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The so-called ‘fairy circles’ of Namibia are round barren 
patches devoid of any vegetation. They have varying  
diameters of a few meters to more than 20 m and occur  
in millions within the arid grassland matrix of western 
Namibia, from southern Angola to northern South Africa 
(van Rooyen et al. 2004, Juergens 2013). Despite their  
vast distribution over the landscape and regular spotting by 
local inhabitants, tourists, pilots or researchers, they still 
remain mysterious. Although evidence indicates that circles 
regularly appear and disappear (Albrecht et al. 2001) with 
average life-spans of probably 40–60 yr (Tschinkel 2012)  
or hundreds of years (Juergens 2013), their actual creation 
has never been directly witnessed in the field. This lack of 
direct observation can be attributed to the remoteness of the 
location of fairy circles – they occur along the 50–150 mm 
rainfall isohyet of the pro-Namib Desert – and also to  
the difficulty of monitoring underground processes during 
fairy circle creation. As a consequence, the mechanisms 

behind the creation of fairy circles remain unclear (Jankowitz  
et al. 2008, Tschinkel 2012), but several hypotheses exist.

An early hypothesis by Tinley (1971) related fossil  
nests of termites to the distribution of circles, and Theron 
(1979) proposed that the circular patches would be  
caused by allelopathic chemicals originating from extinct 
poisonous plants such as Euphorbia damarana. These 
hypotheses, or related speculations on growth-inhibiting 
radioactive compounds, are nowadays rejected because  
no support was found during field surveys (van Rooyen 
et al. 2004). One of the most popular hypotheses on the 
origin of fairy circles is grass or seed harvesting by social 
insects such as termites (Moll 1994, Becker and Getzin 
2000, Albrecht et al. 2001, Juergens 2013) or ants (Picker 
et al. 2012). It is believed that the clearing of vegetation 
results in disc-like structures, similar to those observed for 
harvester ants in North America (Wiernasz and Cole 1995, 
Alba-Lynn and Detling 2008), and previous field studies 
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The mysterious ‘fairy circles’ are vegetation-free discs that cover vast areas along the pro-Namib Desert. Despite  
30 yr of research their origin remains unknown. Here we adopt a novel approach that focuses on analysis of the  
spatial patterns of fairy circles obtained from representative 25-ha aerial images of north-west Namibia. We use spatial 
point pattern analysis to quantify different features of their spatial structures and then critically inspect existing 
hypotheses with respect to their ability to generate the observed circle patterns. Our working hypothesis is that fairy 
circles are a self-organized vegetation pattern. Finally, we test if an existing partial-differential-equation model, that  
was designed to describe vegetation pattern formation, is able to reproduce the characteristic features of the observed 
fairy circle patterns. The model is based on key-processes in arid areas such as plant competition for water and local 
resource-biomass feedbacks. 

The fairy circles showed at all three study areas the same regular spatial distribution patterns, characterized by  
Voronoi cells with mostly six corners, negative correlations in their size up to a distance of 13 m, and remarkable 
homogeneity over large spatial scales. These results cast doubts on abiotic gas-leakage along geological lines or social 
insects as causal agents of their origin. However, our mathematical model was able to generate spatial patterns that agreed 
quantitatively in all of these features with the observed patterns. This supports the hypothesis that fairy circles are self-
organized vegetation patterns that emerge from positive biomass-water feedbacks involving water transport by extended 
root systems and soil-water diffusion. Future research should search for mechanisms that explain how the different 
hypotheses can generate the patterns observed here and test the ability of self-organization to match the birth- and death 
dynamics of fairy circles and their regional patterns in the density and size with respect to environmental gradients.
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have demonstrated correlation of fairy circles with ants or 
termites (Picker et al. 2012, Juergens 2013). Abiotic gas 
leakage has also been proposed as causal agent. Naude et al. 
(2011) suggested that fairy circles are the surface expression 
of geochemical hydrocarbon microseepage. Hydrocarbon 
microseepage is, for example, composed of methane,  
ethane, propane, butane and pentane that can alter the 
physical, chemical, mineralogical, botanical, and microbio-
logical environment (Lammoglia et al. 2008). Near the sur-
face, the gases can displace the soil atmosphere and cause 
oxygen depletion around roots, resulting in plant stress and 
even plant death. Finally, our working hypothesis is that 
competition of grass for water together with positive  
biomass-water feedbacks involving water transport towards 
growing vegetation patches results in self-organized  
vegetation patterns (Tlidi et al. 2008, Meron 2012). A 
recent field study by Cramer and Barger (2013), based on 
examining edaphic properties, supported this hypothesis.

Here we propose a different approach to shed light on  
the phenomenon of fairy circles. We use the rich source of 
information that is provided by the landscape-scale spatial 
distribution pattern of fairy circles and conduct detailed 
analyses of these patterns (McIntire and Fajardo 2009, 
Wiegand and Moloney 2014). The underlying rationale is 
that spatial distribution patterns of plants or gaps between 
plants contain information on processes that have likely 
caused the current patterns (Stoll and Bergius 2005, Getzin 
et al. 2008). Thus, such vegetation patterns are ‘ecological 
archives’ whose spatial signature can be decoded with  
spatially explicit statistics. We estimate here several summary 
statistics of spatial structure to capture different features of 
the patterns that may hint to the underlying processes 
(Wiegand et al. 2013). Once we know the detailed character-
istics of the spatial patterns we can ask if the mechanisms 
underlying the different hypotheses would be able to gener-
ate patterns with these characteristics (McIntire and Fajardo 
2009). This is an approach of ‘strong inference’ (Platt 1964, 
Grimm et al. 2005) which is common in most fields of sci-
ence. However, our study is not limited to description of 
patterns; we also verify that a mechanistic model, which is an 
implementation of our working hypothesis on the self-orga-
nized origin of the fairly circles, is indeed able to generate 
spatial patterns that agree with the observed patterns 
(Wiegand et al. 2003, Grimm et al. 2005).

In this study we provide a novel spatially-explicit perspec-
tive to fairy circle research, combining several innovative 
techniques such as remote sensing, spatial pattern analysis, 
and vegetation modelling. First, we analyze the spatial  
patterns of fairy circles found in 25-ha plots obtained from 
three aerial images of north-west Namibia. Based on this 
analysis, we then critically inspect the three main hypotheses 

on fairy circles (summarized in Table 1) with respect to  
their ability to generate the observed spatial patterns. Finally, 
we show that a continuum partial-differential-equations 
model for vegetation pattern formation is indeed able  
to reproduce the detailed features of the observed fairy  
circle patterns. Any hypothesis on the origin of fairy circles 
must account for the detailed features of their spatial  
patterns revealed here, and our ultimate goal is to inspire 
researchers to search for mechanisms that explain how their 
favoured hypothesis can generate such patterns.

Material and methods

Aerial images

We analyzed aerial images (NIR orthophotos of 1 m/ 
pixel resolution bought from the Ministry of Lands and 
Resettlement) of north-west Namibia from 2008 and  
established three sample squares of 500  500 m (Fig. 1). 
One of these study plots was located in the Marienfluss 
Valley (17°35.701′S, 12°36.017′E). This plot, thereafter 
called ‘M’, had a relatively low density of circles. The  
other two plots were located approximately 175 km  
further to the south in the Giribes Plain: the plot ‘G1’ 
(19°0.058′S, 13°19.578′E) had a much higher density than 
the Marienfluss plot and the plot ‘G2’ (19°0.873′S, 
13°19.772′E) had the highest density of circles we could 
find based on aerial images of north-west Namibia. With 
this design we have selected three replicate plots that  
represent a gradient from low to high densities. Due to their 
spatial separation the plots of the Marienfluss and Giribes 
Plain are considered as independent sample regions. Plots 
were placed at homogeneous locations and were thus not 
affected by heterogeneities such as dry riverbeds, roads or 
rock outcrops which are not related with our question.  
The three chosen sample plots belong to the ephemeral 
Stipagrostis uniplumis grasslands with mean annual precipita-
tion of just below 100 mm (Becker and Getzin 2000).

All fairy circles within a plot were manually delineated to 
create shapefiles (a geospatial vector data format digitized 
with ArcGIS-9.3 software). Thus for each circle we created 
one shapefile with geo-referenced information on the circle’s 
x,y-coordinate (centre of mass), area and perimeter. These 
data were subsequently analyzed with spatial statistics.

Spatial point pattern analysis

The fairy circles are ideal point patterns because they are  
easily recognizable in aerial images and as nearly round 
patches, they have clearly defined x,y-positions and diameters. 
So far fairy circles have not yet been analyzed with advanced 

Table 1. The most popular hypotheses on the potential processes causing fairy circles and resulting spatial patterns under expectation.  
See Discussion section for more explanations.

Hypothesized process Expected spatial pattern

1) Abiotic gas leakage, geochemical hydrocarbon microseepage Clustering on the plot scale and influence of large-scale geological 
heterogeneity on patterns

2) Grass harvesting by social insects such as termites or ants Small-scale regularity or randomness, but large-scale clustering due to 
internal effects of population dynamics

3) Self-organization by plants due to strong competition for 
water, positive small-scale feedback effects

Hexagonal grid-like spacing of circles, upper limit of density constraints, 
homogeneous patterns at large scales
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Figure 1. Aerial image of the Marienfluss Valley with digitized fairy circles within a 500  500 m plot (white square). The upper right  
map illustrates north-west Namibia with the arrow coming from the Marienfluss area, and the Giribes Plain in the south of the map  
(image adapted from Becker and Getzin 2000). The lower right small photograph shows the fairy circles of the area where the arrow points 
to. This photograph was taken in May 2009 from the rocky hill (grey in aerial image).

point pattern methods (but see Albrecht et al. 2001 for nearest-
neighbour analysis). Unlike nearest-neighbour indices, func-
tional summary statistics such as the pair-correlation or the 
mark-correlation functions have the advantage that they 
describe patterns across a wide range of scales that define 
plant neighbourhoods in continuous space (Wiegand and 
Moloney 2014). Therefore, critical scales, of for example, 
competitive interaction due to limiting resources or facilita-
tion due to shared habitat can be assessed and compared for 
different environmental conditions (Getzin et al. 2008).

In a first analysis we computed Voronoi tessellations for 
the point patterns (Illian et al. 2008). Voronoi tessellation 
determines for a given circle centre the surrounding area 
which is closer to the circle centre than to any other  
circle centre of the pattern (called Voronoi cell or tile). Two 
properties of the tile are of special interest. First, the number 
of corners provides information on the regularity of the  
pattern (the more tiles have six corners, the more regular is 
the pattern; Supplementary material Appendix 1, Fig. A1). 
Note that the tiles of a completely regular pattern (where  
the distance of all points to their nearest neighbour is  
exactly the same) all have six corners (i.e. a honeycomb). A 
second important property is the distribution of the tile 
areas. For this purpose and for the nearest-neighbour  
analysis of circles, edge tiles with corners touching the plot 
borders were removed.

To reveal the degree of smaller-scale order in the pattern 
of fairy circles we used the pair-correlation function  
g(r), which is the expected density of points at a given  
distance r of an arbitrary point, divided by the intensity  
l of the pattern. The non-cumulative pair-correlation  

function is particularly suitable to reveal critical scales  
of the pattern (Wiegand and Moloney 2014). Under com-
plete spatial randomness (CSR), g(r)  1. Values of g(r)  1 
indicate regularity (or also called overdispersion), while  
values of g(r)  1 indicate aggregation. In a third analysis, we 
used a summary statistic based on Ripley’s K-function, the 

cumulative counterpart to g(r), i.e. K t( ) ( )r g tdt
t

r





2
0

π ∫  to 

assess departures from CSR at larger distances (Getzin et al. 
2008). We used the L-function L r K r( ) ( ) /r  π 1( ) 
which makes visual interpretation easier; under CSR, 
L(r)  0 and values of L(r)  0 indicate regularity, while  
values of L(r)  0 indicate aggregation.

Finally, we were interested if the sizes of two nearby  
circles showed spatial correlations that depended on their 
distance r. This was analyzed with the mark-correlation  
function, kmm(r), for the continuous mark ‘area’ of the fairy 
circle. The mark-correlation function kmm(r) is the mean 
value of the test function t1(mi, mj)  mi mj of the marks of 
two points i and j that are separated by distance r, respec-
tively, normalized by the mean value of the test function 
taken over all i 2 j pairs regardless of their distance (Illian 
et al. 2008, Wiegand and Moloney 2014). If the marks show  
no spatial correlations, we find kmm(r)  1, if kmm(r)  1, 
there is negative correlation between the marks at scale r 
(inhibition), and if kmm(r)  1 there is a positive correlation 
between the marks at scale r (i.e. mutual stimulation).

The summary statistics g(r) and L(r) were assessed  
against the Poisson null model (CSR) using the 5th-lowest 
and 5th-highest values of 199 Monte Carlo simulations  
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The water-transport mechanism depends on the  
particular feedback considered. For the fairy circles that 
occur in sandy soils, the infiltration feedback appears to be 
irrelevant because of the high infiltration rate of surface 
water into sandy soil. The root-augmentation feedback, 
however, does apply to plant species with laterally extended 
roots but can also apply to plant species with laterally  
confined roots, provided soil-water diffusion is fast enough 
relative to the biomass colonization rate.

Figure 2 shows a bifurcation diagram displaying two  
uniform solutions of the model equations, describing bare 
soil and uniform vegetation, along the non-dimensional  
precipitation axis p, and their stability properties. The uni-
form vegetation solution loses stability below a threshold 
precipitation value, p  p2, to non-homogeneous perturba-
tions whose growth leads to a hexagonal gap pattern  
(Fig. 2C). As the precipitation rate is further decreased a 
transition to stripe or labyrinthine patterns occurs (Fig. 2B), 
which is followed by another transition to hexagonal spot 
patterns (Fig. 2A). Below p  p1 a transition to bare soil  
takes place. Note that the bare soil solution remains stable 
above p  p1 and loses stability only at p  pc (to homo-
geneous perturbations).

In this study a precipitation value just below p  p2 is 
chosen where gap patterns (i.e. fairy circles) prevail (Fig. 2). 
The specific value we choose corresponds to a mean annual 
precipitation (MAP) of 100 mm which is about the isohyet 
where the fairy circles of our study sites occur. Because of  
the sandy soils we assumed that the infiltration rate is con-

to generate approximately 95% simulation envelopes.  
Similarly, the mark-correlation function was assessed  
against the independent marking null model by randomly 
shuffling the mark ‘area’. The functions were analyzed up  
to a maximal radius of 250 m in steps of 0.5 m resolution. 
All analyses were done using R-software (package Spatstat; 
www. R-project.org/).

The mathematical model

Formation of vegetation patterns in models of self- 
organization can emerge from small-scale positive feedbacks 
that lead to large-scale self-organized patchiness. The com-
mon denominator of these feedbacks is water transport 
towards growing vegetation patches, either by overland water 
flow, soil-water diffusion or water conduction through 
extended roots. While helping local patch growth  
(short range activation) these processes inhibit the growth in 
the surroundings of the patch (long-range inhibition), 
thereby promoting pattern formation (Meron 2012). In 
actual landscapes, however, self-organization is unlikely to be 
the sole driver of vegetation patchiness; environmental  
heterogeneity (Getzin et al. 2008) and physical templates 
may interfere with and even enhance the pattern forming 
feedbacks to create more complex forms of vegetation patch-
iness (Sheffer et al. 2013).

Fairy circles correspond to a hexagonal array of gaps  
that can emerge from uniform vegetation under increasing 
water stress (Tlidi et al. 2008, Meron 2012; Fig. 2). However, 
an important question is how well the real-world patterns  
of fairy circles match those predicted by self-organization 
models? We therefore analyzed patterns generated by the 
model in the same way as the observed patterns. Only if the 
modelled processes faithfully reflect the internal organiza-
tion of the observed system, we will find simultaneous match 
in several characteristics of the spatial patterns (Wiegand 
et al. 2003, Grimm et al. 2005).

We used the continuum, partial-differential-equations 
model introduced by Gilad et al. (2004, 2007), hereinafter 
also referred to as ‘Gilad et al. model’. It consists of a system of 
nonlinear partial integro-differential equations for a biomass 
variable B(x,y,t), representing the above-ground biomass per 
unit ground area, a soil-water variable, W(x,y,t), describing the 
water content available to the plants per unit ground area, and 
a surface water variable, H(x,y,t), describing the height of a 
thin water layer above ground level (i.e. runoff).

The model captures two main pattern-forming feedbacks, 
increased infiltration of surface water in biomass patches 
relative to bare soil, and root augmentation in response to 
biomass growth (Meron 2012). The latter feedback can  
be implemented for two distinct forms of root architecture, 
laterally extended and laterally confined root systems.  
The two feedbacks are positive in the sense that locally grow-
ing vegetation draws water from its surrounding, which 
accelerates its growth and further increases the water trans-
port towards the growing vegetation. They are both capable 
of forming patterns because the depletion of soil water in the 
vicinities of growing vegetation patches inhibits vegetation 
growth there and favours the growth of non-homogeneous 
perturbations.

Figure 2. Bifurcation diagram for stationary uniform solutions  
of the Gilad et al. model (2004, 2007; panel (D)). Solid lines rep-
resent linearly stable solutions, dashed lines represent solutions  
that are unstable to uniform perturbations, and dotted lines  
represent solutions that are unstable to non-uniform perturbations. 
Bare soil ( ) is stable at low precipitation rates (p  pc) whereas  
uniform vegetation ( ) is stable at high precipitation rates (p  p2), 
as the solid lines indicate. In between stable pattern states exist, 
examples of which are shown in panels (A–C). Dark shades of  
grey represent high biomass. The uniform vegetation state destabi-
lizes at p  p2 to a periodic gap pattern similar to fairy circles,  
consisting of a hexagonal array of gaps in uniform vegetation (from 
Gilad et al. 2007).
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Namib Rand Nature Reserve (Albrecht et al. 2001, 
Tschinkel 2012) and with the 6.3 and 10.1% found  
for the Marienfluss and Giribes, respectively (Juergens 
2013). The M-plot with the lowest cover yielded the  
largest mean nearest-neighbour distances of around 16 m 
(M-plot), and the G2-plot with the highest cover yielded 
the shortest nearest-neighbour distances of around 11 m 
(Table 2).

We counted 543, 954, and 1095 inner tiles around  
circles in the M-, G1-, and G2-plots, respectively (Fig. 3e–g). 
Tile areas appeared visually normally distributed (Fig. 3i–k), 
but according to the Anderson–Darling test they were  
not strictly normally distributed (p  0.001,  0.001, and 
 0.05 for the M-, G1-, and G2-plots, respectively). Due to 
considerable differences in the densities of circles, the  
mean of tile areas ranged from 397 m2 (M) to 205 m2 (G2). 
The polygons obtained with Voronoi tessellations resulted  
in a dominance of hexagonal structures around each fairy 
circle with a mean number of corners of Voronoi tiles of  
5.97 (M, G2) and 5.98 (G1). Tiles with six corners occurred 
in 43 to 46% of all observed tiles (Table 2; Fig. 3e–g),  
but, only in 27 and 29% of the random and clustered point 
patterns, respectively, that had the same point density as  
the Marienfluss site (Supplementary material Appendix 1, 
Fig. A1).

stant (no infiltration contrast between vegetation patches 
and bare soil, or f  1 in the model equations). We obtained 
gap patterns for relatively large values for the root-to- 
shoot ratio, a parameter that controls the strength of the 
root-augmentation feedback (i.e. h  1.8), and high soil-
water diffusivity (i.e. dw   db). The specific values of  
the additional non-dimensional parameters were: n  2, 
a  6, g  3, r  0.6, q  0.05, db  0.042, dw  41.7.  
For more details about the model, including the definitions 
of the model parameters, the reader is referred to Gilad  
et al. (2007).

Results

Point pattern analysis of fairy circles observed  
in aerial images

We found a total of 630, 1079, and 1217 fairy circles in 
the 25-ha plots of Marienfluss ‘M’, Giribes ‘G1’, and 
‘G2’, respectively (Fig. 3a–c). The diameters of digitized 
circles ranged from 1.98 to 15.38 m with a mean of almost 
6 m (Table 2). The total area of bare circular patches 
ranged from 7.6 to 12.7 and 14.4%, agreeing approxi-
mately with the 7.3 and 13% area coverage found for the 

Figure 3. Aerial images of north-west-Namibia were used to digitize fairy circles in 500  500 m plots (a–c). Voronoi tessellations,  
with edge tiles (red) removed for subsequent analyses, reveal a dominance of hexagonal spacing structures around each fairy circle (e–g).  
A tile for each circle centre is the region of space which is closer to that point than to any other circle centre. Histograms of the tile  
areas (i–k). Figures on the right of the dashed vertical line (d, h, l) show the same type of data but for a 500  500 m plot of numerically 
created circle patterns using the Gilad et al. model.
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Table 2. Main findings of spatial analyses of aerial images and the output pattern produced with the mathematical model. PCF  pair- 
correlation function, MCF  mark-correlation function.

Marienfluss M Giribes G1 Giribes G2 Model

Number of fairy circles 630 1079 1217 1372
Mean/median diameter of circles (m) 5.87/5.64 5.91/5.86 5.97/6.00 5.77/5.88
Range of diameters of circles (m) 2.14–15.38 1.98–11.53 2.26–11.60 2.06–7.47
Total area of bare circular patches (%) 7.6 12.7 14.4 14.6
Mean/median nearest-neighbour distance (m) 16.26/16.55 12.36/12.65 11.53/11.43 12.60/12.68
Mean/median area of Voronoi tiles (m2) 396.9/388.0 233.9/231.6 205.3/203.7 182.3/182.2
Mean number of corners/% with 6 corners of Voronoi tiles 5.97/46.4 5.98/42.9 5.97/43.1 5.98/56.9
PCF, highest g-value 1.6 1.5 1.4 2.3
PCF, 1st range of negative correlation (m) 15.0 11.5 10.5 11.5
L-function, overall dominance of negative correlation (m) 54.0 66.0 63.0 52.0
MCF, 1st range of negative correlation (m) 13.5 13.0 12.5 10.5

Analysis with the pair-correlation function revealed for 
all three plots a wave-like curve with recurrent appearances 
of regularity (overdispersion) and aggregation at various 
scales. This is a surprising manifestation of regularity which 
is normally not observed in biological systems. The distances 
r of the first peaks in g(r) for M, G1, and G2 are 16, 12, and 
11 m, respectively, in correspondence with the order of  
the distance to the first neighbour (Fig. 4a–c, Table 2). 
Interestingly, the second peak of g(r) is well visible in  

all three plots and points to long-lasting ‘order’ in the  
regular pattern. An additional highly relevant feature of the 
spatial pattern revealed by the L-function is the apparent 
absence of any larger scale pattern at distances larger  
than ca 60 m (Fig. 4e–g). The regular pattern thus extends 
homogeneously over the 25-ha areas analyzed here, but  
Fig. 1 and Supplementary material Appendix 1, Fig. A2 
indicate that, in areas void of environmental heterogene-
ities, this regularity extends in fact over much larger areas. 

Figure 4. The spatial patterns of fairy circles observed in aerial images of 500  500 m plots, contrasted to random null models, using  
the pair-correlation function (a–c), L-function (e–g), and mark-correlation function (i–k). The pattern is regular and aggregated at  
circular neighbourhood scales r if the red line of g(r) or L(r) is below the lower and above the upper grey lines of the simulation envelopes, 
respectively. Similarly, the circle areas are negatively and positively correlated if the red line of kmm(r) is below and above the simulation 
envelopes, respectively. Approximately 95% simulation envelopes were constructed using the 5th-lowest and 5th-highest value of 199 
Monte Carlo simulations of the random null models. For better visual interpretation, results of the mark-correlation function are  
only shown up to r  50 m. Figures on the right of the dashed vertical line (d, h, l) show the same type of data but for a 500  500 m plot 
of numerically created circle patterns using the Gilad et al. model.
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Strikingly, despite the considerable difference in point den-
sity (the G2-plot had basically twice as many circles as the 
M-plot), maximal positive values of g(r) were very similar in 
the three plots and ranged only from 1.6 to 1.4.

Our analysis with the mark-correlation function revealed 
that the sizes of two fairy circles that were close together  
were smaller than the sizes of two fairy circles located  
farther away. This inhibition (negative correlation) persisted 
up to distances of 13.5, 13.0, and 12.5 m in the M-, G1-, 
and G2-plots, respectively. For larger distances onwards,  
the areas of the fairy circles were uncorrelated (Fig. 4i–k).  
The main spatial findings are also listed in Table 2.

Point pattern analysis of circles produced with  
the mathematical model

The model output produced a total of 1372 circles with a 
total area of bare circular patches of 14.6% which basically 
agrees with the findings for the G2-plot (Table 2; Fig. 3d). 
The mean and median diameters of circles, as well as  
the mean nearest-neighbour distance were very similar to  
the real fairy circles (Table 2).

Overall we found a strong agreement in the basic charac-
teristics of circles when comparing the patterns produced 
with the mathematical model with that of the observed real-
world patterns. The Voronoi tiles showed, like the G1-plot, 
on average 5.98 corners (Table 2; Fig. 3h) and 57% of the 
tiles had six corners. Tile areas were normally distributed 
(Fig. 3l; p  0.05). The slightly lower proportion of tiles  
with six corners and departures from normality in the 
observed patterns are probably caused by stochastic effects 
that occur in nature but are not considered in the determin-
istic model. Analysis with the pair-correlation function 
revealed a grid-like, highly regular pattern of circles that  
was somewhat more ordered than that of the observed  
fairy circles; it showed three more clearly visible peaks in the 
pair-correlation function. The maximal positive value  
of g(r) was with 2.3 higher than that observed in the field. 
Again, this is an effect of lack of stochasticity because  
more nearest neighbours occur at exactly the same distance 
whereas stochasticity may cause slight displacements that 
dampen the oscillations in the pair-correlation function. As 
for the real fairy circles, analysis with the mark-correlation 
function showed that circle areas of the Gilad et al. model 
were negatively correlated up to a similar range of 10.5 m 
(Fig. 4l).

Discussion

In this study we conducted for the first time a detailed  
spatial pattern analysis of the landscape scale patterns  
of fairy circles. Our spatially explicit approach revealed  
spatial structures never discovered before and identified 
distinct key features of fairy circles. Despite considerable 
differences in the density of circles among our 25-ha  
study sites (630 in M-plot vs 1217 in G2-plot) and  
large distances between study areas (175 km), all plots 
showed surprisingly similar spatial structures. The circles 
showed 1) highly regular patterns, 2) homogeneous pat-
terns at large-scale distances, 3) the circle areas were  

negatively correlated up to circa 13 m (i.e. nearby circles 
tended to be smaller than circles farther away), and  
4) the circles were arranged on a nearly hexagonal array.  
As indicated by the mean diameters and nearest- 
neighbour distances of circles, there was on average always 
space for at least one fairy circle to fit in between two 
neighbours. In the following we discuss the likeliness of the 
three hypotheses presented in Table 1 in the light of these 
findings.

Hypothesis on abiotic gas leakage and geochemical 
hydrocarbon microseepage

We found that circles were over the entire 25-ha areas 
regularly spaced with mean nearest-neighbour distances 
not dropping below 11 m. We agree with Tschinkel (2012) 
who commented ‘it is hard to picture how such seeps 
could consist of such evenly distributed subterranean 
point sources’. Given our findings, proponents of  
this hypothesis have to explain why gas chimneys are  
distributed over large areas in a grid-like pattern with  
a spacing structure of a hexagonal lattice, and why  
chimneys should always maintain minimum nearest-
neighbour distances? Especially at the larger scale and  
also at scales beyond the size of our 25-ha plots (Fig. 1 
and in Supplementary material Appendix 1, Fig. A2), we 
would expect effects of geological heterogeneity because 
the localized nature of many anomalies associated with 
microseeps suggests a migration of gases along surface 
fractures, joints, fault planes, unconformities, and  
bedding planes (Harbert et al. 2006). However, the  
distribution patterns of hydrocarbon microseepage are 
usually heterogeneously spread at the landscape scale 
(Almeida-Filho et al. 2002, Harbert et al. 2006, Bowen 
et al. 2007, Lammoglia et al. 2008, Zhang et al. 2011). In 
the Marienfluss Valley, however, the distribution of fairy 
circles occurs homogeneously over approximately 50 km 
in north-southerly direction.

Hypothesis on grass harvesting by social insects such 
as termites or ants

Following Crawford (1981), we consider termites and ants 
together in the social insect hypothesis because several  
general principles concerning the ecological significance of 
sociality and the overriding task of maintaining a micro-
climatic stability apply to all social insect taxa in desert-like 
environments. This is because ‘compared to habitats of most 
other desert animals, the nests of termite or ant colonies 
should be generally much more constant in terms of their 
temperature and humidity’ (Crawford 1981). This justifies 
why Picker et al. (2012) related directly the fairy circles  
to the cleared discs of North American harvester ants.

Social insects may build large-scale networks of  
underground galleries and super colonies may spread  
over several thousand square meters (Theraulaz et al.  
2003). Termites and ants also have the ability to create  
self-organized patterns in the search of food resources 
(Sumpter 2006), but detailed spatial pattern analysis using 
functional summary statistics applied to cleared circles of 
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Hypothesis on self-organization by plants

Regular grid-like patterns have been described for self- 
regulatory vegetation systems where bare circles may emerge 
at a certain threshold degree of aridity as a result of a non-
uniform instability of a uniform vegetation state (Lejeune 
et al. 1999, von Hardenberg et al. 2001, Deblauwe et al. 
2008). The appearance of a periodic hexagonal pattern 
beyond a non-uniform stationary instability of a uniform 
state is a general result of pattern formation theory  
(Cross and Hohenberg 1993). Hence, the appearance of 
nearly hexagonal arrays of bare circles in water limited sys-
tems with pattern-forming feedbacks should not come as a 
surprise (Tlidi et al. 2008). Indeed, there are indications in 
earlier observational studies that fairy circles could be a  
pattern-formation phenomenon driven by a non-uniform  
instability. Based on high resolution satellite images taken 
four years apart, Tschinkel (2012) provides evidence that 
circles appear already in their final sizes, rather than as initial 
small circles that gradually grow to their final sizes (as e.g. 
hypothesized by Juergens 2013). Hence, according to 
Tschinkel’s study, their final size is reached within less than 
four years. This is one of the basic signatures of a non- 
uniform instability – the growth of a spatially periodic gap 
pattern with a characteristic length scale (Meron 2012) 
which in the present context determines the sizes of the circles 
when they appear. Still, the relative importance of morpho-
ecological processes where perennial grass tufts such as 
Stipagrostis uniplumis, S. ciliata, or S. giessii experience a cen-
tral dieback of the grass tuft due to self-thinning need to be 
further investigated. For example, vegetative multiplication 
at the circular periphery of the genet, leading to ring-like 
shapes, has been observed for near-monospecific Stipagrostis 
ciliata grasslands of Namibia and also in Israel (Danin and 
Orshan 1995). In this study, Danin and Orshan (1995) 
found in Namibia ‘that the dead plant remnants forming the 
circles were rhizomes of perennial plants and not of annuals’.

While the exact spatio-temporal mechanisms of self- 
organization are so far not fully clear, some basic principles 
should hold. When fairy circles with their underground 
water reservoirs are relatively far apart from each other, 
matrix grasses that are farthest away from the fairy circles 
will experience the most intense competition for water.  
This may lead to dieback within the matrix, forming a patch 
of bare soil at the location where competition for water is 
most intense. These locations will consequently be at  
regularly spaced distances away from the surrounding  
nearest-neighbour circles which lead to the homogenous 
hexagonal spacing structure over large areas. At this newly 
formed spot with bare soil, rain water of the next precipita-
tion events can deeply percolate without being transpired 
by grasses and thus a water reservoir can form which then 
later can sustain a perennial grass belt. These newly emerg-
ing circles with increased water supply are likely attractive 
to other organisms such as the abundant sand termites 
(Juergens 2013). While the termites and other animals  
are likely involved in the maintenance of fairy circles, the 
reasons for their closure after decades are so far poorly 
understood. Possibly, years with high rainfall cause a decline 
in resource limitation and improved chances for coloniza-
tion by grasses (Cramer and Barger 2013).

harvester ants or nests of social insects in desert-like envi-
ronments are not available at the scales analyzed here. 
Overall, it appears that cleared discs that are known to be 
caused by social insects do not result in the observed 
strongly hexagonal grid-like patterns because mechanisms 
other than competition for resources may affect the small-
scale and especially the large-scale distribution. For exam-
ple, Wiernasz and Cole (1995) have shown for ant-created 
Pogonomyrmex discs in Colorado, USA that populations 
may be random or overdispersed at short distances, the lat-
ter possibly as a result of density-dependent mortality, but 
spatially heterogeneous recruitment results in clumped dis-
tributions at large scales with new colonies being concen-
trated in particular regions of the study area. This is because 
‘spacing patterns in ant colonies are usually related to estab-
lishment of founding queens’ which select preferential areas 
(Nicolai et al. 2010). This leads to large-scale clumping at 
plot dimensions as used in our study that are substantially 
different from the uniformly spread fairy circles in Namibia 
(Wiernasz and Cole 1995). Furthermore, variability in colony 
spacing is due to variability in colony age and size, neighbor-
ing colonies may have interdigitated foraging areas, founding 
queens can experience reduced survivorship near existing 
colonies, or the number of dispersing queens may vary  
spatially (Crist and Wiens 1996). Notably, this large-scale 
clumping may affect colony spacing independent of abiotic 
factors (Blanco-Moreno et al. 2014). In other words, clump-
ing will occur even if the soil or spread of resources would be 
homogeneous over large areas.

Although smaller-scale overdispersion can result from 
small-scale competition (Alba-Lynn and Detling 2008)  
evidence for this appears doubtful. According to McGlynn 
(2012) in most insect systems there is no evidence to  
suggest that neighbourhood competition triggers nest  
relocation. In his review, McGlynn (2012) argues: ‘colonies 
might move their nests throughout their life history [but] 
nest relocation may or may not be related to the local  
competitive environment [and thus] may or may not affect 
nearest-neighbour distance’. This rather explains why 
small-scale patterns of social insects such as ants and  
termites may be random (Wiernasz and Cole 1995, 
Bourguignon et al. 2011), which is not a typical charac-
teristic of the observed fairy circle spacing.

A key question for further research related to the social 
insect hypothesis is therefore how behavioural processes 
of social insects such as foraging, nest building, nest 
movement, and intra-specific competition can generate 
over large areas the intriguing regular spatial patterns 
without signal of any larger scale aggregation? Even 
though Picker et al. (2012) and Juergens (2013) have 
convincingly shown strong correlation between fairy  
circles and ants or termites, respectively, they do not  
provide an explanation for the observed lack of any  
larger-scale clustering at distances  60 m found here  
(see also Davies et al. 2014). Based on our new spatial 
statistical data provided here, we agree with Tschinkel 
(2013), that ‘if this termite is indeed the cause of fairy 
circles, then it would have to be able to account for all the 
important properties of fairy circles – their circularity, 
their overdispersion, the proportion of bare surface, their 
changing diameter in different soils and latitudes’.
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likely attractive to other organisms such as the abundant 
sand termites (Juergens 2013). While our model emphasizes 
competition for water, it is likely that a resource shortage 
does also apply to nutrient availability. Although differences 
in chemical properties are only small between soils of the 
fairy circles and the matrix, the lower soil organic carbon, N, 
and K found inside circles indicates that nutrient depletion 
is another mechanism that may be involved in the emergence 
of fairy circles (Cramer and Barger 2013).

Overall, our study supports the view that fairy circles 
appear as a result of a non-uniform instability of a uniform 
vegetation state that is induced by water stress. This competi-
tion for water as a central process is also evident from aerial 
images provided in the Supplementary material Appendix 1, 
Fig. A3 and A4 show that the density of circles strongly 
declines in moister site conditions along drainage lines 
because water supply is sufficient for sustaining pure matrix 
vegetation. This equals the uniform vegetation state of  
the model which is stable at high precipitation rates  
(cf. Fig. 2; values p  p2). Notably, at these relatively high 
precipitation rates p  p2) or moist habitats at the transition 
to uniform grassland vegetation, the self-organized typical 
pattern of fairy circles may shift from regular to random 
spacing with an overall strong decline in density of  
circles. These are potentially the transitional rainfall areas 
where MAP is above 120 mm, which is thus outside the core 
isohyet range of their occurrence (see also Cramer and  
Barger 2013). However, these geographically confined areas 
with a very narrow band of isohyets are not typical for the 
periodic gap pattern and are thus not treated here.

Conclusion

In this study we analyzed the spatial pattern of the  
fairy circles at scales up to 25 ha with spatially explicit  
correlation functions to provide the research community 
with a precise description of their properties and to invite 
scientists to conduct future research to propose mecha-
nisms that can explain how their favoured hypothesis can 
generate such patterns. We already did an initial step  
in this direction and adapted a model of vegetation self- 
organization to the conditions of our study areas. Our 
model was indeed able to produce spatial patterns that  
are in remarkable quantitative agreement with the  
observed patterns (i.e. showing a gap pattern with a regular 
hexagonal structure and similar critical spatial scales,  
negative correlation of the circle areas, and complete homo-
geneity at larger scales). However, future research should 
test the ability of self-organization models to match the 
birth- and death dynamics of fairy circles (e.g. revealed by 
Tschinkel 2012 and Juergens 2013) and their regional  
patterns in the density and size with respect to environmen-
tal gradients. In order to improve our understanding of  
the modelled processes and parameterizations it is also  
necessary to undertake further field research. For example, 
little is known about the horizontal and vertical extent of 
the root system of Stipagrostis uniplumis or the soil moisture 
content at various depths and times of the year for a variety 
of circle sizes. Furthermore, low-cost unmanned aerial vehi-
cles could be used to map fairy circles of selected study sites 

Models that capture only the infiltration (Rietkerk et al. 
2002) or the fast soil-water diffusion feedbacks (van der  
Stelt et al. 2013) can generate hexagonal gap patterns below 
a precipitation threshold but they may not apply to fairy 
circles because the infiltration feedback is too weak in sandy 
soils to induce patterns. Soil-water diffusion may play a  
pattern-formation role in sandy soils, but is more likely to 
act in conjunction with the root-augmentation feedback.  
We therefore used the model introduced by Gilad et al. 
(2004, 2007) and parameterized it for the characteristics of 
our study sites to yield a biomass-independent form for the 
infiltration rate (see e.g. also Barbier et al. 2008).

The resulting spatial patterns of self-organized vegetation 
systems under competition for water match essential signa-
tures of the observed patterns. Simple self-organizing mech-
anisms leading to hexagonal spacing structures could be 
well functioning in the regions where fairy circles occur 
because the homogeneous nutrient-poor sandy soils and 
limited number of one or two Stipagrostis grass species 
would be a system of low bio-complexity for producing 
such simple vegetation patterns. This is because involve-
ment of more soil types or grass species and associated niche 
differentiation would likely have a disrupting effect that 
would mask the emergence of such grid-like patterns. 
Interestingly, we found for all three study plots an equal 
maximal positive g-value of ca 1.5. This indicates the exis-
tence of a strong and similarly regulating factor such as a 
limit in annual precipitation. The slightly higher g-value of 
the model may be attributed to lack of stochasticity in our 
model which results in a pattern with a stronger ordering 
and therefore higher peak in g(r).

Even more supporting for the proposed mechanism of 
water transport by extended root systems and soil–water 
diffusion is the result we obtained by analysis with the  
mark-correlation function. It is remarkable, that all three 
plots showed strong negative correlation in the circle areas 
up to the same distance of ca 13 m. Thus, if two circles are 
located 13 m or closer to each other, their bare areas become 
significantly smaller than the average circle area found for 
the entire plot. The strongly reduced bare area at short 
neighbourhood distances is equivalent to a significant 
increase of the vegetation coverage. Based on the model 
studies, we attribute this increase in coverage to the root-
augmentation feedback. If the circles of bare soil are far 
apart, the vegetation in between occupies larger areas and 
the competition for water is stronger. To survive, the vegeta-
tion needs larger circle areas to provide more water through 
uptake by roots that extend towards the circle. In contrast, 
if the circle distance is shorter there is less competition as 
most plants have long enough roots to benefit from nearby 
circles and take up water. As a consequence, the vegetated 
matrix area can expand, making the circle areas up to r  13 
m smaller than the average for the entire study plot.

In this context, it is important to note that field surveys 
revealed higher soil-moisture contents at mean depth  
larger than 32 cm within fairy circles as compared to the 
matrix (Picker et al. 2012) and Juergens (2013) showed in 
detail that fairy circles act as important water traps. Thus, 
due to the absence of transpiration by grasses and also due to 
the concave surface structure, fairy circles provide essential 
moisture reservoirs for the surrounding vegetation and are 
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on a monthly basis (Getzin et al. 2012, Koh and Wich 
2012). This would enable us to accurately monitor the  
duration of their emergence and the change of their dia-
meter and shape at high temporal and spatial resolutions.

     Acknowledgements – We are grateful to Jörg Melzheimer from the 
IZW, Berlin for help with acquiring the aerial images. SG was  
supported by the ERC advanced grant 233066 to TW; KW was 
partly funded by the State of Lower Saxony (Ministry of Science 
and Culture; Cluster of Excellence ‘Functional Biodiversity 
Research’).

References

Alba-Lynn, C. and Detling, J. K. 2008. Interactive disturbance 
effects of two disparate ecosystem engineers in North American 
shortgrass steppe. – Oecologia 157: 269–278.

Albrecht, C. et al. 2001. Origin of the enigmatic, circular, barren 
patches (‘fairy rings’) of the pro-Namib. – S. Afr. J. Sci. 97: 
23–27.

Almeida-Filho, R. et al. 2002. Terrain characteristics of a tonal 
anomaly remotely detected in an area of hydrocarbon 
microseepage, Tucano Basin, north-eastern Brazil. – Int.  
J. Remote Sens. 23: 3893–3898.

Barbier, N. et al. 2008. Spatial decoupling of facilitation and 
competition at the origin of gapped vegetation patterns.  
– Ecology 89: 1521–1531.

Becker, T. and Getzin, S. 2000. The fairy circles of Kaokoland 
(north-west Namiba) – origin, distribution, and characteristics. 
– Basic Appl. Ecol. 1: 149–159.

Blanco-Moreno, J. M. et al. 2014. The spatial distribution of  
nests of the harvester ant Messor barbarus in dryland cereals. 
– Insect. Soc. 61: 145–152.

Bourguignon, T. et al. 2011. Are the spatio-temporal dynamics of 
soil-feeding termite colonies shaped by intra-specific 
competition? – Ecol Entomol. 36: 776–785.

Bowen, B. B. et al. 2007. Reflectance spectroscopic mapping  
of diagenetic heterogeneities and fluid-flow pathways in  
the Jurassic Navajo Sandstone. – AAPG Bull. 90: 715–734.

Cramer, M. D. and Barger, N. N. 2013. Are Namibian ‘fairy  
circles’ the consequence of self-organizing spatial vegetation 
patterning? – PLoS One 8: e70876.

Crawford, C. S. 1981. Biology of desert invertebrates. – Springer.
Crist, T. O. and Wiens, J. A. 1996. The distribution of ant  

colonies in a semiarid landscape: implications for community 
and ecosystem processes. – Oikos 76: 301–311.

Cross, M. C. and Hohenberg, P. C. 1993. Pattern formation 
outside equilibrium. – Rev. Mod. Phys. 65: 851–1112.

Danin, A. and Orshan, G. 1995. Circular arrangement of 
Stipagrostis ciliata clumps in the Negev, Israel and near Gokaeb, 
Namibia. – J. Arid Environ. 30: 307–313.

Davies, A. B. et al. 2014. Spatial variability and abiotic determi-
nants of termite mounds throughout a savanna catchment.  
– Ecography 37: doi: 10.111/ecog.00532

Deblauwe, V. et al. 2008. The global biogeography of semi- 
arid periodic vegetation patterns. – Global Ecol. Biogeogr.  
17: 715–723.

Getzin, S. et al. 2008. Heterogeneity influences spatial patterns  
and demographics in forest stands. – J. Ecol. 96: 807–820.

Getzin, S. et al. 2012. Assessing biodiversity in forests using  
very high-resolution images and unmanned aerial vehicles.  
– MEE 3: 397–404.

Gilad, E. et al. 2004. Ecosystem engineers: from pattern formation 
to habitat creation. – Phys. Rev. Lett. 93: 098105.

Gilad, E. et al. 2007. A mathematical model for plants as ecosystem 
engineers. – J. Theor. Biol. 244: 680–691.



11

Wiegand, T. et al. 2013. A systematic comparison of summary 
characteristics for quantifying point patterns in ecology.  
– Ecography 36: 92–103.

Wiernasz, D. C. and Cole, B. J. 1995. Spatial distribution  
of Pogonomyrmex occidentalis: recruitment, mortality and 
overdispersion. – J. Anim. Ecol. 64: 519–527.

Zhang, G. et al. 2011. Remote sensing interpretation of areas  
with hydrocarbon microseepage in northeast China using 
Landsat-7/ETM data processing techniques. – Int. J. Remote 
Sens. 32: 6695–6711.

van Rooyen, M. W. et al. 2004. Mysterious circles in the  
Namib Desert: review of hypotheses on their origin. – J. Arid 
Environ. 57: 467–485.

von Hardenberg, J. et al. 2001. Diversity of vegetation patterns  
and desertification. – Phys. Rev. Lett. 87: 198101.

Wiegand, T. and Moloney, K. A. 2014. Handbook of spatial  
point pattern analysis. – Chapman and Hall.

Wiegand, T. et al. 2003. Using pattern-oriented modeling for 
revealing hidden information: a key for reconciling ecological 
theory and application. – Oikos 100: 209–222.

Supplementary material (Appendix ECOG-00911 at  
www.ecography.org/readers/appendix). Appendix 1.



Ecography ECOG-00911
Getzin, S., Wiegand, K., Wiegand, T., Yizhaq, H., 
von Hardenberg, J. and Meron, E. 2014. Adopting a 
spatially explicit perspective to study the mysterious 
fairy circles of Namibia. – Ecography doi: 10.1111/
ecog.00911

Supplementary material



1	
  
	
  

Appendix 1 

 

Figure A1 Artificially created random and clustered point patterns 

Figure A2 Aerial image of the two digitized Giribes plots G1 and G2 

Figure A3 Aerial image of the effect of drainage channels on the distribution of fairy circles 

(1st example)  

Figure A4 Aerial image of the effect of drainage channels on the distribution of fairy circles 

(2nd example) 
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 a) Random pattern       b) Clustered pattern         c) Observed pattern	
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Fig. A1. For comparative reasons, we artificially created random a) and clustered point 

patterns b) with 630 points, which equals the amount of fairy circles of the Marienfluss plot 

c). Voronoi tessellations, with edge tiles (red) removed for the random d), the clustered e), 

and the regular point pattern of the Marienfluss f). A tile for each point seen in a-c) is the 

region of space which is closer to that point than to any other point in the neighbourhood. For 

the random and clustered patterns, the percentage of tiles with six corners made up only 27% 

and 29%, respectively (see results section) as opposed to 43% to 46% for the observed 

patterns.
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Fig. A2. Aerial image of the two digitized Giribes plots G1 and G2. The upper G1-plot had 1079 and the lower G2-plot 1217 fairy circles, 

respectively. These 500 m × 500 m plots were placed at homogenous locations and were thus not affected by dry riverbeds, roads or rock outcrops. 
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Fig. A3. Aerial image of the effect of drainage channels on the distribution of fairy circles (1st example, Giribes Plain). A very low density of 

circles around the drainage channel indicates better water supply and thus reduced competition for water. Consequently, more matrix vegetation can 

grow. 
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Fig. A4. As Fig. A3 but 2nd example (Marienfluss Valley). Similarly to example 1, here in example 2 there is a very low density on the right side of 

the main drainage channel due to increased water supply coming from the eastern mountains. 

	
  


