consecutive pseudonyms. For each simulated time interval, the RPM
and the application server have access to the following information. The RPM observes the
generated RTs, the utilized RTs, and the updates of the reputation accounts, while the application
server observes the current pseudonyms, the initial and final reputation scores, and the updates
of reputation scores.

Based on the observed information, the adversaries identify the set of pseudonyms active in
each time interval. We refer to S Pcurrent as the set of pseudonyms active in a given time interval and
S Pnext as the set of pseudonyms active in the subsequent time interval. As all clients remain active
for the duration of the simulation, |S Pcurrent | = |S Pnext | and there exists a bijection between the sets
S Pcurrent and S Pnext . For each Pcurrent, the adversaries first identify all potential successors and cre-
ate links between Pcurrent and the identified Pnexts based on their reputation scores and the created
and used RTs as detailed in Alg. 1. Note that the second condition in step 3 (S RTused ⊆ S RTcreated )
is verified if the RTuseds’ values are lower than those of the RTcreateds if the RandScore scheme is
applied. For the other schemes, the same condition is verified if the values are equal. Next, they
iteratively eliminate the created links based on the bijection between S Pcurrent and S Pnext according
to Alg. 2. Alg. 2 first searches for single links between S Pcurrent and S Pnext . Due to the bijection
between both sets, all other existing links of Pcurrent and Pnext are removed (step 6). Pcurrent and
Pnext are then flagged (step 7) and the link between both pseudonyms is confirmed (step 8). This
indicates that Pnext has been identified as the successor of Pcurrent. Flagged pseudonyms and con-
firmed links are then excluded from further searches. When all existing single links have been
successively removed, Alg. 2 analyses the remaining pseudonyms and searches for Pcurrents hav-
ing the same potential successors (step 12). This search returns one or several subsets of S Pcurrent

sharing the same successors. The algorithm then selects the smallest subset whose size is equal
to the number of common successors (step 13). It removes all other links of these pseudonyms
(step 14), flags the pseudonyms (step 15), and confirms the links (step 16). The analysis of sets
of pseudonyms having the same successors is interrupted and the algorithm restarts at step 2 with
the search for single links, which potentially appear while removing the previous links.

Finally, as a measure of the level of anonymity provided by the reputation transfer, we cal-
culate how many potential successors xk (i.e., links) a pseudonym k has on average. We express
the amount of potential successors as the fraction of the total number of clients N = |S Pcurrent |. For
each time interval, we calculate this metric as follows.
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Algorithm 2 Elimination of potential successors for transient reputation scores
Require: S Links: set of links created in Alg. 1

1: linkCon f irmed ← true
2: while ∃ non-flagged pseudonym ∈ (S Pcurrent ∪ S Pnext ) and linkCon f irmed = true do
3: linkCon f irmed ← f alse
4: for all non-flagged pseudonym ∈ (S Pcurrent ∪ S Pnext ) do
5: if ∃ a single link between Pcurrent and Pnext then
6: remove all other links of Pcurrent/Pnext

7: flag Pcurrent and Pnext

8: linkCon f irmed ← true
9: end if

10: end for
11: if linkCon f irmed = f alse then
12: search for other non-flagged Pcurrents having the same potential successors
13: if number of found Pcurrents = number of common Pnexts then
14: remove all other links of the found Pcurrents and Pnexts
15: flag the found Pcurrents and Pnexts
16: linkCon f irmed ← true
17: break search
18: end if
19: end if
20: end while

1
N
·

N∑
k=1

xk (1)

A value of 1 implies perfect anonymity achieved during the transfer, since all pseudonyms
within S Pnext are potential successors to each individual pseudonym of S Pcurrent . The lower the
value, the smaller the set of pseudonyms that are the potential successors, which in turn implies
that it may be easier to establish a link between consecutive pseudonyms. We can therefore
directly assess the quality of the anonymization achieved by the cloaking schemes using this
metric.

6.1.2. Evaluation Results
By applying the above setup and method, we first individually evaluate the reputation cloak-

ing schemes (see Section 4.2). In particular, we analyze the effect of the most important con-
figuration parameter relevant to each scheme and the resulting impact on the anonymity of the
clients. Secondly, we compare how these schemes fare against each other. In this comparison,
we use the transfer scheme used in [14] as a baseline. This scheme, also referred to as the Full
Reputation Transfer (Full) scheme, always transfers the entire reputation in a single RT. It hence
represents the worst case in terms of anonymity protection, since the reputation score remains the
same for consecutive pseudonyms, which allows for easy linkability by the adversaries. Note that
we compare the cloaking schemes based on selected variants that show a good tradeoff between
anonymity protection and loss in reputation.

In the Floor scheme, the clients use the floor value of given reputation intervals as reputation
score and transfer it using a single RT. Fig. 2(a) illustrates the influence of different reputation
interval sizes on the quality of the anonymity protection. The results show that the choice of large
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Figure 2: Level of unlinkability for reputation transfer schemes Floor, RandSet, and RandScore for a constant population
of 100 clients

reputation intervals results in a higher level of protection, as more clients are grouped within the
same reputation interval and therefore become indistinguishable during the RT transfer. This
protection comes at the expense of greater perturbation in reputation for some of the clients,
since the difference between the actual reputation value and the floor of the reputation interval
also increases on average. Over time, the protection level decreases, since the reputation values
of the individual clients spread over wider reputation intervals as shown in Fig. 3(b) for a repu-
tation interval size of 20. Fig. 3 shows the development of reputations scores over time and is
annotated with the 0.25- and 0.75-quantile of reputation scores of the clients for time interval
50. As a result, individual clients are more easily distinguishable in our attacker model, since
potential successors can be identified more easily. The Full scheme shows a similar behavior
(cf. Fig. 3(a)), but is able to preserve higher reputation scores. This is illustrated in Fig. 5 that
shows the observed diminution in reputation scores per time interval caused by the cloaking for
selected variants of the proposed cloaking schemes that show a good tradeoff between anonymity
protection and loss in reputation. With both schemes, clients are therefore easy to identify after
a number of rounds since only a small number of peers have similar reputation scores.

In the RandSet scheme, the reputation score is partitioned into different RTs of predefined
size and a reputation transfer is performed with probability p for each RT. The partition in RT s
is implemented as follows. The clients first generate as many RT s with the highest value of the
set of partition as possible. Next, they use the second highest and so on, until the remaining
reputation becomes lower than the lowest value of the set partition. Fig. 2(b) illustrates the in-
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Figure 3: Distribution of reputation score amongst clients over time for a constant population of 100 clients

fluence of the choice of p using the set partitioning (10, 50, 250) on the anonymity protection
level. The fraction of potential successors stabilizes early, which means that attackers do not gain
further evidence even if monitoring for extensive periods of time. This is due to the reputation
scores, which are not constantly increasing over time, but fluctuate in a certain reputation interval
as shown in Fig. 3(c) for a probability p of 80%. Indeed, at a certain time instant the average
increase in reputation due to the contribution to the application equals the average loss due to
the discarding of reputation during the transfer. In contrast, the Full and Floor schemes con-
stantly increase the reputation values as shown in Fig. 3(a) and 3(b). The percentage of potential
successors using RandSet lies between 7% and 26% for p equal to 90% and 50%, respectively
(see Fig. 2(b)). The degree of anonymity protection increases with decreasing p, i.e., increasing
discarding probability 1 − p. Fig. 5 shows the preserved reputation score for p equal to 80%.
Obviously, for increasing p, the preserved reputation per round increases likewise. Note that the
preserved reputation stays slightly below p, since the partitioning of the sets might not exactly
fit the exact reputation value.

In the RandScore scheme, the reputation score is also partitioned into several RTs, which
are all used in the reputation transfer. The transferred score is, however, lowered according to
a random function. We analyze the influence of different set partitions while lowering between
0% and 50% (following an uniform distribution) of the reputation score of a RT. Fig. 2(c) shows
that the level of anonymity protection increases with the set partitioning moving towards larger
RT values. The smaller the lowest RT size in a set (1, 5, 10, 15), the worse the protection of
anonymity, since individual clients can now be tracked by the number of RTs exchanged (but
not the random reputation score exchanged) as detailed in Alg. 2. Similar to RandSet, the per-
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Figure 4: Scheme comparison and impact of the number of clients on the percentage of successors. Floor uses an interval
size of 20. RandScore uses a partition set of (10, 50, 250) and p=75%. RandSet uses p=80%. Hybrid uses a partition set
of (10, 20, 250) and p=80%.
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formance quickly stabilizes since the reputation values inherently stay within certain bounds as
shown in Fig. 3(d), making identification very hard even for sophisticated attackers. Note that
RandSet and RandScore perform similarly, if the same partitioning is applied and p equals the
mean of the score discarding probability used in RandScore. Additionally, RandSet behaves sim-
ilarly to the Full scheme for very low discarding probabilities (< 1%). In other words, reputation
continuously increases for very low discarding probabilities. In contrast, reputation stabilizes
within reputation bounds for greater probabilities. The stabilization time, however, depends on
the discarding probability: the greater the probability, the faster the stabilization. For example,
the reputation reaches its upper bound after 80 time intervals for a discarding probability of 5%.

For comparison purposes, we select one variant of each scheme that demonstrated a good
tradeoff between anonymity protection and reputation loss based on the previous analysis. The
following results thus only hold for these variants. In the following, Floor utilizes a reputation
interval size of 20; RandScore partitions the RT sets into: 10, 50, 250 and has a mean value of
the discarding probability of 25%; RandSet retains RTs with a probability p of 80% and utilizes
a similar partitioning (10, 50, 250). To model a participatory sensing scenario, we investigate
populations of 100 and 300 clients. We present the results in Fig. 4 for all proposed reputation
cloaking schemes for both scenarios under consideration. We include an additional scheme re-
ferred to as Hybrid, which combines the RandSet and RandScore schemes. The Hybrid scheme
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utilizes the partitioning (10, 50, 250) and retains RTs with a probability p of 80%. The repu-
tation score of the retained RTs is randomly lowered as in the RandScore scheme. The Hybrid
scheme is robust against observers that can track the number of RTs or the reputation scores ob-
tained/transferred, since it cloaks both values during transfer. As seen from both graphs in Fig. 4,
all schemes are rather robust when increasing the client base from 100 to 300. In summary, the
Hybrid scheme provides the best anonymity protection followed by RandScore, RandSet, Floor,
and the Full scheme. Hybrid, RandScore, and RandSet provide a constant protection faster than
Full and Floor due to the constantly increasing reputation observed for the latter schemes.

Fig. 6 shows the number and the length of the pseudonym chains, i.e., the number of iden-
tified consecutive pseudonyms, for all schemes and 100 clients. Note that chains of length two
represent identified links between two consecutive pseudonyms. Schemes that allow for long
pseudonym chains are weaker than schemes that only allow the attacker to identify short chains.
The Hybrid scheme is the most resilient scheme against attacks since it only allows adversaries
to build very short chains (always shorter than 10). The RandScore (no chains longer than 13)
and the RandSet (no chains longer than 25) have a vast majority of unlinkable clients, which is
in line with our previous observations of a good anonymity protection. The Floor and the Full
schemes perform worst in terms of identified chain length and number of identified chains. In a
few cases, they allow adversaries to identify chains of up to 84 and 93 successive pseudonyms,
respectively. Since the reputation scores with Full and Floor constantly increase, it is much eas-
ier for an attacker to follow individual pseudonyms. As a countermeasure, one could limit the
maximum reputation score a client can obtain. The introduction of an upper bound would help
to keep well behaving clients together in terms of reputation scores, thus making it much harder
for an attacker to build pseudonym chains. However, a study of the effects of upper bounds is
considered out of the scope of this work.

The anonymity of the clients is, however, protected at the price of a reduction in reputation
as shown in Fig. 5. Clients utilizing the Hybrid scheme suffer the highest loss in reputation,
followed by the RandScore and the RandSet schemes. The Full and the Floor schemes manage
to transfer nearly the complete reputation scores.

In summary, we have demonstrated that some of the presented schemes can provide an effec-
tive anonymity protection, even if adversaries are able to track the reputation transfer between
pseudonyms for long periods of time. We have shown that the cost of a high degree of anonymity
protection is the loss of reputation. If we assume that all clients adopt the same cloaking scheme,
all clients will be similarly affected by the incurred loss in reputation. This is consistent with
the typical use of reputation in participatory sensing applications, where the application server
is mainly interested in comparing the reputation scores of different clients and correspondingly
associates a weight to their sensor readings. In the rare case where the absolute reputation score
is of interest, the users may consider using a scheme, such as Full or Floor, which preserves the
reputation value but is more susceptible to attacks. However, if minor perturbations in the scores
are acceptable, then schemes such as RandScore, RandSet, and Hybrid may be considered.

6.2. Permanent Reputation Scores
Next, we assume permanent reputation scores, i.e. the reputation scores have an infinite pe-

riod of validity. As such, in contrast with the previous scenario, the reputation cloaking schemes
do not result in a loss of reputation at the end of each period, since the cloaked reputation can
be stored for future use in subsequent time periods. In consequence, the adversaries need to
consider the evolution of the reputation over several periods of time (instead of one period in the
previous scenario). As the clients determine both the amount of transferred reputation and the
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Table 2: Probability distribution of permanent reputation scores
New reputation score
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-10 0.35 0.30 0.25 0.08 0.02
-5 0.25 0.30 0.30 0.10 0.05
0 0.05 0.10 0.25 0.35 0.25
5 0.05 0.10 0.30 0.30 0.25
10 0.02 0.08 0.25 0.30 0.35

time of the transfer, the number of possibilities for the reputation transfer increases. This in turn
increases complexity of the reputation analysis, thus making it harder for potential adversaries
to de-anonymize users. In order to investigate the impact of permanent reputation scores on the
anonymity protection, we adopt the following simulation setup and method. In particular, we
highlight the differences with the previous evaluation detailed in Section 6.1.1.

6.2.1. Simulation Setup and Method
We investigate a population of 100 clients. Each simulation run covers 100 time intervals

(if not noted otherwise) and we present the average results of 1000 simulations. The application
server attributes reputation scores to the pseudonyms according to the distribution presented in
Table 2. Instead of arbitrarily attributing a random reputation score as in Section 6.1.1, the
application server models possible behaviors of the clients by considering the last attributed
reputation score in the computation of the new reputation score. The chosen distribution reflects
our assumption that the participant behavior is unlikely to change at such short time scales. We
thus assume that the probability that a client contributes a correct sensor reading is greater when
it has already contributed correct samples and vice versa. For example, assuming that a client
obtains a reputation score of 10 for its last sensor reading, the probability that it obtains the same
reputation score for its new sensor reading is equal to 0.35. In contrast, the probability that it
obtains a reputation score of -10 is equal to 0.02. Note that we could apply the same distribution
in the previous scenario, but the evolution of the reputation scores over time has a lower impact
on anonymity protection due to the transient nature of the reputation scores.

Again, we assume that the RPM and the application server are malicious internal observers
with the aim of identifying consecutive pseudonyms based on the information they have access
to. The adversaries first identify the set of pseudonyms active in each time interval. S Pcurrent is
the set of pseudonyms active in a given time interval and S Pnext is the set of pseudonyms active
in the subsequent time interval. For each pseudonym Pcurrent, the adversaries attempt to identify
its successor Pnext as follows. The adversaries first identify the set of possible successors of
Pcurrent based on their reputation value and establish a temporary link between Pcurrent and each
candidate of S Pnext according to Alg. 3. Next, the adversaries identify all pseudonyms in S Pcurrent

that have a single link to a pseudonym in S Pnext and eliminate all other links, since a pseudonym
has at most one successor. Similarly, they identify all pseudonyms in S Pnext having a single
link to a pseudonym in S Pcurrent and eliminate all other links, as a pseudonym has at most one
predecessor (see steps 4 to 8 in Alg. 4). Note that we compute the number of potential successors
xk (i.e., links) a pseudonym k has on average after this step. For the remaining multiple links,
the adversaries compute the probability of each link based on the probability that Pcurrent handed
RTs to the RPM and the probability that Pnext shows a behavior similar to Pcurrent (steps 16 and
23 in Alg. 4). The probability that Pnext shows a behavior similar to Pcurrent is determined using
the probability distribution presented in Table 2 (known by the application server which uses it
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Algorithm 3 Identification of potential successors for permanent reputation scores
Require: RPcurrent : Pcurrent’s reputation, RPnext : Pnext’s reputation, S RTcreated : set of RT s created by Pcurrent,

S RThidden : set of RT s not used by Pcurrent, S RTused : set of RT s used by Pnext

1: for all Pcurrent ∈ S Pcurrent do
2: for all Pnext ∈ S Pnext do
3: if RPcurrent + Value(RPhidden ) ≥ RPnext and S RTused ⊆ (S RTcreated ∪ S RThidden ) then
4: create a link between Pcurrent and Pnext

5: end if
6: end for
7: end for

for the computation of the reputation scores), while the probability that Pcurrent handed RTs to
the RPM is computed based on the probability p of using a RT, the number of transferred RTs k,
and the total number of RTs n, as follows.

p(k) =

(
n
k

)
· pk · (1 − p)n−k (2)

For each Pcurrent having multiple links, the probability of each link is normalized by the sum
of the probability of all links. The link with the greatest probability is then chosen as the potential
successor of Pcurrent. The other links are removed. The adversaries continue the reputation
analysis by analyzing the remaining links according to the above steps (i.e., identification of
single links and weighting of multiple links) until each pseudonym of S Pcurrent has at most one
identified successor in S Pnext . At this stage, we calculate the length of the established pseudonym
chains and the fraction of successors correctly identified by the adversaries in each time interval.

6.2.2. Evaluation Results
We first investigate the impact of permanent reputation scores on the anonymity protection for

a constant population of 100 clients based on the above setup and method. For this analysis, we
consider that a reputation transfer is performed with probability p for each RT as in the RandSet
scheme, except that the cloaked reputation is not lost at the end of the period but stored for future
use. Fig. 7 illustrates the influence of the choice of p on the fraction of potential successors over
time. Note that p=100% corresponds to a full transfer of reputation scores, i.e., no reputation
cloaking is applied. The results show that applying reputation cloaking significantly improves
anonymity protection. In particular, the degree of anonymity protection increases with decreasing
p. For p=100%, the percentage of potential successors is under 2% from t=17, whereas it lies
between 49% and 90% for p equal to 90% and 50%, respectively. In comparison, using transient
reputation scores, the percentage of potential successors is between 7% and 26% for the same
values of p (see Fig. 2(b)). The degree of anonymity protection thus considerably increases when
using permanent reputation scores. This is due to the reputation scores stored by the clients,
which individual value is unknown at both the RPM and the application server. Fig. 9 highlights
the impact of the stored reputation on the distribution of the reputation scores. Fig. 9(a) presents
the distribution of the reputation scores handed to the RPM to credit the reputation accounts and
the reputation scores attributed by the application server. In comparison, Fig. 9(b) shows the
distribution of all reputation scores present in the system, i.e., the reputation scores stored by the
clients for future use and those illustrated in Fig. 9(a). While adversaries know the total value
of stored reputation scores, they however need to infer the individual value stored by each client
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Algorithm 4 Elimination of improbable successors for permanent reputation scores
Require: S Links: set of links created in Alg. 3

1: while ∃ non-confirmed links ∈ S Links do
2: linkCon f irmed ← f alse
3: for all non-flagged pseudonym ∈ (S Pcurrent ∪ S Pnext ) do
4: if ∃ a single link between Pcurrent and Pnext then
5: remove all other links of Pcurrent and Pnext

6: flag Pcurrent and Pnext

7: update Pnext’s hidden reputation
8: linkCon f irmed ← true
9: end if

10: end for
11: if linkCon f irmed = f alse then
12: search for other non-flagged Pcurrents having the same potential successors
13: if number of found Pcurrents = number of common Pnexts then
14: remove all other links of the found Pcurrents and Pnexts
15: flag the found Pcurrents and Pnexts
16: select for each Pcurrent one of the found Pnexts based on probability weighting
17: update Pnexts’ hidden reputation
18: linkCon f irmed ← true
19: break search
20: end if
21: end if
22: if linkCon f irmed = f alse then
23: select the most likely link based on probability weighting
24: remove all other links of the corresponding Pcurrent and Pnext

25: flag Pcurrent and Pnext

26: update the hidden reputation of Pnext

27: linkCon f irmed ← true
28: end if
29: end while

each time a successor is selected according to the above steps. Fig. 8 illustrates the success rate of
the adversaries in inferring the value of the stored reputation and hence, the correctly identified
successors. In absence of reputation cloaking, adversaries are able to correctly identify up to
60% of potential successors and to establish very long chains of unique predecessor-successor
relations (up to a length of 92 in few cases) (see Fig.10). In contrast, applying reputation cloaking
reduces the fraction of correctly identified successors to 7% and 14% for p equal to 90% and
50%, respectively. Additionally, it leads to the construction of fewer and shorter pseudonym
chains (up to a length of 75 for p=90%). We, however, observe that 99.9% of the pseudonyms are
involved in chains of length of at most 4 pseudonyms. Reputation cloaking therefore effectively
protects the anonymity of the clients, as the adversaries are able to link most of the pseudonyms
for only short periods of time. Note that the chain lengths obtained for p=80% cannot be directly
compared to those obtained for the RandSet scheme (see Fig. 6), as they are computed once the
adversaries have weighted and selected one of the multiple links—a step not included in the first
evaluation. In summary, the degree of anonymity protection is increased by both the utilization of
permanent reputation scores and the application of reputation cloaking. Additionally, reputation
cloaking does not incur loss in reputation as in our transient scheme, since the clients can store
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Figure 7: Fraction of potential successors over time for dif-
ferent transfer probabilities p and a constant population of
100 clients
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Figure 8: Fraction of correctly identified successors over
time for different transfer probabilities p and a constant pop-
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constant population of 100 clients
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Figure 11: Fraction of correctly identified successors over
time for different activity patterns and a variable population
of up to 100 clients

the cloaked reputation for future use.
Compared to the transient scheme addressed in Section 6.1, we additionally consider a vari-

able population of clients, i.e., clients become active after the beginning of the simulation. We
selected four different activity patterns presented in Table 3 and use a constant population of 100
active clients as baseline for our analysis (Pattern 0). Each activity pattern is defined by (a) the
number of clients active at the simulation start, (b) start of the first period, (c) duration of the
period between newly activated clients, and (d) number of activated clients after each period.
For comparison purposes, we assume that the total number of clients is the same for all scenarios
and that they become active latest at the 100th time interval. We further assume that all clients
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Table 3: Selected activity patterns
Initial number Period start Period Number of

of clients (Time interval ID) duration new clients

Pattern 0 100 - - -
Pattern 1 1 0 1 1
Pattern 2 10 0 10 10
Pattern 3 50 0 20 10
Pattern 4 50 50 5 10
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Figure 12: Fraction of potential successors over time for dif-
ferent activity patterns and a variable population of up to 100
clients
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Figure 13: Number of identified pseudonym chains for dif-
ferent activity patterns and a variable population of up to 100
clients

transfer their reputation scores with a probability p equal to 80%. This implies that the results
for Pattern 0 are the same as those previously discussed for a constant population of clients and
p=80%. In order to observe the effects of the latest activated clients on the degree of anonymity
protection, we run each simulation for 200 time intervals.

Fig. 11 illustrates the impact of the introduction of new clients on the fraction of correctly
identified successors for each activity pattern. It shows that introducing clients according to Pat-
terns 3 and 4 increases the number of correctly identified successors of up to 7% (t=20) and 8%
(t=50) compared to a constant population of clients (i.e., Pattern 0), respectively. In compari-
son, Patterns 1 and 2 lead to the correct identification of a higher number of successors. This
difference is due to the number of introduced clients. Since new clients present similar reputa-
tion scores, the larger the group of new clients, the higher the number of potential successors
for these clients and hence, the better the reciprocal protection between clients. Moreover, the
difference between Pattern 2 (i.e., 10 clients introduced every 10 time intervals) and 3 (i.e., 20
clients introduced every 10 time intervals) shows that the introduction of 10 more clients at each
period significantly improves anonymity protection, since a lower number of successors can be
identified by potential adversaries. Note that we consider the determination of the exact value
of clients to introduce in order to guarantee anonymity protection as future work. Furthermore,
Pattern 1 reaches 100% of correctly identified successors in the first time interval because there
is only one client introduced at this time. Subsequently, the difficulty to correctly identify suc-
cessors increases at each introduction of a new client. After the last introduction of new clients,
the values of Patterns 1 to 4 progressively stabilize around the value of Pattern 0.

These results are mirrored in Fig. 12. In particular, it shows for Patterns 3 and 4 the aug-
mentation of the number of potential successors caused by each introduction of clients, which
variations are not apparent in Fig. 11. Note that Pattern 4 shows a similar behavior to Pattern
0 until the 50th time interval as the population of clients remains constant. However, the de-
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Figure 14: Distribution of reputation score amongst clients over time for different activity patterns and a variable popu-
lation of up to 100 clients

gree of anonymity protection of the clients in Pattern 4 is lower than those in Pattern 0 during
this time interval, since the population in Pattern 4 is half the population of Pattern 0. For all
patterns, the variations in number of potential successors caused by new clients are temporary,
as new clients progressively gain reputation scores and become indistinguishable from clients
active for a longer period. This is illustrated in Fig. 14, where the number of occurrences of low
reputation scores temporarily augments at each introduction of new clients and later stabilizes.
Since new clients have low reputation scores, they become potential successors of already active
clients. While the weight associated to the links between new and already active clients is low
at the beginning, it increases as the new clients gain reputation as shown in Fig. 14. The length
of identified pseudonym chains increases with the introduction of new clients as illustrated in
Fig. 13. However, no difference can be clearly identified between Patterns 1 to 4 and hence, no
concrete conclusion can be drawn on the effect of the introduction patterns on the chain lengths.
In summary, the results show that the degree of anonymity protection for a variable population
of clients is lower than for a constant population. However, the anonymity protection increases
with the number of simultaneously introduced clients, as they protect each other.

7. Empirical Evaluation of Overheads

We implemented a proof-of-concept of IncogniSense to demonstrate the feasibility of our
approach for transient reputation scores. In particular, we quantified the overhead in terms of
energy consumption for the clients. The overhead should be maintained as low as possible so
as to not drain the battery of the mobile phones. In our implementation, the client program was
developed on Android Nexus S phones, while the application server and RPM were implemented
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Table 4: Measured overhead per RT and key generation for the clients
RT Key pair

Average battery lifetime (hour) 5:09 5:18
Average number of executions 5037500 16860
Average execution time (ms) 4 1129
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Figure 15: Estimated daily cost in battery lifetime

as two Apache Tomcat servlets. The activities of the clients are managed by a background thread.
The blind RSA signatures are based on 1024-bit private/public key pairs. The pseudonyms and
RTs are stored in a SQLite database on the clients, the access to which is strictly restricted to our
application. The RPM maintains lists of the generated pseudonyms and utilized RTs in MySQL
databases. It also controls the common time intervals and runs a synchronization function that
determines the time drift between the server and the phones. The clients, the RPM, and the
application server communicate via Wi-Fi and the communications are secured using HTTPS.

We conducted a first experiment to measure the impact of the generation of pseudonyms,
RTs, and keys on the clients’ battery lifetime. We configured a benchmarking client to repeat-
edly execute the aforementioned sequence of operations until the exhaustion of the battery. We
disabled all other programs and repeated each experiment 20 times on different clients. The
results presented in Table 4 indicate that the overhead to generate keys for the new pseudo-
nyms is significantly higher than the overhead to create RTs. Note that the overhead to create a
pseudonym is equal to the overheads caused by both RT and key pair generation. IncogniSense
saves 90% of energy while reducing the probability of reputation corruption from 0.1 to 0 as
compared to [14] assuming n = 10. In a second experiment, we configured a client to generate
pseudonyms and RTs with a period T. We examined the impact of both the duration of T and
the number of generated RTs on the battery usage. Note that the impact of the cloaking schemes
on the battery usage is negligible compared to the cryptographic operations required to generate
RTs and pseudonyms. Fig. 15 shows the overall reduction in battery lifetime per day imputed to
our approach. By selecting T greater than 5 minutes, the daily cost in battery lifetime remains
below 2.3%, rendering our approach feasible for resource-constrained mobile phones.

8. Conclusions

We have proposed an anonymity-preserving reputation framework called IncogniSense, which
is agnostic to both the applications and the applied reputation algorithm. Our system utilizes pe-
riodic pseudonyms which are generated using blind signature and relies on a secure reputation
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transfer mechanism between these pseudonyms. We have introduced the concept of reputation
cloaking to prevent an adversary from de-anonymizing the users by linking the reputation scores
associated with their contributions. As cloaking has an inherent trade-off between anonymity
protection and loss in reputation, we have explored the design space and extensively examined
the performances of several different schemes. Based on this analysis, we have provided guide-
lines for the choice of the appropriate cloaking scheme in accordance with the application re-
quirements. We have demonstrated the resilience of our system against typical threats and a
prototype implementation confirms the feasibility of our solution.
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Appendix A. Blind Signatures, RSA Signatures and Blind RSA Signatures

A cryptographic system that can be used to create blind signatures was first proposed by
Chaum [6]. The underlying idea is to use a public-key cryptographic system with signers and
providers. It works as follows. The signer has a secret signing function s′ and its public inverse
s, such that s(s′(m)) = m for a message m. The provider has two secret cryptographic functions c
and c′, where c′ is the inverse of c. Hence, the provider can send a ciphertext c(m) to the signer,
which returns s′(c(m)) to the provider. The provider can then obtain the message s′(m) signed
by the supplier using the function c′, such that c′(s′(c(m))) = s′(m). Anyone can then verify the
signature on message m by checking that s(s′(m)) = m. Hence, the supplier signed the message
m without knowing m, i.e. a blind signature.

The RSA [21] signature scheme can be used for implementing a blind signature scheme [22].
We first briefly recall how the RSA signature scheme works. In RSA, the provider signs its
own messages, i.e., the provider and the signer are the same entity. A signature s of message
m is s = me mod n, where (e, n) is the signature key, n = p · q and p and q are two arbitrarily
chosen large prime numbers. The parameter e, (e < n), is a relative prime to the totient of n,
φ(n) = (p − 1)(q − 1). For checking the correctness of an RSA signature, the verifier needs a
verification key (d, n), where d is the inverse of emodφ(n), i.e., e ·dmodφ(n) ≡ 1. The verification
of signature is done by checking if sd is equivalent to m mod n.

In a blind RSA signature scheme, the provider and the signer are different entities. The
signer is a third party that does not know the content of the message to be signed. The blind
RSA signature scheme incorporates a blinding factor r to the RSA signature scheme and works
as follows. The provider of the message m, which is to be blind signed, selects a random blinding
factor r mod n and generates a blinded message m′ = m · re mod n. The blinding factor r is a
secret only known to the provider and (e, n) is publicly known. The blinded message m′ is sent
to the signer, who returns the signature s′ = (m′)d mod n to the provider. The signature s′ on
message m′ is obtained using the signature key (d, n), which is a secret only known to the signer.
The provider can then calculate the signature s = md mod n on message m as

s′ = (m′)d mod n = (m · re)d mod n = md · re·d mod n = md · r mod n (A.1)

The provider then divides s′ by r to obtain the signature s, i.e., s = s′/r. Anyone can verify the
signature s on message m by checking if se is equivalent to m mod n.
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Appendix B. Generation of Pseudonyms using RSA Signatures

We assume that each client has a permanent identifier ID, a private key (dclient, nclient), a public
key (eclient, nclient), and it is registered with the RPM. The blind RSA signature scheme, which is
presented in Appendix A, is the blind signature scheme used in the rest of this appendix. For
each T , the RPM generates a new private/public pair of signature keys common to all clients:
(dsignature, nsignature) and (esignature, nsignature). The client first generates a private/public key pair
(dP, nP) and (eP, nP) for its new pseudonym. The client uses nP as its new pseudonym referred
to as P and generates the corresponding signature sP as follows. The client first prepares the
message mP using nP, the RPM’s public signature key for the time period T , (esignature, nsignature),
and the blinding factor r modulo nP, as follows:

mP = nP · resignature mod nsignature (B.1)

The client creates a signature smP using a function of the concatenation f of the triplet (mP, ID,T )
signed with its permanent private key to guarantee the authenticity of mP:

smP = f (mP ‖ ID ‖ T )dclient mod nclient (B.2)

The client transmits mP, smP , its ID, and the time interval of validity T for P to the RPM for blind
signature. The RPM verifies the authenticity of mP and that the client has no existing pseudonym
for this time interval. After verification, the RPM generates the blind signature sRPM signing mP:

sRPM = mP
dsignature mod nsignature (B.3)

The client finally generates the pseudonym’s signature sP from the blind signature sRPM that
achieves the generation of P, which becomes Pcurrent:

sP = sRPM · r−1 mod nsignature (B.4)

Appendix C. Generation of Reputation Tokens using RSA Signatures

We also assume that the RPM generates a set of transfer keys in the bootstrapping phase. Each
transfer key pair is associated to a reputation value and determines the reputation associated to a
given RT. For each RT, the client selects a random bit string IDRT as identifier and prepares the
message mRT for blind signature using the public transfer key corresponding to the RT’s value:

mRT = IDRT · retrans f er mod ntrans f er (C.1)

The client signs the message mRT with the signature smRT using the private key (dPcurrent , nPcurrent )
associated to Pcurrent. The real identity of the client is hence not revealed while transferring
reputation from one pseudonym to the next.

smRT = f (mRT ‖ Pcurrent ‖ Rscore)dPcurrent mod nPcurrent (C.2)

The client transmits mRT , smRT , Pcurrent, and Rscore to the RPM for blind signature. The RPM ver-
ifies that mRT is used for the first time and the balance of the reputation account of Pcurrent before
decrementing it by Rscore. After verification, the RPM blindly signs mRT with the corresponding
private signature key. The client uses the blind signature to generate the final signature of the RT.
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[11] L. A. Martucci, S. Ries, M. Mühlhäuser, Sybil-Free Pseudonyms, Privacy and Trust: Identity Management in the
Internet of Services, Journal of Information Processing 19 (1) (2011) 1–15.

[12] C. Andersson, M. Kohlweiss, L. Martucci, A. Panchenko, A Self-certified and Sybil-Free Framework for Secure
Digital Identity Domain Buildup, in: J. Onieva, D. Sauveron, S. Chaumette, D. Gollmann, K. Markantonakis (Eds.),
Information Security Theory and Practices. Smart Devices, Convergence and Next Generation Networks, Vol. 5019
of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 64–77.

[13] Z. Zhang, J. Liu, Y. Kadobayashi, STARS: A Simple and Efficient Scheme for Providing Transparent Traceabil-
ity and Anonymity to Reputation Systems, in: Proceedings of the International Workshop on Autonomous and
Spontaneous Security (SETOP), 2010, pp. 170–187.

[14] H. Miranda, L. Rodrigues, A Framework to Provide Anonymity in Reputation Systems, in: Proceedings of the
3rd Annual International Conference on Mobile and Ubiquitous Systems: Networks and Services (MobiQuitous),
2007, pp. 1–4.

[15] Y. Wei, Y. He, A Pseudonym Changing-based Anonymity Protocol for P2P Reputation Systems, in: Proceedings
of the 1st International Workshop on Education Technology and Computer Science (ETCS), 2009, pp. 975 –980.

[16] L. Sweeney, K-anonymity: A Model for Protecting Privacy, International Journal of Uncertainty, Fuzziness, and
Knowledge-Based Systems 10 (5) (2002) 557–570.

[17] D. Dolev, A. C. Yao, On the Security of Public Key Protocols, IEEE Transactions on Information Theory 29 (2)
(1983) 198–208.

[18] J. R. Douceur, The Sybil Attack, in: Revised Papers from the First International Workshop on Peer-to-Peer Systems,
2002, pp. 251–260.

[19] M. Shin, C. Cornelius, D. Peebles, A. Kapadia, D. Kotz, N. Triandopoulos, AnonySense: A System for Anonymous
Opportunistic Sensing, Journal of Pervasive and Mobile Computing 7 (1) (2010) 16–30.

[20] T. Okamoto, An Efficient Divisible Electronic Cash Scheme, in: D. Coppersmith (Ed.), CRYPTO, Vol. 963 of
Lecture Notes in Computer Science, Springer, 1995, pp. 438–451.

[21] R. L. Rivest, A. Shamir, L. Adleman, A Method for Obtaining Digital Signatures and Public-key Cryptosystems,
Commununications of the ACM 21 (2) (1978) 120–126.

[22] R. Gennaro, Digital Cash, in: S. Goldwasser, M. Bellare (Eds.), Lecture Notes on Cryptography, 2008, Ch. 12.5,
pp. 233–237.

25




