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1. Introduction

The matrix element method is a measurement technique which has been developed by

the DØ collaboration for a precise measurement of the top quark mass [1]. It has been

used at the Tevatron with great success, for example in the most precise single top quark

mass measurement from DØ with a relative uncertainty of under 0.9% [2].

This thesis describes the method in general and especially its application for a top quark

mass measurement in the semileptonic channel in the ATLAS experiment at the LHC.

After a brief overview of the standard model of particle physics with an emphasis on

top quark physics in Chapter 2, the experimental setup is presented: the Large Hadron

Collider and the ATLAS detector, one of its experiments, with its various subsystems,

are described in Chapter 3. Chapter 4 describes the matrix element method in general,

and afterwards its application for this thesis. Transfer functions – distributions that

model the detector response for different objects and energies – are components that

are needed for the matrix element method. They are described in Chapter 5. Chapter

6 introduces MEMTool, a computer programme that has been developed to perform the

measurement of the top quark mass with the matrix element method. Tests of the method

have been performed on simulated parton-level events for various configurations and on

official ATLAS Monte Carlo events. The results of these tests are presented in Chapters 7

and 8. Chapter 9 gives a brief overview over systematic uncertainties. Chapter 10 finally

sums up the results.
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2. Theoretical background

2.1. The Standard Model

The Standard Model of particle physics is a collection of theories that accurately describe

the strong, weak and electromagnetic interactions between all known subatomic particles.

The theories contained in the Standard Model, all local gauge-invariant quantum field

theories, are quantum electrodynamics, the Glashow-Weinberg-Salam theory of electro-

weak processes and quantum chromodynamics. Quantum electrodynamics is a gauge

theory with the symmetry group U(1) which describes electromagnetic interactions. The

Glashow-Weinberg-Salam theory of electroweak processes is a unified description of elec-

tromagnetism and the weak interaction, which is described by the groups SU(2)L ×U(1)Y .

Quantum chromodynamics (QCD), described by the SU(3)C gauge group, is the theory

which describes the strong interaction. The last of the four known fundamental forces,

gravity, is not considered in the Standard Model [3].

Generation Flavour Charge [e] Mass [MeV/c2] Lifetime [s]

first




νe

e




(e neutrino) 0 ≈ 0 ∞
(electron) -1 0.51 ∞

second




νµ

µ




(µ neutrino) 0 ≈ 0 ∞
(muon) -1 105.66 2.20 · 10−6

third




ντ

τ




(τ neutrino) 0 ≈ 0 ∞
(tau) -1 1776.99 2.91 · 10−13

Table 2.1.: Table of all leptons. If not stated otherwise, masses are always given in
MeV/c2. Likewise, electrical charges are always given in units of the proton
charge [3].

The Standard Model describes the interactions between the twelve known spin-1
2

fer-

mions, which are grouped into six quarks and six leptons, which are then in turn grouped

3



2. Theoretical background

Generation Flavour Charge [e] Mass [MeV/c2]

first




u

d




(up) 2/3 3

(down) −1/3 7

second




c

s




(charm) 2/3 1200

(strange) −1/3 120

third




t

b




(top) 2/3 173000

(bottom) −1/3 4300

Table 2.2.: Table of all quarks (Listed quark masses are imprecise and are just given as
an overview. Especially the light quark masses are speculative.) [3].

into three generations. The first generation of leptons contains the well-known electron

and the electron neutrino. The leptons of the second generation are the muon and its

corresponding neutrino, those of the third generation are the tau and the tau neutrino.

All leptons are listed in Table 2.1.

The first generation of quarks are the up and down quark, which make up the commonly

known protons and neutrons; the second and third generation contain the more exotic

charm and strange quark, and the top and bottom quark, respectively. All quarks are

listed in Table 2.2.

Force Mediator Charge [e] Mass [MeV/c2] Lifetime [s]

Strong g (8 gluons) 0 0 ∞
Electromagnetic γ (photon) 0 0 ∞
Weak W ± (charged) ±1 80, 420 3.11 · 10−25

Z0 (neutral) 0 91, 190 2.64 · 10−25

Table 2.3.: Table of all gauge bosons [3].

Forces are mediated by gauge bosons. The force carriers of the strong force are the

eight gluons, which act only on quarks and other gluons (or, to be more precise, on par-

ticles with a colour charge). Electromagnetism is mediated by the photon and acts on all

particles with an electric charge. The W ± bosons and the Z0 boson are the mediators of

the electroweak force. A list of all gauge bosons is shown in Table 2.3.

Initially, all particles in the Standard Model are described as massless particles. Masses

for neither the fermions and the massive gauge bosons W ± and Z0 cannot be introduced

4



2.2. Top quark physics

ad-hoc, because it would violate local gauge invariance.

One way to give them mass is the so-called Higgs mechanism, in which the bosons acquire

mass through spontaneous symmetry breaking [4].

A scalar field with a non-zero vacuum expectation value is introduced. By spontaneously

breaking the symmetry of this Higgs field, mass terms are introduced to the Lagrangian

without violating gauge invariance.

The fermions are given mass by a Yukawa interaction between the Higgs field and the

fermion Dirac fields.

The excitation of the Higgs field is called Higgs boson. This particle has not been observed

yet, but is being searched for at the LHC and the Tevatron in order to either confirm or

reject the Higgs mechanism.

2.2. Top quark physics

With a mass of 173.2 ± 0.9 GeV/c2, the top quark is by far the heaviest of the quarks,

weighing over 40 times more than the bottom quark, the second heaviest quark [5].

It was discovered in 1995 by the CDF and DØ experiments at the Tevatron accelerator

at the Fermi National Accelerator Laboratory near Chicago [6, 7]. Due to its mass, the

top quark has some special properties. It has a very short lifetime of the order of 10−25 s,

which is too short for it to form bound states, such as a bound tt̄ or tb̄ state. Thus, one

has direct access to spin information of a produced tt̄ pair, for example to measure the W

boson’s helicity. Through loop corrections, the masses of the W boson, the top quark and

the Higgs boson are connected. Therefore, with a precise measurement of the top quark

mass mt and by using the precise measurement of the W boson mass mW from LEP, one

can set constraints on the possible Higgs mass.

In the following, the production mechanisms for top quark pairs as well as single top

quarks at hadron colliders are explained, followed by a description of the top quark’s

decay channels. Afterwards, an overview of measurements of top quark properties is

given.

2.2.1. Hadron collider physics

The LHC is a proton-proton collider. The interacting protons consist of valence quarks,

sea quarks and gluons, each carrying only a fraction of the proton’s momentum. The

distribution of these fractions is modeled by so-called parton distribution functions or

PDFs. Figure 2.1 shows a plot of the CTEQ6 leading order PDF, which is used in this

analysis, for various parton flavours [8].

5



2. Theoretical background

momentum fraction x
-310 -210 -110 1

P
D

F
 v

al
ue

0

1

2

3

4

5

6

7

8

9

10
gluon
up quark
down quark
charm quark
strange quark

Figure 2.1.: Plot of the CTEQ6 PDF for gluons and up, down, charm and strange
quarks at Q = 3500 GeV [8].

In order to obtain the hadronic differential cross section of a given hard scattering process,

one must convolute its differential cross section dσhs with the PDFs and summed over all

possible initial state particles i and j:

dσ =
∑

i,j∈flavours

∫ 1

0

∫ 1

0
fi(x1)fj(x2)dσhs(x1, x2)dx1dx2 , (2.1)

where x1 and x2 are the initial particles’ fractions of the protons’ momenta and fi(x) is

the probability density of a particle i to have a momentum fraction of x.

2.2.2. Top pair production

At hadron colliders, top-antitop (tt̄) pairs can be produced via the strong interaction.

The two possible processes at leading order are quark-antiquark annihilation (see Figure

2.2(a)) and gluon-gluon fusion (see Figure 2.2(b)).

While at the Tevatron tt̄ pairs were mostly produced by the first process, the latter one

dominates at the LHC. The theoretically predicted cross sections for both processes and

accelerators are listed in Table 2.4.
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2.2. Top quark physics
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(b) tt̄ production via gg fusion.

Figure 2.2.: Leading order Feynman diagrams for the strong production of tt̄ pairs via
qq̄ annihilation and gg fusion.

Accelerator
√

s [TeV] σtt̄ [pb]

Tevatron 1.96 7.08+0.36
−0.42

LHC 7 163+10
−13

10 415+31
−19

14 918+64
−41

Table 2.4.: Theoretical cross sections of tt̄ pair production at the Tevatron and the
LHC for their respective centre-of-mass energies. The calculations were done
at approximated NNLO level using the MSTW2008 NNLO pdf with an
assumed top mass of mt = 173 GeV [9–11].

2.2.3. Single top production

Single top quarks can be produced via weak interactions in the processes shown in Figure

2.3. The single top quark production was discovered in 2009 by the CDF and DØ collabo-

rations at the Tevatron [12, 18]. Of the three production processes, the t-channel produc-

tion (see Figure 2.3(a)) is the most common one with an expected cross section of 1.14 pb

at the Tevatron and an expected cross section of 149 pb at the LHC at
√

s = 14 TeV.

This is the only channel that has been observed up to this date. The two other channels,

associated production of a top quark and a W boson (see Figure 2.3(b)) and s-channel

production (see Figure 2.3(c)), are also expected to have a larger cross section at the LHC

than at the Tevatron.
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2. Theoretical background
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Figure 2.3.: Leading order Feynman diagrams for the weak production of single top
quarks [12, 13].

Accelerator
√

s [TeV] σt-channel [pb] σW t [pb] σs-channel [pb]

Tevatron 1.96 1.14 ± 0.06 0.14 ± 0.03 0.53 ± 0.02

LHC 7 41.9+0.9
−0.6 7.8 ± 0.2+0.5

−0.6 3.17 ± 0.06+0.13
−0.10

10 130+5
−5 19.4 ± 0.5+1.0

−1.1 5.16 ± 0.09+0.20
−0.14

14 149 ± 6 43 ± 5 7.7+0.6
−0.5

Table 2.5.: Theoretical cross sections of single top production for the t-channel, as-
sociated Wt production and the s-channel at the Tevatron and the LHC
for their respective centre-of-mass energies. The cross sections for antitop
quarks differ for the s-channel at the LHC [10, 14–17].

The predicted cross sections for single top quark production are listed in Table 2.5.

The weak production of top quarks is dependent on the absolute value of the CKM matrix

element |Vtb| and is thus a viable source for measurements of this quantity.

2.2.4. Decay channels

The top quark decays almost instantaneously with a branching ratio of about 100% into

a W boson and a bottom quark. In the following, a branching ratio of 100% is assumed

for this decay.

The b quark then hadronizes and forms a jet, while the W boson can decay either lepton-

ically, that is into a charged lepton and its corresponding (anti-)neutrino, or hadronically,

which means a decay into a quark-antiquark pair.

This yields three possible decay channels for a tt̄ pair.
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2.2. Top quark physics

all-jets

46%

e+jets 15%

µ+jets
15% τ+jets

15%

ee
1%

eµ2%
µµ1%
eτ2%

µτ2%

ττ1%

Figure 2.4.: Decay channels with approximate branching ratios for the tt̄ decay. [19]

The dileptonic channel

In the dileptonic channel, both W bosons decay leptonically. Its signature is two leptons,

two b-jets and missing energy. This channel has a low background, but it is also the one

with the lowest branching ratio and has two neutrinos (from the two leptonic W decays)

which are difficult to be reconstructed from missing energy.

The semileptonic channel

In the semileptonic channel, also called the lepton+jets channel, one W boson decays

hadronically and the other one decays leptonically. Also referred to as the “golden chan-

nel”, it has a reasonable branching ratio and moderate background. Its signature is a

lepton, four jets (with two of them being b-jets) and missing energy from a neutrino.

The all-jets channel

In the all-jets channel, both W bosons decay hadronically. This channel has a signature

of four light quark jets and two b-jets. It has the highest branching ratio of all three

channels, but also the highest background.

9



2. Theoretical background

A chart of the branching ratios of the tt̄ decay channels is shown in Figure 2.4.

The branching ratios for the channels, according to [19], are:

BR(all − jets) = 45.7%

BR(ℓ + jets) = 29.2%

BR(dilepton) = 4.7%

Decays containing a tau lepton are left out of these branching ratios, as taus are not

detected directly.

2.2.5. Measurable properties

Mass

The top quark is by far the heaviest of all quarks and even the heaviest of all elementary

particles. The most precise value for its mass up to date is mt = 173.2 ± 0.9 GeV/c2,

combining several single measurements of the CDF and DØ collaborations [5]. A plot of

the single measurements and their combination is shown in Figure 2.5.

With a relative precision of below 0.6% it is thus the most precisely measured quark mass.

A precise measurement, together with a precise measurement of the W boson mass, allows

to make predictions on the mass of the Higgs boson [20].

According to electroweak theory, the W boson mass can be calculated at tree level to

M2
W,tree =

~
3

c
· πα√

2GF

·
(

1 −
(

M2
W

M2
Z

))−1

. (2.2)

In order to account for radiative loop corrections, the W boson mass from equation (2.2)

has to be divided by a factor of (1 − ∆r):

M2
W =

~
3

c
· πα√

2GF

· 1
(

1 −
(

M2

W

M2

Z

))

(1 − ∆r)
. (2.3)

10



2.2. Top quark physics

)2(GeV/ctopm

150 160 170 180 190 200
0

15

CDF March'07 2.7±12.4 2.2)±1.5±(

Tevatron combination * 0.9±173.2 0.8)±0.6±(

syst)±stat±(

CDF-II MET+Jets * 2.6±172.3 1.8)±1.8±(

CDF-II track 9.4±166.9 2.8)±9.0±(

CDF-II alljets * 2.0±172.5 1.4)±1.4±(

CDF-I alljets 11.5±186.0 5.7)±10.0±(

DØ-II lepton+jets 1.5±174.9 1.2)±0.8±(

CDF-II lepton+jets 1.2±173.0 1.1)±0.7±(

DØ-I lepton+jets 5.3±180.1 3.9)±3.6±(

CDF-I lepton+jets 7.3±176.1 5.3)±5.1±(

DØ-II dilepton 3.1±174.0 2.5)±1.8±(

CDF-II dilepton 3.7±170.3 3.1)±2.0±(

DØ-I dilepton 12.8±168.4 3.6)±12.3±(

CDF-I dilepton 11.4±167.4 4.9)±10.3±(

Mass of the Top Quark

(* preliminary)July 2011

/dof = 8.3/11 (68.5%)2χ

Figure 2.5.: The most recent combination of single top mass measurements from the
CDF and DØ collaborations [5].
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2. Theoretical background

The loop corrections in ∆r have contributions that include the top quark mass as well

as the Higgs boson mass,

(∆r)top ∼ m2
t and (∆r)Higgs ∼ ln

(

m2
H

M2
Z

)

,

making the Higgs mass dependent on the top and the W boson mass. This dependence

is illustrated in Figure 2.6 together with results of measurements of MW and mt.

80.3

80.4

80.5

155 175 195

mH [GeV]
114 300 1000

mt  [GeV]

m
W

  [
G

eV
]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron

July 2011

Figure 2.6.: Plot of the Higgs mass’ dependence on mt and MW . 68% confidence level
limits from LEP and Tevatron results are also shown [21].

Cross section

The top cross section measurement is yet another test for Standard Model predictions.

Additionally, a too large cross section for tt̄ or single t production could be a hint for

new physics processes, such as the existence of a charged Higgs, a W ′ boson or flavour-

12



2.2. Top quark physics

changing neutral currents. The cross sections of single top processes are directly related

to the top quark’s Cabbibo-Kobayashi-Maskawa (CKM) matrix element Vtb, i.e. they are

proportional to |Vtb|2.
Precise cross section measurements from the Tevatron [22] and results from the LHC [23–

29] are in good agreement with Standard Model predictions.

Even without assuming unitarity or constraining the number of quarks, |Vtb| is measured

to be [30]

|Vtb| = 0.88 ± 0.07 ;

the 95% CL lower limit on |Vtb| is 0.77.

W helicity

The well-defined spin state of the tt̄ system allows a measurement of the helicity of the

W boson. In the Standard Model, a W boson originating from a top decay must have

either zero or negative helicity due to the V −A structure of the weak interaction. The

fraction of the W bosons with zero helicity can be approximated to

f0 =

m2

t

2m2

W

1 +
m2

t

2m2

W

≈ 70% .

Measurements from the Tevatron are in good accordance with this prediction. The com-

bined results from DØ and CDF [31] are

f0 = 0.732 ± 0.081

f+ = − 0.039 ± 0.045 .

Charge

It has been speculated that the observed top quark was not the predicted Standard Model

top quark with an electric charge of +2
3
e, but rather an exotic one with a charge of −4

3
e.

This possibility has been excluded with a 95% confidence level by now [32].
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3. Experimental setup

The following chapter introduces the Large Hadron Collider and the ATLAS detector.

The detector’s layout and its components will be described as well as the trigger system

and the data acquisition systems.

3.1. The Large Hadron Collider

LHC

CMS

ALICE LHCb

ATLAS

SPS

Linac2

Booster
PS

Figure 3.1.: Layout of the LHC experiments and pre-accelerators.

The Large Hadron Collider – or short LHC – is a proton-proton1 collider at the site of

CERN near Geneve in Switzerland. It lies 100 m below the ground and has a circumfer-

ence of 27 km.

Its design centre-of-mass energy of
√

s = 14 TeV is over seven times higher compared to

that of the Tevatron. Although it currently only runs at half of that energy,
√

s = 7 TeV,

1In addition to the proton-proton runs, the LHC is also used to accelerate and collide Pb (lead) ions.
Since these heavy ion collisions are of no interest to the subsequent analysis, they will not be discussed
here.
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3. Experimental setup

it allows experimental access to an energy region that was not possible before.

The LHC hosts four large experiments: ALICE, ATLAS, CMS and LHCb. ATLAS (A

Torodial LHC ApparatuS) and CMS (Compact Muon Solenoid) are multi-purpose exper-

iments, while ALICE (A Large Ion Collider Experiment) attempts to study quark-gluon

plasma and LHCb studies the physics of b-quarks.

Different from the proton-antiproton collider Tevatron, the LHC collides protons and

protons. One reason for this is that antiprotons are rare and difficult to produce, another

one is that at the LHC’s energies, the fraction of gluons contributing to production cross

sections is very high.

An illustration of the LHC with its pre-accelerators can be seen in Figure 3.1.

The protons, which are produced by ionizing hydrogen gas, are first accelerated by the

linear accelerator LINAC2 to an energy of 50 MeV and then fed into the Proton Syn-

chrotron Booster. From there, having an energy of 1.4 GeV, they are injected into the

Proton Synchrotron (PS) and accelerated to an energy of 26 GeV before they enter the

Super Proton Synchrotron (SPS) to reach an energy of 450 GeV.

At last, they are injected into the LHC, where after about 20 minutes of further acceler-

ation they reach their peak energy of 7 TeV (3.5 TeV in the current phase). The protons

are then brought to collisions at the four collision points inside the experiments.

3.2. The ATLAS Detector

The ATLAS detector is the largest of the four experiments at the LHC. It measures

25 m in height and 44 m in length, weighs approximately 7000 t and is forward-backward

symmetric with respect to the interaction point. Its main components are the magnet

configuration, the inner detector, the calorimeters, the muon detector and the trigger and

data acquisition systems, which will be presented after an introduction to the coordinate

system used for the detector.

Detailed information about the ATLAS detector can be found in [33]. A cut-away view

of the ATLAS detector can be seen in Figure 3.2.

The ATLAS collaboration is made up of more than 3000 people from 38 countries and

more than 174 universities and laboratories.
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3.2. The ATLAS Detector

Figure 3.2.: Cut-away view of the ATLAS detector.

3.2.1. Prerequisites and Coordinate system

A right-handed coordinate system is used for coordinate descriptions inside the ATLAS

detector. The nominal interaction point constitutes the origin of the coordinate system.

The beam direction is defined as the z-axis. Thus, the x − y-plane is transverse to the

beam direction, with the x-axis being defined as pointing towards the centre of the LHC

and the y-axis being defined as pointing upwards. The azimuthal angle φ is measured in

the x − y-plane and the polar angle θ is the angle from the beam axis.

The pseudorapidity η is defined as

η = − ln tan

(

θ

2

)

.

In the case of massive objects, such as jets, the rapidity y, defined as

y =

[

2 ln

(

E + pz

E − pz

)]−1

,

is used. The transverse momentum pT , the transverse energy ET and the missing trans-

verse energy Emiss
T are defined in the x − y-plane.
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The definition for pT is

pT =
√

p2
x + p2

y ,

ET and Emiss
T are defined analogously.

The distance ∆R in the η − φ-space is defined as

∆R =
√

∆η2 + ∆φ2 .

3.2.2. The Magnets

The magnetic system of the ATLAS detector consists of four superconducting magnets,

is 26 m in length and 22 m in diameter and can store an energy of 1.6 GJ. Figure 3.3

shows the layout of the magnets.

Figure 3.3.: Geometry of magnet windings and tile calorimeter steel. The eight barrel
toroid coils, with the end-cap coils interleaved are visible.

18



3.2. The ATLAS Detector

Figure 3.4.: Cut-away view of the ATLAS inner detector.

The two components of the magnetic system are:

• a solenoid magnet at the centre, aligned to the beam axis, which produces a 2 T

magnetic field for the inner detector;

• a barrel toroid magnet and two end-cap toroid magnets, arranged with an eightfold

azimuthal symmetry around the calorimeters, which provides the muon detectors in

the central region with a magnetic field of about 0.5 T and the muon detectors in

the end-cap regions with a magnetic field of about 1 T.

3.2.3. The Inner Detector

Particle tracks from the interaction point have to be determined and identified with high

precision and accuracy. Also, an identification of the primary vertex and possible sec-

ondary vertices is often crucial. This tracking is the purpose of the inner detector’s

subsystems, the pixel and silicon microstrip (SCT) trackers and the Transition Radiation

Tracker (TRT). A cut-away view of the inner detector is shown in Figure 3.4.

The precision tracking detectors – the three-layered pixel detector and the SCT – cover

the region |η| < 2.5. In the barrel region, the detectors are arranged in concentric cylinders

aligned to the beam axis, with the pixel detector comprising the innermost layer, followed
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by the SCT and the TRT. In the end-cap region, the detectors are located on disks

perpendicular to the beam axis.

The Pixel Detector is a highly segmented semiconductor tracker, providing a formi-

dable resolution of 10 µm in x−φ and 115 µm in z-direction, and was designed to provide

good vertex tracking. It consists of 1, 744 sensors with 47, 232 pixels each [33]. The size

of one pixel is 50 × 400 µm2. The whole pixel detector has approximately 80.4 million

readout channels.

The Semiconductor Tracker (SCT) consists of a barrel part containing 2, 112 mod-

ules and two end-caps. On its way through the SCT, a track crosses eight strip layers,

yielding four space points. In the barrel region, the strips are inclined by a small angle

of 40 mrad to allow the measurement of both coordinates, with one set of strips in each

layer being aligned parallel to the beam axis. In the end-cap regions, one set of strips is

aligned radially and another set with an angle of 40 mrad.

The accuracy per module is 17 µm (R − φ) and 580 µm (z) for the barrel modules and

vice versa for the end-cap modules. The total number of readout channels in the SCT is

approximately 6.3 million.

The Transition Radiation Tracker (TRT) consists of drift chamber tubes with a

diameter of 4 mm. In the barrel region, the tubes are 144 cm long and aligned parallel to

the beam axis. The end-caps have 37 cm long tubes, arranged radially in a wheel pattern.

The TRT only provides resolution in R−φ direction, with an accuracy of 130 µm per tube.

Although the spatial resolution of the TRT is lower than those of the pixel detector and

the SCT, the TRT can provide an improvement to the tracking because a passing particle

will generate up to 36 hits in the tubes. The total number of TRT readout channels is

approximately 351, 000.

3.2.4. The Calorimeter system

The calorimeter system of the ATLAS detector covers the region of |η| < 4.9, using differ-

ent detectors for different purposes and regions. The electromagnetic calorimeter provides

precise energy resolution for electrons and photons, while the hadronic calorimeter pro-

vides good energy containment for hadronic showers, though with a coarser granularity.

Containment is a crucial aspect for the calorimeters, both for energy resolution and to

limit hadrons escaping the hadronic calorimeter into the muon detector on the outside.

2This is the minimum size for one pixel and also the actual size for most of them.
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3.2. The ATLAS Detector

Figure 3.5.: Cut-away view of the ATLAS calorimeter system.

The EM calorimeter provides a thickness of > 22 radiation lengths (X0) in the barrel and

> 24 X0 in the end-caps.

An overview of the ATLAS calorimeters is shown in Figure 3.5.

The Electromagnetic Calorimeter is, like all calorimeters inside the ATLAS de-

tector, a sampling calorimeter with full φ-symmetry and coverage around the beam

axis. The EM calorimeter consists of a barrel part (|η| < 1.475) and two end-caps

(1.375 < |η| < 3.2), both having liquid argon (LAr) as active and lead as passive mate-

rial. LAr was chosen because of its linear response behaviour, its stability of response over

time and its intrinsic radiation-hardness. The electromagnetic calorimeters are cooled by

cryostats to a constant temperature of 85 K.

The design energy resolution of the EM calorimeters is

σE

E
=

10%
√

E[GeV]
⊕ 0.7% . (3.1)

The Hadronic Calorimeter consists of the tile calorimeter in the barrel region, the

hadronic LAr end-cap calorimeters and the LAr forward calorimeters.

The tile calorimeter is placed directly outside the EM calorimeter envelope. Its barrel
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covers the region |η| < 1.0 and its two extended barrels the range 0.8 < |η| < 1.7. It

is a sampling calorimeter with scintillator tiles as active material and steel as absorber.

The scintillator tiles are read out via wavelength shifting fibres into photomultiplier tubes

(PMTs). The barrel and the extended barrels are divided azimuthally into 64 modules

each.

The Hadronic End-cap Calorimeter (HEC) consists of two independent wheels per

end-cap, located directly behind the electromagnetic end-cap calorimeters. They use the

same LAr cryostats. Each wheel consists of 32 modules and is divided into two segments

in depth, giving a total of four layers per end-cap.

The Forward Calorimeter (FCal) is integrated into the end-cap cryostats. It consists

of three modules for each end-cap. The first module is made of copper and optimised for

electromagnetic measurements. The other two modules are made of tungsten and mainly

measure the energy of hadronic interactions.

The hadronic calorimeters provide a design energy resolution of

σE

E
=

50%
√

E[GeV]
⊕ 3% for the barrel and end-cap, and (3.2)

σE

E
=

100%
√

E[GeV]
⊕ 10% for the forward calorimeter. (3.3)

3.2.5. The Muon detector

The muon spectrometer covers a range of |η| < 2.7 and provides a trigger on muon events

for |η| < 2.4. In the region with |η| < 1.4, muon tracks are deflected by the large barrel

toroid’s magnetic field. For 1.6 < |η| < 2.7, muon tracks are bent by the end-cap magnets.

In the transition region of 1.4 < |η| < 1.6, a combination of barrel and end-cap magnets

provides the magnetic deflection.

The muon detector comprises four different subsystems: Monitored Drift Tube cham-

bers for tracking and momentum resolution, Cathode Strip Chambers for tracking and

Resistive Plate Chambers and Thin Gap Chambers as fast systems for triggering.
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3.2. The ATLAS Detector

The Monitored Drift Tube chambers (MDT) perform the precision momentum

measurement in the |η| < 2.7 region3. Each chamber consists of three to eight drift tubes,

which achieve an average resolution of 80 µm. The average resolution per chamber is

35 µm. The maximum drift time for electrons in the MDTs is 700 ns.

The forward region of 2 < |η| < 2.7 uses Cathode Strip Chambers (CSC) as the

innermost tracking layer due to their higher rate capability and better time resolution

of about 7 ns. The 32 CSCs are multi-wire proportional chambers. The resolution of a

chamber is 40 µm in R-direction and 5 mm in the transverse plane.

The ability to trigger on muon tracks was an essential design criterion of the muon

system. To allow this, fast trigger chambers are part of the muon detector, capable of

delivering track information within a few nanoseconds after the passage of a particle.

The trigger chambers for the barrel region (|η| < 1.05) are the 606 Resistive Plate

Chambers (RPC), while the end-cap region (1.05 < |η| < 2.4) is covered by Thin Gap

Chambers (TGS). Both RPCs and TGSs have a very low intrinsic response time of

10 ns and 3−7 ns4, respectively.

3.2.6. The Trigger and Data Acquisition systems

The protons at the LHC interact at an extremely high rate of about 1 GHz, yielding

an enormous amount of data, which cannot be stored. To reduce it, a set of criteria is

necessary to select “interesting” events and reduce the amount of data to a processable

level. The trigger system does exactly this.

It is divided into three different stages: the Level 1 trigger (L1), the Level 2 trigger (L2)

and the event filter. Each trigger level refines the decisions made on the previous level

and applies additional selection criteria.

The Level 1 trigger uses only information from some of the detector’s subsystems, e.g.

the muon trigger chambers. It uses this information to accept or reject an event within

2.5 µs, reducing the rate to about 75 kHz. The Level 2 trigger has an event processing

time of ≈ 40 ms and reduces the accepted event rate further to approximately 3.5 kHz.

The data then goes into the event filter, which reduces the event rate to roughly 200 Hz.

Also, the complete event is being built here. The size of an event is around 1.3 MB.

3An exception is the innermost end-cap layer where the MDTs’ coverage is limited to |η| < 2.0.
4These time resolutions are for the chambers alone without contributions from signal-propagation or

electronics.
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3.2.7. Current status

The LHC has run with a centre-of-mass energy of
√

s = 7 TeV in 2010 and 2011. In 2010,

ATLAS recorded 45.0 pb−1 of data. During the 2011 run, ATLAS recorded data with a

total integrated luminosity of 5.25 fb−1.

After the current winter shutdown, the LHC will run at an increased centre-of-mass energy

of
√

s = 8 TeV in 2012 before it goes into a long shutdown period to prepare for higher

energy running. The data target for 2012 is 15 fb−1.
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The idea behind the Matrix Element Method is to calculate – for each event – the likeli-

hood that a certain process produces the event’s final state observed in the detector.

In the case of this analysis, this is the likelihood that a selected event was produced un-

der the assumption of a certain top quark mass. By doing this for a range of possible

top quark masses and combining the likelihoods of many events, one gets a likelihood

distribution that uses the final state’s full kinematic information to estimate the true top

quark mass.

The Matrix Element Method was developed and first used by the DØ collaboration for

the measurement of the top quark mass in the lepton+jets channel at Tevatron, yielding

the most precise single measurement of the top quark mass to that date [1]. The CDF

collaboration has a similar method called the Dynamic Likelihood method [34].

This chapter will describe the Matrix Element Methods and its parts in detail.

4.1. The differential cross section as a production

likelihood

The differential cross section for a scattering process with two particles 1 and 2 colliding

and producing particles 3, 4, . . . , n with four-momenta pi is given by Fermi’s Golden Rule

[3]:

dσhs =
(2π)4|M|2

4
√

(p1 · p2)2 − m2
1m2

2

× dΦn−2 . (4.1)

Here, the four-momentum of particle i is denoted by pi and its (three-)momentum by

~pi. M is the matrix element of the process. It describes the transition from initial to final

state and is a function of all momenta.

dΦn−2 is the volume element of the n − 2 body Lorentz invariant phase space:
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4. The Matrix Element Method

dΦn−2 = δ4(p1 + p2 − p3 − . . . − pn)
n∏

j=3

d3~pj

2(2π)3Ej

. (4.2)

The differential cross section in Equation 4.1 is proportional to the probability of this

process occuring, but it is only valid for parton interactions. In hadronic interactions, as

mentioned in Section 2.2.1, Equation 4.1 has to be convoluted with the PDFs:

dσ =
∑

i1,i2∈flavours

∫ 1

0

∫ 1

0
fi1

(x1)fi2
(x2)dσhs(x1p1, x2p2, . . .)dx1dx2 . (4.3)

The expression in Equation 4.3 is the differential cross section for one specific final

state. To get from this equation to the probability of a certain final state being produced

via a certain process, one needs to normalize the differential cross section via the total

cross section for the selected process.

The total cross section can be obtained by integrating the differential cross section over

the entire phase space:

σtot =
∫

dσ . (4.4)

4.2. Accommodating finite detector resolution

4.2.1. Transfer functions

If each and every event could be reconstructed perfectly, the calculation above would be

enough. But the ATLAS detector, like every other detector, only has a finite resolution,

which has to be accounted for. Also, the events considered in this analysis contain neu-

trinos, which cannot be detected by ATLAS at all.

To compensate, a transfer function W (~x, ~y) is introduced. W (~x, ~y) is the probability

that a final state ~x resulted in a detector response of ~y. Usually, the transfer function is

a product of single object transfer functions for each object in the final state (e.g. a jet),

for example:

W (~x, ~y) = Wjet(x1, y1) · Wlep(x2, x2) . . .
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Including the transfer function, the differential cross section for an observed state ~y

becomes:

dσobs(~y) =
∫

~x
dσ(~x)W (~x, ~y)d~x . (4.5)

The integration is performed over the whole phase space of ~x.

A description of the transfer functions used in this analysis can be found in Chapter 5.

4.2.2. Detector acceptance

The detector acceptance is the fraction of events that gets detected by the detector and

passes the selection cuts.

An ideal detector with a solid angle of 4π and a perfect resolution would have an accep-

tance factor of 1.

But since the detector only covers a certain η range and requires certain conditions to

be met to reconstruct an event properly (for example, a minimum ∆R distance between

any two jets), not every event gets recognized by the detector.

This acceptance factor A(α) depends on the set of parameters – in this case, the top

quark mass – and is combined with the total cross section to normalize the differential

cross section.

σacc = A(α) · σtot . (4.6)

4.3. The event likelihood

Combining Equations 4.5 and 4.6, the likelihood for a process to produce an event ~y inside

the detector is

L(~y, α) =
dσobs(~y, α)

σacc(α)
.

α is a parameter or a set of parameters – for example, the top quark mass – which the

process depends on.

For one event, multiple probabilities can be combined to a single event likelihood. This
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can be used to include multiple processes, such as top quark pair production via gg-fusion

or qq̄-annihilation and a likelihood for background processes. The event likelihood for a

number of processes, e.g. a signal likelihood and a background likelihood, can be combined

by weighting them by their relative fraction of event f and adding them:

Levt(~y, α) = f · Lsig + (1 − f) · Lbkg . (4.7)

4.4. Parameter estimation

Equation 4.7 shows the likelihood of a single event. The combined likelihood for a set of

events ~y1, . . . , ~yn is

L(α) =
n∏

i=1

Levt(~yi, α) . (4.8)

To estimate the parameters α, the maximum likelihood method is used: the best value

for α is the one that maximizes the likelihood L(α). Usually, instead of maximizing the

likelihood itself, one minimizes the negative logarithm of the likelihood,

−lnL(α) =
n∑

i=1

lnLevt(~yi, α) .

This is mainly done for numerical stability when dealing with finite-precision floating

point numbers on computers.

4.5. Application of the matrix element method in

this analysis

This section discusses the application of the matrix element method in the measurement

of the top quark mass in the ℓ+jets channel.

In this case, there is only one parameter to be estimated, α = mt.

There are two partons in the initial state and six particles in the final state: two b-jets,

two light jets, a charged lepton and a neutrino.

Each of the event’s eight particles has an index i associated to it to denote its four-

momentum pi, its momentum ~pi, its energy Ei etc.

The indices range from 0 to 7, with the order of the associated particles being:
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0. the first incoming parton,

1. the second incoming parton,

2. the b-quark from the hadronic side,

3. the b-quark from the leptonic side,

4. the first light quark,

5. the second light quark,

6. the charged lepton,

7. the neutrino.

g

t

t̄

W+

W−

g: p0

g: p1

b: p2

b̄: p3

u: p4

d̄: p5

e−: p6

ν̄: p7

Figure 4.1.: Feynman diagram of tt̄ production via gg-fusion and decay in the semilep-
tonic channel with their associated labels.

The indices for each particle in the process are also shown in Figure 4.1.

The masses of all particles except for the b-quarks are negligible compared to their

energies and will thus be assumed to be 0.

A computer programme has been developed by the author to compute the matrix el-

ement method’s likelihoods. The programme is called MEMTool and will be described

thoroughly in Chapter 6.

The analysis in this thesis is intended to serve as a preparation step for a full top quark
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mass measurement. The plan for that measurement is to use two b-tags in the event

selection, reducing the number of background events to a tiny fraction of the selected

events. Therefore, this analysis does not make use of a background likelihood for its most

common background process, W + jets. For the other major background, QCD, a matrix

element is not even available.

As for the signal processes, only the matrix element for gluon-gluon fusion is used. This

has been done to be able to better determine the programme’s performance on the simu-

lated parton level events in Chapter 7, which have been generated with gluon-gluon fusion

as the only process, and because gg-fusion is the dominant process at a centre-of-mass

energy of 7 TeV, accounting for most tt̄ events.

MEMTool can be configured to also consider quark-antiquark annihilation processes with-

out much effort; it already includes implementations for qq̄ matrix elements.

Furthermore, only events where the charged lepton in the final state is an electron are

considered.

To make the numerical integration over the whole phase space from Equation 4.5 fea-

sible, the integration variables are changed and reduced from 20 to six. Also, a narrow

width approximation is applied, resulting in a further reduction down to four dimensions.

The details of this transformation are explained in Chapter 6.

The transfer functions used in this analysis are generated by a fit to ATLAS Mc10b

Monte Carlo data. They are described in Chapter 5.
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The total transfer function used in the likelihood calculation (Equation 4.5) can be split

up into a product of single transfer functions for each particle,

W (~x, ~y) = Wjet(x1, y1) · Wlep(x2, y2) . . . , (5.1)

which in turn can be split up into transfer functions for the particle’s energy E and its

angular coordinates φ and η.

The transfer functions shown in this chapter are probability distributions. They de-

scribe the probability that a particle with a real energy of Etruth is measured in the

detector with an energy of Ereco.

The other two dimensions which can be treated with transfer functions are the azimuthal

angle φ and the pseudorapidity η. However, because of the excellent angular resolution of

the ATLAS detector, these two quantities are measured so precisely that they are assumed

to be exact, or, in terms of transfer functions:

Wφ(φreco, φtruth) = δ(φreco − φtruth) , (5.2)

Wη(ηreco, ηtruth) = δ(ηreco − ηtruth) . (5.3)

Two sets of transfer functions are used in this thesis: The first one consists of Gaussian

distributions. The second one has sums of two Gaussians as probability distribution, with

their parameters fitted to match ATLAS Mc10b Monte Carlo data.

These transfer functions do not apply to neutrinos, as they are not detected by the

detector.

5.1. Gaussian transfer functions

The motivation for the first set of transfer functions comes from the detector design [33],

which gives the energy resolution of the electromagnetic and hadronic calorimeters in
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terms of standard deviations that increases with
√

E (see Equations 3.1 and 3.2).

Therefore, this set of transfer functions uses Gaussian distributions,

W (Ereco, Etruth) =
1

σ
√

2π
· exp

(

−1

2

(
Ereco − Etruth

σ

)2
)

.

The standard deviation σ is different for jets and leptons.

For jets, it is

σjet = 0.5 ·
√

Ereco ,

while leptons have the smaller standard deviation of

σlepton = 0.1 ·
√

Ereco .
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Figure 5.1.: Gaussian transfer function for jets for different energies.

Plots of the transfer functions for jets and leptons for a range of energies between

50 GeV and 900 GeV are shown in Figures 5.1 and 5.2, respectively.
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Figure 5.2.: Gaussian transfer function for leptons for different energies.
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5.2. Mc10b transfer functions

Though the detector is designed to have these Gaussian transfer functions, the actual

detector response is slightly different, asymmetric, and dependent on η. The η-dependency

occurs because particles with a high |η| pass more detector material than particles with

a low |η|.
For a better approximation of the real detector response, this set of transfer functions is

modelled with a combination of two Gaussians,

W
(

x :=
Etruth − Ereco

Etruth

; µ1, σ1, ω, µ2, σ2

)

=

1

(σ1 + ωσ2)Etruth

√
2π

(

exp

(

−1

2

(
x − µ1

σ1

)2
)

+ ω · exp

(

−1

2

(
x − µ2

σ2

)2
))

.

The definition of the parameters µ1, σ1, ω, µ2 and σ2 differ for each type of particle

(light jets, b-jets, electrons and muons) in order to better fit their respective energy

dependency.

The values for the parameters have been optimised using the programme KLFitter to

best fit the detector response simulated in ATLAS Mc10b Monte Carlo events [35].

5.2.1. Transfer function for light jets

The transfer function’s parameters for light jets are:

σ1 = Θ

(

p3√
Etruth

+ p4

)

µ1 = Θ (p1 + Etruth · p2)

ω = Θ (p5 + Etruth · p6)

µ2 = Θ (p7 + Etruth · p8)

σ2 = Θ (p9 + Etruth · p10)

Here, Θ(x) is defined as a step function that returns x if x is positive and 0 otherwise:

Θ(x) =







0 : x < 0

x : x ≥ 0

The values for p1, . . . p10 are dependent on η. Their values are shown in Table 5.1.

A plot of the light jet transfer function for different energies is shown in Figure 5.3.
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parameter parameter value for η regions

|η| ≤ 0.8 0.8 < |η| ≤ 1.37 1.37 < |η| ≤ 1.52 1.52 < |η| ≤ 2.5 2.5 < |η| ≤ 4.5

p1 −0.0455 −0.047 62 −0.039 78 −0.048 36 −0.3679

p2 1.013 · 10−4 5.546 · 10−5 9.214 · 10−5 1.138 · 10−4 1.244 · 10−3

p3 1.119 1.407 1.471 1.327 −2.756

p4 0.025 24 6.649 · 10−3 0.020 57 0.025 81 0.4537

p5 0.136 0.2722 0.2855 0.6945 −3.16

p6 4.685 · 10−5 −7.768 · 10−4 −8.845 · 10−4 −1.618 · 10−3 0.030 75

p7 0.019 98 −0.1261 −0.1804 −0.1233 0.016 96

p8 5.32 · 10−5 1.057 · 10−3 1.21 · 10−3 7.504 · 10−4 4.189 · 10−5

p9 0.3336 0.3385 0.3431 0.2723 0.1536

p10 −3.1165 · 10−4 −4.225 · 10−4 −1.929 · 10−4 −1.365 · 10−4 1.871 · 10−5

Table 5.1.: Fitted parameter values for light jets for all η regions.
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Figure 5.3.: Mc10b transfer function for light jets for different energies, in the region
|η| < 0.8.
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Figure 5.4.: Mc10b transfer function for b-jets for different energies, in the region |η| <
0.8.
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parameter parameter value for η regions

|η| ≤ 0.8 0.8 < |η| ≤ 1.37 1.37 < |η| ≤ 1.52 1.52 < |η| ≤ 2.5 2.5 < |η| ≤ 4.5

p1 0.1423 0.0826 0.2605 0.3645 1.023

p2 −4.497 · 10−5 −3.971 · 10−5 −2.845 · 10−5 −3.299 · 10−5 1.404 · 10−4

p3 0.8136 1.005 1.741 1.011 −1.708

p4 0.035 18 0.023 46 −0.019 89 0.037 46 0.2785

p5 4.339 8.023 7.689 12.56 5.302

p6 3.675 · 10−4 −7.728 · 10−4 −3.75 · 10−4 −9.417 · 10−4 −6.653 · 10−4

p7 0.087 63 0.074 06 0.054 31 0.047 66 −0.5094

p8 1.819 · 10−4 2.357 · 10−4 2.72 · 10−4 3.851 · 10−4 2.147 · 10−3

p9 0.2787 0.2583 0.3005 0.254 0.1269

p10 −1.77 · 10−4 −7.056 · 10−5 −2.533 · 10−4 −5.504 · 10−5 7.677 · 10−4

Table 5.2.: Fitted parameter values for b-jets for all η regions.
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5.2.2. Transfer function for b-jets

The transfer function’s parameters for b-jets are:

µ1 = Θ (p1 + Etruth · p2)

σ1 = Θ

(

p3√
Etruth

+ p4

)

ω = Θ (p5 + Etruth · p6)

µ2 = Θ (p7 + Etruth · p8)

σ2 = Θ (p9 + Etruth · p10)

The values for p1, . . . p10 are dependent on η. Their values are shown in Table 5.2.

A plot of the b-jet transfer function for different energies is shown in Figure 5.4.

5.2.3. Transfer function for electrons

The transfer function’s parameters for electrons are:

µ1 = Θ (p1 + Etruth · p2)

σ1 = Θ

(

p3√
Etruth

+ p4

)

ω = Θ (p5 + Etruth · p6)

µ2 = Θ (p7 + Etruth · p8)

σ2 = Θ (p9 + Etruth · p10)

The values for p1, . . . p10 are dependent on η. Their values are shown in Table 5.3.

A plot of the electron transfer function for different energies is shown in Figure 5.5.
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5.2. Mc10b transfer functions

parameter parameter value for η regions

|η| ≤ 0.8 0.8 < |η| ≤ 1.37 1.52 < |η| ≤ 2.5

p1 3.437 · 10−3 8.416 · 10−3 1.174 · 10−3

p2 −2.57 · 10−6 −2.99 · 10−5 1.8 · 10−5

p3 0.041 63 0.1977 0.1097

p4 0.012 34 2.103 · 10−3 0.011 19

p5 0.061 43 0.1217 0.353

p6 −7.19 · 10−5 −4.727 · 10−4 −11.028 · 10−3

p7 0.032 88 0.062 86 0.065 61

p8 9.926 · 10−5 −1.86 · 10−4 −1.462 · 10−4

p9 0.037 97 0.054 35 0.067 11

p10 2.145 · 10−4 −2.652 · 10−5 −1.035 · 10−5

Table 5.3.: Fitted parameter values for electrons for all η regions.
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Figure 5.5.: Mc10b transfer function for electrons for different energies, in the region
|η| < 0.8.
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5. The transfer functions

5.2.4. Transfer function for muons

The transfer function’s parameters for muons are:

µ1 = Θ (p1 + Etruth · p2)

σ1 = Θ (p3 + Etruth · p4)

ω = Θ (p5 + Etruth · p6)

µ2 = Θ (p7 + Etruth · p8)

σ2 = Θ (p9 + Etruth · p10)
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Figure 5.6.: Mc10b transfer function for muons for different energies, in the region
|η| < 0.8.

The values for p1, . . . p10 are dependent on η. Their values are shown in Table 5.4.

A plot of the muon transfer function for different energies is shown in Figure 5.6.
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5.2. Mc10b transfer functions

parameter parameter value for η regions

|η| ≤ 0.8 0.8 < |η| ≤ 1.37 1.52 < |η| ≤ 2.5

p1 −2.594 · 10−4 7.124 · 10−4 −2.45 · 10−3

p2 2.688 · 10−5 2.876 · 10−5 6.758 · 10−5

p3 0.0162 0.018 79 0.027 02

p4 1.879 · 10−4 3.442 · 10−4 2.335 · 10−4

p5 0.017 78 6.506 · 10−3 0.016 39

p6 6.21 · 10−4 3.425 · 10−4 6.06 · 10−4

p7 0.043 0.1846 0.053 27

p8 −2.88 · 10−4 −2.187 · 10−3 −4.296 · 10−4

p9 0.062 78 0.1323 0.070 49

p10 2.101 · 10−4 −3.159 · 10−4 4.137 · 10−4

Table 5.4.: Fitted parameter values for muons for all η regions.
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6. MEMTool

MEMTool is a computer programme, written as a part of this thesis, for measuring the

top quark mass in the semileptonic channel with the matrix element method.

It is written in C++ and is available from the ATLAS SVN server at [36].

MEMTool can calculate event likelihoods, combine likelihoods from multiple events and

extract the top quark mass. It is also capable of generating calibration curves and per-

forming ensemble testing.

MEMTool is modular in the sense that it has components – matrix elements, transfer

functions, PDFs and sets of integration variables – which can easily be exchanged or ex-

tended.

This chapter will describe the programme with its components, show the available

implementations for each component and explain the process of numerical integration

that is used to integrate over the phase space.

User documentation and a class reference documentation are provided with MEMTool.

6.1. Details of the integration process

The main effort in the matrix element method is the computation of the event likelihood

for a range of top quark masses. This integration cannot be performed analytically; in-

stead, numerical integration techniques are used. MEMTool uses the VEGAS algorithm

by Lepage, a Monte Carlo integration algorithm [37, 38].

It is not known unambiguously which of the four jets corresponds to which of the final

state partons. Since two b-tags are required for the event selection, it is known which

two jets have to be associated with the b-quarks. Counting in the fact that the used

matrix element is symmetrical under the permutation of the light jet associations, there

are only two possible jet/parton associations left. MEMTool computes the likelihood for

both permutations separately and then averages over both results. This introduces a
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6. MEMTool

combinatorial background, whose effects are shown in Chapter 7.

If not explicitely stated otherwise, all likelihood distributions shown below are the aver-

aged results of both possible permutations.

6.1.1. Numerical integration with VEGAS

VEGAS estimates the integral

I =
∫

Ω
f(~x)d~x

of a function f(~x) over a volume Ω by computing the integrand at N random points

~xi ∈ Ω and forming the weighted average

I ≈ S =
1

N

N∑

i=1

f(~xi)

p(~xi)
.

The random points are chosen with a probability density p(~x). VEGAS makes m esti-

mates Sλ, λ = 1, . . . , m of this integral, each using N evaluations. These m estimates are

combined to give a cumulative estimate S̄,

I ≈ S̄ = σ̄2
m∑

λ=1

Sλ

σ2
λ

,

where σλ is the approximate uncertainty in Sλ:

σ2
λ =

1

N(N − 1)

N∑

i=1

f(~xi)
2

p(~xi)
− S2

λ ,

and σ̄ is the approximate uncertainty in S̄:

1

σ̄2
=

m∑

λ=1

1

σ2
λ

.

VEGAS also determines whether the various estimates are consistent by computing the

χ2 per degree of freedom or not.

The simplest Monte Carlo integration algorithms use a uniform distribution for sam-

pling random integration points, i.e. p(~x) = const..

In VEGAS, p(~x) is modified so as to minimize σ2
λ. Uniformly distributed points are used

in the first iteration of the integration algorithm. The information gained about f(~x)
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6.1. Details of the integration process

in this first sampling is then used to define a new density p′(~x) which reduces σ2
λ in the

next iteration. After each subsequent iteration, p(~x) is again refined for use in the next,

gradually reducing σ2
λ and improving the estimate S̄.

In theory, σ2
λ is minimized when

p(~x) =
|f(~x)|

∫

Ω |f(~x)|dx
,

which means that more sample points are chosen from regions where the integrand has

the largest magnitude. VEGAS tries to approximate this ideal by dividing the integra-

tion volume into a grid of hypercubes. Random points are distributed so that the average

number of points per hypercube is the same. After each iteration, the increment sizes of

the axes are adjusted in order to concentrate hypercubes in the regions where |f(~x)| is

largest, until the optimal grid is obtained.

Instead of relying on a custom implementation, MEMTool uses the fast and stable

VEGAS methods from the GNU Scientific Library [39].

6.1.2. Integration variables and phase space transformations

The integration in Equation 4.5 is performed over the whole phase space, which means

24 dimensions, 6 (3 × 2) for the momenta of the initial state particles and 18 (3 × 6) for

the momenta of the final state particles.

This number, which is unfeasible in terms of integration dimensions, can be reduced to

20 by assuming that the x- and y- momenta of the initial particles be 0. This assumption

is reasonable as the initial particles travel along the direction of the beam pipe. Now, the

initial partons’ four-momenta are fully defined by their respective fraction of the incoming

protons’ energies, x1 and x2:

E0 = x1 · 3500 GeV ; ~p0 =








0

0

x1








· 3500 GeV

E1 = x2 · 3500 GeV ; ~p1 = −








0

0

x2








· 3500 GeV
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6. MEMTool

Furthermore, the integral contains four δ distributions for the conservation of energy

and momentum, which effectively reduce the number of dimensions from 20 to 16. They

are usually used to fix the values of x1, x2, px
7 and py

7.

With the assumption that η and φ are measured precisely (see Equations 5.2 and 5.3),

10 more variables are fixed – two for each outgoing particle except the neutrino – which

reduces the number of integration variables down to 6.

The remaining six integration variables should be chosen wisely. The simplest choice

would be to integrate over the energies of all jets and the charged lepton as well as the

neutrino’s z-momentum. The downside of this choice is that the values for these variables,

for which neither the matrix element nor the transfer functions make the integrand vanish,

are sparse in this phase space. Therefore, choosing these integration variables requires a

high number of integration points.

Variables that follow a known distribution, such as the masses of the W bosons and

top quarks, are much better choices, as they let the integration algorithm converge much

faster. They do, however, require a more sophisticated algorithm to calculate all particles’

four-momenta from the integration variables.

Associated with each choice of integration variables is a different phase space volume

element Φ6.

6.2. MEMTool’s components

6.2.1. Matrix elements

The base class for the matrix elements is MEMTool::ME::ME. It provides an interface for

all matrix elements. A matrix element has a process (either gg or qq̄) and is dependent

on the top quark mass and width, and on the event’s kinematic.

There are currently five implementations of matrix elements available: MadGraphGGME,

MadGraphQQME, KleissStirlingGGME, KleissStirlingQQME and NoCorrelationGGME.

All matrix element implementations reside in the namespace MEMTool::ME.

MadGraphGGME is a wrapper for the matrix element code generated with Mad-

Graph 5 [40]. The process used for generation of the MadGraph code is

g g > t t˜ > b b˜ u d˜ e- ve .
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6.2. MEMTool’s components

MadGraphQQME is, like MadGraphGGME, a wrapper for MadGraph-generated matrix

element code, for the process

u d˜ > t t˜ > b b˜ u d˜ e- ve˜ .

KleissStirlingGGME and KleissStirlingQQME are the tt̄ matrix elements for glu-

on-gluon fusion and quark-antiquark annihilation, respectively, following the formulae

given by Kleiss and Stirling in [41].

The analytical expression and the resulting code are relatively compact, while including

both the effects of a finite width of the W bosons in the top quark decay and those of a

non-zero b quark mass, as well as the complete spin correlation in the decays.

NoCorrelationGGME is the tt̄ matrix element for gluon-gluon fusion used in [42, 43].

The matrix element does take spin correlations into account, resulting in the analytical

expression for the amplitude,

|M|2 =
g4

s

9
FF̄ (2 − β2 sin2 θqt) ,

where gs is the strong coupling constant and θqt describes the angle between the incoming

partons in their rest frame and the top quark. The factors F and F̄ describe the leptonic

and hadronic decay of the top quark:

F =
g4

W

4

π(m2
t − m2

W,lep)

mtΓt

m2
t (1 − c2

36) + m2
W,lep(1 + c36)

2

(m2
W,lep − m2

W )2 + m2
W Γ2

W

, and

F̄ =
g4

W

4

π(m2
t − m2

W,had)

mtΓt

m2
t (1 − c2

25) + m2
W,had(1 + c2

25)

(m2
W,had − m2

W )2 + m2
W Γ2

W

,

where gW is the weak coupling constant and cij is the cosine of the angle between particle

i and particle j in their respecive rest frame.

This very compact matrix element is by far the fastest to compute.

6.2.2. Transfer functions

The base class for the transfer functions is MEMTool::TF::TF. It provides an interface

with just one function, called getTF(), which takes the event and the current point in

the phase space and returns the total combined transfer function W (~x, ~y) from Equation

5.1.
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There are currently three implementations of transfer functions in MEMTool within

the namespace MEMTool::TF:

AlwaysOneTF is a trivial implementation of TF that – as the name suggests – always

returns a value of 1. It is used only in combination with DeltaKinematic, described in

Section 6.2.4.

GaussianTF is an implementation of the Gaussian transfer functions described in Sec-

tion 5.1.

Mc10bTF is an implementation of the ATLAS Mc10b transfer functions described in

Section 5.2.

6.2.3. Parton distribution functions

The base class for the PDFs is MEMTool::PDF::PDF and currently has two implementations

in the namespace MEMTool::PDF.

LHAPDF is a wrapper to the LHAPDF library, which provides a unified and easy to

use interface to many PDF sets. It can be configured to use any PDF set that LHAPDF

supports by passing the PDF’s name.

The default PDF choice used in this analysis is the leading order PDF CTEQ6l.

CachedLHAPDF is a caching version of the aforementioned LHAPDF class. The vast

amount of calls to the LHAPDF library during integration requires a high computational

effort. This computing time is reduced drastically by using this class, which creates a

lookup table for the PDF values with 100, 000 entries upon construction and uses this

lookup table instead of calling the LHAPDF library.

For increased precision, a linear interpolation between lookup values is also done.

6.2.4. Integration variables

These classes handle different sets of integration variables, the corresponding phase space

volume element and the algorithm to calculate all particle’s four-momenta from the inte-

gration variables discussed in Section 6.1.2.

They all inherit from MEMTool::Kinematic::Kinematic and reside in the namespace

MEMTool::Kinematic.
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SimplePznuKinematic is a Kinematic implementation that uses five energies and the

neutrino’s z-momentum as integration variables.

Its six integration variables are:

• E2, the energy of the first b-jet,

• E3, the energy of the second b-jet,

• E4, the energy of the first light jet,

• E5, the energy of the second light jet,

• E6, the energy of the charged lepton, and

• pz
7, the neutrino’s z-momentum.

All angles (η and φ) are assumed to be exact.

Its phase space volume element, without the δ distributions, is

dΦ6 =
6∏

i=2

|~pi|dEi

2(2π)3
· dpz

7

2(2π)3E7
. (6.1)

The kinematic reconstruction for this set of integration variables can be found in Ap-

pendix A.1.

DeltaKinematic is a Kinematic implementation which is used for testing on un-

smeared parton-level events. It has only one integration variable: the neutrino’s z-

momentum pz
7; all other momenta are taken to be precise. The neutrinos x- and y-

momentum, as well as the incoming partons’ energy fractions (x1 and x2 in Equation 4.3)

are calculated from the constraints set by the conservation of energy and momentum.

DeltaKinematic is used in conjunction with AlwaysOneTF, which is described in Section

6.2.2.

Its phase space volume element is the same as the one in Equation 6.1.

WmassKinematic is a Kinematic implementation that uses five energies and the mass

of the leptonic W boson as integration variables.

Its six integration variables are:

• E2, the energy of the first b-jet,

• E3, the energy of the second b-jet,

49



6. MEMTool

• E4, the energy of the first light jet,

• E5, the energy of the second light jet,

• E6, the energy of the charged lepton, and

• m2
W,lep, the squared mass of the leptonic W boson.

This set of integration variables can have up to two valid solutions per integration point,

as each W mass corresponds to two possible values for pz
7 with opposite sign.

Its phase space volume element, without the δ distributions, is

dΦ6 =
6∏

i=2

|~pi|dEi

2(2π)3
·

dm2
W,lep

2(2π)3
∣
∣
∣E6

pz

7

E7
− pz

6

∣
∣
∣

.

The kinematic reconstruction can be found in Appendix A.2.

FourMassesKinematic is a Kinematic implementation which uses the two top quark

masses, the two W boson masses and two energies as integration variables.

Its six integration variables are:

• E4, the energy of the first light jet,

• E6, the energy of the charged lepton,

• m2
W,had, the squared mass of the hadronic W boson,

• m2
W,lep, the squared mass of the leptonic W boson,

• m2
t,had, the squared mass of the hadronic top quark, and

• m2
t,lep, the squared mass of the leptonic top quark.

This set of integration variables can have up to four valid solutions per integration point.

Its phase space volume element, without the δ distributions, is

dΦ6 =
dE4dE6

2(2π)3pz
7

·
6∏

i=2

|~pi|2
2(2π)3

× dm2
W,had

2E4|1 − cos θ45| · dm2
t,had

2
∣
∣
∣(E4 + E5) |~p2|

E2
− E4 · cos θ42 − E2 · cos θ52

∣
∣
∣

× dm2
W,lep

2
∣
∣
∣E6

pz

7

E7
− pz

6

∣
∣
∣

· dm2
t,lep

2
∣
∣
∣(E6 + E7)

|~p3|
E3

− E6 · cos θ63 − E3 · cos θ73

∣
∣
∣

,
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6.3. Default configuration

where θij is the angle between particle i and particle j.

The kinematic reconstruction for this set of integration variables is rather lengthy and

computationally expensive, as it involves an iterative approximation approach and the

solving of a fourth degree polynomial. The procedure can be found in Appendix A.3.

FourMassesNwaKinematic is a version of FourMassesKinematic that uses a narrow

width approximation on the top quark masses to reduce the number of integration vari-

ables from six to four.

In this approximation, both the hadronic and the leptonic top quarks’ masses are set to

the current top quark mass hypothesis that is being tested. This is acceptable because of

the small width of the top quark’s small decay width.

Its phase space volume element is the same as the one for the FourMassesKinematic, but

multiplied with a factor ρ to account for the narrow width approximation,

ρ = (πmtΓt)
2

6.3. Default configuration

The default configuration for MEMTool is to use the NoCorrelationGGME matrix element,

the Mc10bTF transfer functions, the CachedLHAPDF parton distribution functions and the

integration variables defined by FourMassesNwaKinematic.

If not stated otherwise, the tests in the following chapters will use the aforementioned

configuration.
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7. Tests with simulated parton level

events

To verify that MEMTool works correctly, it has to be tested. For this purpose, parton-

level events for tt̄ production via gluon-gluon fusion with subsequent semileptonic decay

have been generated with MadEvent, using MadGraph’s leading order matrix element

[40]. Seven of these test samples are available, with input top quark masses of 160 GeV,

165 GeV, 170 GeV, 175 GeV, 180 GeV, 185 GeV and 190 GeV, respectively. The samples

each contain 1000 simulated events.

Three tests have been carried out to ensure the proper functionality of MEMTool. The

first test uses the unsmeared samples as input, without using transfer functions. For the

second and third test, the effects of the transfer functions – Gaussian and Mc10b – were

simulated by smearing the energies of the final state particles according to their transfer

functions.

In this chapter, the results of these tests are presented.

As described in Section 4.2, the likelihoods have to be normalized with the total cross

sections and the acceptance rates. Both depend only on the assumed top quark mass and

not on the event. Therefore, they were calculated beforehand. The cross sections were

calculated with MadGraph for each used top quark mass. The acceptance rates were

calculated by generating 100, 000 events with MadGraph without any cuts for a set of

top quark masses, cutting them manually and counting the remaining events. A second

degree polynomial was fitted through the rates. The resulting acceptance rates are shown

in Figure 7.1.
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Figure 7.1.: Acceptance rates with a polynomial fit.

7.1. Results with unsmeared data

The first test is performed on unsmeared parton-level events. The energies of all final state

particles – except for the neutrino – are considered to be precise, leaving the neutrino’s

z-momentum pz
7 as sole integration variable. Therefore, MEMTool was configured to use

the combination of its modules DeltaKinematic and AlwaysOneTF.
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Figure 7.2.: Single event likelihood distributions for (a) an event with input top quark
mass 160 GeV and (b) an event with input top quark mass 175 GeV, using
unsmeared data.
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7.1. Results with unsmeared data
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Figure 7.3.: Single event likelihood distributions when using only one permutation of
the possible jet/parton associations.

The resulting likelihoods generally have a sharp peak at their input mass, which can be

seen for two example events in Figure 7.2. These results include combinatorial background

from averaging over both the correct and the wrong jet/parton association. Figure 7.3(a)

shows the likelihood when only the right permutation is used, Figure 7.3(b) shows the

likelihood distribution that is the result of picking the wrong permutation. In this case,

the wrong permutation has a much higher − ln(L) and thus only broadens the resulting

likelihood distribution a bit when combined (Figure 7.2(b)).

 hypothesis [GeV]tm
160 165 170 175 180 185 190

-ln
(L

ik
el

ih
oo

d)

6000

7000

8000

9000

10000

11000

12000

13000

 / ndf 2χ   9994 / 2
p0        49.26±  6031 
p1        0.03955±   175 
p2        0.001669± 0.04999 

 / ndf 2χ   9994 / 2
p0        49.26±  6031 
p1        0.03955±   175 
p2        0.001669± 0.04999 

Figure 7.4.: Combined likelihood curve for 1000 events from the unsmeared sample with
mt = 175 GeV.
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7. Tests with simulated parton level events

For each input top quark mass, the likelihood distribution for 1000 events has been

computed and combined to a single likelihood distribution. The minimum and uncer-

tainty have then been extracted from the combined likelihood distribution by fitting a

parabola to the log-likelihood curve. The results for the mt = 175 GeV sample can be

seen in Figure 7.4. The fit yields an excellent result, returning a measured top quark mass

of 175.00 ± 0.04 GeV.

Since the data samples were generated using a leading order matrix element and without

any background process contributing to the data, the measured (output) top quark mass

should always be equal to the input top quark mass. This behaviour can be seen in a

calibration curve, where the output top quark mass is plotted against the input top quark

mass1. A straight line is then fitted through the points, which should ideally have a slope

of 1 and a y-intercept of 0. The calibration curve for this test, which is shown in Figure

7.5, has a slope of 1 and almost no shift. For comparison, the ideal calibration curve is

shown by the dashed red line. This shows that for unsmeared data and without the use

of transfer functions, MEMTool yields the correct results.
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Figure 7.5.: Calibration curve for unsmeared parton level data.

1Actually, the plot shows both input and output top quark mass minus 175 GeV, so that the y-intercept
of a straight line fitted through the points gives a better measure of the actual shift.
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7.2. Results with Gaussian transfer functions

7.2. Results with Gaussian transfer functions

The second test shows the performance of MEMTool when using the Gaussian transfer

functions. To generate suitable input data, the parton-level event samples were used: the

final state particles’ energies were randomly smeared according to their respective trans-

fer functions by means of inverse transform sampling. To prevent unphysical events, the

transfer functions were cut off so that the sampling could not result in negative energies

for the smeared events.

An event selection is applied to the samples to select 1000 events from each sample.

The selected events are required to have:

1. exactly four jets, all having E > 20 GeV and η < 2.5,

2. a b-tag for two of the jets,

3. exactly one electron with E > 15 GeV, and

4. ETmiss
> 20 GeV.

To identify the b-jets, the JetFitterCOMBNN b-tagger is used, which is a neural network-

based combination of the JetFitter and IP3D b-tagging algorithms.
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Figure 7.6.: Single event likelihood distributions for (a) an event with input top quark
mass 160 GeV and (b) an event with input top quark mass 175 GeV, using
Gaussian transfer functions.

Figure 7.6 shows two single event likelihood distributions, which both have a much

broader minimum due to the smearing and the use of transfer functions.
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7. Tests with simulated parton level events
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Figure 7.7.: Combined likelihood curve for 1000 events from the sample with mt =
175 GeV using Gaussian transfer functions.

The combined likelihood distributions – as shown in Figure 7.7 for the mt = 175 GeV

sample – are also broader than without transfer functions, which is to be expected.

The calibration curve for this test is shown in Figure 7.8. The fitted line’s slope is

almost perfect; it has a small shift of 0.2255 GeV when compared to the ideal line, which

is acceptable.

The consistency of the results is checked by using ensemble testing. 5000 ensembles are

generated from each input sample by randomly selecting 100 events with replacement.

For each ensemble, the combined likelihood distribution is generated and the top quark

mass and its uncertainty is measured. From these values, a pull distribution is generated.

The pull of an ensemble is defined as

p =
mens − mt

σens

,

where mens and σens are the top quark mass and uncertainty extracted from the ensemble

and mt is the measured top quark mass for the whole sample. Ideally, for likelihood dis-

tributions that follow a Gaussian distribution, the pull distribution should fit a Gaussian

distribution with mean µ = 0 and standard deviation σ = 1. Since this is not the case, the

pull distributions can only serve as an approximative hint whether the programme is work-
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7.2. Results with Gaussian transfer functions
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Figure 7.8.: Calibration curve for parton level data smeared with Gaussian transfer
functions.

ing correctly. Figure 7.9 shows the pull distribution generated from the mt = 175 GeV

sample.

Figure 7.10 shows the mean and width of the pull distributions for all samples. The pull

means are distributed around 0 and the widths around 1, which is a good indication that

the method works correctly for Gaussian transfer functions. The pull width distribution

in Figure 7.10(b) shows a possible trend to larger pull widths for higher top quark masses.
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7. Tests with simulated parton level events
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Figure 7.9.: Pull distribution with fitted Gaussian distribution for the mt = 175 GeV
sample with Gaussian transfer functions.
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Figure 7.10.: Pull mean and width for all samples with Gaussian transfer functions.
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7.3. Results with Mc10b transfer functions

7.3. Results with Mc10b transfer functions

The input data for the test with Mc10b transfer functions was also generated from the

parton-level event samples by smearing the energies according to their transfer functions’

distributions. Again, the transfer functions were cut off for the inverse transform sampling

in order to prevent negative energies. 1000 events were selected from each of the resulting

samples, using the event selection from Section 7.2.
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Figure 7.11.: Single event likelihood distributions for (a) an event with input top quark
mass 160 GeV and (b) an event with input top quark mass 175 GeV, using
Mc10b transfer functions.
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Figure 7.12.: Combined likelihood curve for 1000 events from the sample with mt =
175 GeV using Mc10b transfer functions.
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7. Tests with simulated parton level events

Figure 7.11 shows two single event likelihood distributions. The distributions are asym-

metric and have wider peaks than the ones smeared with Gaussian transfer functions.
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Figure 7.13.: Calibration curve for parton level data smeared with Mc10b transfer func-
tions.

Figure 7.12 shows the combined likelihood distribution for mt = 175 GeV. Most of the

shifts and asymmetries, like the ones in Figure 7.11, cancel each other out when many

events are combined. But still, the distribution is asymmetric and has a broader minimum

than in the previous tests.

The calibration curve is shown in Figure 7.13. Slope and y-intercept have almost ideal

values. Although the single data points do not lie perfectly on the fitted line, their dis-

tribution is in accordance within errors.

Again, ensemble testing yields pull distributions that resemble Gaussian distributions

with a mean around 0 and a width around 1, which can be seen in Figure 7.14 for the

mt = 175 GeV input sample.

Pull mean and width for all samples are plotted in Figure 7.15. The results are not

perfectly consistent with 0 and 1, respectively, which is not a problem in this case, since

the likelihood distributions are not Gaussian.
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7.3. Results with Mc10b transfer functions
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Figure 7.14.: Pull distribution with fitted Gaussian distribution for the mt = 175 GeV
sample with Mc10b transfer functions.
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Figure 7.15.: Pull mean and width for all samples with Mc10b transfer functions.
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8. Tests with ATLAS Monte Carlo

events

After the tests on parton-level events, NLO Monte Carlo events from the official ATLAS

Monte Carlo production are used as input. The datasets used in this chapter are the

tt̄ mass variation datasets from the MC10b production round. The data has been gen-

erated by the MC@NLO matrix element calculator [44–46] with parton showering from

Herwig/Jimmy [47–49]. Detector simulation has been done with Geant 4 [50, 51]. Nine

signal samples are used, each corresponding to a different top quark mass: 160 GeV,

165 GeV, 167.5 GeV, 170 GeV, 172.5 GeV, 175 GeV, 177.5 GeV, 180 GeV and 190 GeV.

From each sample, 1000 events are selected using the same event selection as in Chapter 7.

For the cross sections and acceptance rates, the same values as in the previous chapter

are used, although the Monte Carlo events used in this chapter are NLO. The choice to

still use leading order cross sections and acceptance rates is a conscious one: this way, the

matrix element method stays a strict leading order method, and NLO effects are handled

by calibration alone instead of changing parts of the method.
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Figure 8.1.: Single event likelihood distributions for (a) an event with input top quark
mass 160 GeV and (b) an event with input top quark mass 172.5 GeV,
using ATLAS Monte Carlo events.
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8. Tests with ATLAS Monte Carlo events
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Figure 8.2.: Combined likelihood curve for 1000 events from the sample with mt =
172.5 GeV using ATLAS Monte Carlo events.

Figure 8.1 shows the likelihood distributions of two single events. The combined like-

lihood curves for 1000 events – as shown in Figure 8.2 for an input top quark mass of

mt = 172.5 GeV – is asymmetric and has its minimum at 177.7 GeV, about 5 GeV

higher than the input top quark mass. An asymmetric and shifted result is to be ex-

pected, though, since the Monte Carlo data contains NLO contributions and events from

quark-antiquark annihilation which the matrix element method does not account for. The

fraction of tt̄ events in the samples produced by gg fusion is about 80%. qq̄ annihilation

makes up the other 20%. Another effect in the Monte Carlo samples is the change of

kinematic distributions due to radiation. For the same reason, the calibration curve –

shown in Figure 8.3 – is not expected to have a slope of 1 and no shift. Rather, slope

and y-intercept of this calibration curve are used – as the name suggests – to calibrate

the matrix element method for the use with data. After applying the matrix element

method on data, one would calculate the true value for the top quark mass mtrue
t from

the measured value mmeas
t using the calibration curve’s slope α and y-intercept β:

mtrue
t =

1

α
(mmeas

t − β) , (8.1)

or, in the case of a calibration curve shifted by 175 GeV,

mtrue
t =

1

α′
(mmeas

t − β ′ − 175 GeV) + 175 GeV . (8.2)
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Figure 8.3.: Calibration curve for ATLAS Monte Carlo data. The dashed red line in-
dicates a calibration curve with a slope of 1 and no offset.

The calibration curve in Figure 8.3 is shifted, and therefore Equation 8.2 should be used

with values α′ = 0.8777 ± 0.02459 and β ′ = 6.903 ± 0.2096.
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Figure 8.4.: Expected statistical uncertainty for mt = 172.5 GeV for an integrated
luminosity of

∫ L = 5.25 fb−1. The red line indicates the actual statistical
uncertainty measured from 1000 events, scaled to match the integrated
luminosity.
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8. Tests with ATLAS Monte Carlo events

To give an overview of the expected statistical uncertainty for a measurement with the

matrix element method, a distribution of the statistical uncertainty of 5000 ensembles –

drawn from the mt = 172.5 GeV sample – has been plotted and scaled to match the total

integrated luminosity recorded by ATLAS in 2011,
∫ L = 5.25 fb−1. The results are shown

in Figure 8.4. The red line in the histogram indicates the statistical uncertainty measured

from all 1000 events in the sample, also scaled to match the integrated luminosity. The

results are in excellent agreement.

NLO contributions are not the only reason for the difference between the measured top

quark masses and the input top quark masses. It is possible for events to be selected

even though one or more of the particles are not part of the semileptonic tt̄ decay, e.g.

due to ISR or FSR. To study the influence of these events, samples with only matched

events are selected – i.e. where each of the six final state particles is part of the tt̄ decay.

This requires information from the Monte Carlo generator to be present in the MC data

sample. An event is considered matched if its Monte Carlo truth information contains a

tt̄ pair and its decay products in the semileptonic channel, and if the final state partons

from this decay chain correspond to the reconstructed objects in the event. Only four

samples were available which had the necessary information: the ones for the top quark

masses 170 GeV, 172.5 GeV, 180 GeV and 190 GeV.
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Figure 8.5.: Calibration curve for ATLAS Monte Carlo data, using only matched events.
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The calibration curve for the matched samples is shown in Figure 8.5. Having a slope

of 0.91 and a y-intercept of 2.5, the difference between this line and the ideal line through

the origin with a slope of 1 is smaller than it was the case without matching.

For samples that contain only unmatched events, no minimum could be found in the

scanned likelihood range for any of the samples. The combined likelihood curves for the

mt = 172.5 GeV sample containing only matched events and for the sample containing

only unmatched events are shown in Figure 8.6. The contribution of the unmatched events

is about 70%.

 hypothesis [GeV]tm
155 160 165 170 175 180 185 190

-ln
(L

ik
el

ih
oo

d)

12000

12200

12400

12600

12800

13000

13200
 / ndf 2χ  154.3 / 11

p0        1.506± 1.202e+04 
p1        0.04257± 174.8 
p2        0.005767± 0.4898 

 / ndf 2χ  154.3 / 11
p0        1.506± 1.202e+04 
p1        0.04257± 174.8 
p2        0.005767± 0.4898 

 hypothesis [GeV]tm
155 160 165 170 175 180 185 190

-ln
(L

ik
el

ih
oo

d)

13800

14000

14200

14400

14600

14800

15000

15200

15400

15600

15800

 / ndf 2χ    inf / 6
p0         -nan± 1.394e+04 
p1          nan±   187 
p2          nan±  -nan 

 / ndf 2χ    inf / 6
p0         -nan± 1.394e+04 
p1          nan±   187 
p2          nan±  -nan 

Figure 8.6.: Combined likelihood distributions for two samples with mt = 172.5 GeV,
containing (a) only matched events and (b) only unmatched events.

The main background contributions for the semileptonic tt̄ channel, QCD and W +jets,

are also studied with ATLAS Monte Carlo data. Likelihood distributions were generated

for both background sources. They can be found in Figure 8.7. Especially the QCD

background will need further study, as its likelihood distribution looks similar to the

distribution of a tt̄ sample.
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8. Tests with ATLAS Monte Carlo events

 hypothesis [GeV]tm
160 165 170 175 180 185 190

-ln
(L

ik
el

ih
oo

d)

10800

10900

11000

11100

11200

11300

11400

11500

11600

11700  / ndf 2χ  149.9 / 16
p0        1.054± 1.08e+04 
p1        0.04518± 180.6 
p2        0.006404± 0.7011 

 / ndf 2χ  149.9 / 16
p0        1.054± 1.08e+04 
p1        0.04518± 180.6 
p2        0.006404± 0.7011 

(a) QCD
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(b) W + jets

Figure 8.7.: Combined likelihood distributions for (a) QCD and (b) W+jets background
events.
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9. Systematic uncertainties

Different systematic uncertainties have to be taken into account for a measurement of the

top quark mass with the matrix element method. This chapter gives an overview over the

sources of some systematic uncertainties.

Likelihood minimum fit

The use of a parabola to determine minimum and width of the log-likelihood distribution

is far from perfect. As shown in Chapters 7 and 8, the combined likelihood distributions

are not necessarily symmetric. This could lead to a shift in the extracted minimum as well

as a false estimation of the uncertainty. However, this effect is mitigated due to the fact

that the parabolic fit is only performed in the region around the likelihood’s minimum.

Calibration correction

Since the calibration curve for Monte Carlo data is not consistent with a slope of 1 and

no offset, a linear correction would have to be applied to measured top quark masses from

data. Due to limited Monte Carlo statistics, the calibration curve’s values for slope and

offset are subject to statistical fluctuations.

Jet energy scale

If the measurement of jet energies is not precisely calibrated, it has an effect on the

measured top quark mass. The uncertainty of this jet energy scale (JES) can be studied

by varying the energies of all jets and noting the difference in the measured top quark

mass.

As a more advanced approach, the matrix element method can be used to fit two para-

meters – the top quark mass and the jet energy scale – at once. Even a three-dimensional

fit with a separate jet energy scale for b-quarks is possible.

Transfer functions

The transfer functions, though fitted to Monte Carlo data, are a lot simpler than the
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9. Systematic uncertainties

full detector simulation, not to mention the real detector. Therefore, there are most cer-

tainly effects that the transfer functions cannot describe perfectly, leading to a systematic

uncertainty.

Approximations

Some approximations have been made over the course of this thesis, most notably the

use of narrow width approximation to reduce the number of integration variables and

the use of the matrix element which does not take spin correlations into account. Both

approximations have an effect on the precision of the measurement.
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10. Conclusion and outlook

The matrix element method has been presented as a high-precision measurement method

for the top quark mass in the semileptonic channel.

A computer programme, MEMTool, has been developed to perform the likelihood calcu-

lations for the matrix element method and extract the top quark mass from the calculated

likelihoods.

In tests with simulated parton-level events, which were performed to test the method,

the results were correct.

The application of the method to ATLAS Monte Carlo data yielded a calibration curve

that is linear, yet has a slope other than 1 and an offset greater than 0. This behaviour is

expected, as the calibration curve from Monte Carlo events serves to calibrate the method

for use with real data.

Before attempting a measurement on data, background contributions as well as effects

from unmatched events have to be studied thoroughly, so that it is possible to generate a

realistic calibration for the measurement.

The method presented in this thesis can be refined by adding matrix elements for other

processes, most notably the one for tt̄ production via quark-antiquark annihilation, but

also possibly a background likelihood for W + jets.

An extension of the method to a two-dimensional fit, measuring the values of the top

quark mass and the jet energy scale simultaneously, would reduce the systematic JES un-

certainty. As MEMTool currently needs only 6 minutes per event on a modern computer,

a simultaneous fit of top quark mass and jet energy scale is feasible, though it would of

course increase the computation time.
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A. Phase space transformations and

reconstruction of event

kinematics

This chapter contains the instructions on how to reconstruct the four-momenta of the

initial partons and final state particles from the different sets of integration variables.

A.1. SimplePznuKinematic

The integration variables for SimplePznuKinematic are E2, E3, E4, E5, E6 and pz
7. ηi and

φi are known for i = 2, . . . 6. Therefore, the momenta of the visible final state particles

can easily be obtained:

pT,2 =
√

E2
2 − m2

b · sin
(

2atan
(

e−η2

))

~p2 = pT,2 ·








cos φ2

sin φ2

sinhη2








pT,3 =
√

E2
3 − m2

b · sin
(

2atan
(

e−η3

))

~p3 = pT,3 ·








cos φ3

sin φ3

sinhη3








pT,4 = E4 · sin
(

2atan
(

e−η4

))

~p4 = pT,4 ·








cos φ4

sin φ4

sinhη4







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A. Phase space transformations and reconstruction of event kinematics

pT,5 = E5 · sin
(

2atan
(

e−η5

))

~p5 = pT,5 ·








cos φ5

sin φ5

sinhη5








pT,6 = E6 · sin
(

2atan
(

e−η6

))

~p6 = pT,6 ·








cos φ6

sin φ6

sinhη6








Conservation of energy and momentum requires

p0 + p1 −
7∑

i=2

pi = 0 . (A.1)

Using this and the fact that the initial partons’ x- and y-momenta are assumed to be

zero, one can calculate the neutrino’s momentum:

px
7 = −

6∑

i=2

px
i

py
7 = −

6∑

i=2

py
i

E7 = = |~p7|

The other two terms from Equation A.1 are used to fix the momenta of the initial partons.

ζ1 =
1

Ep

7∑

i=2

Ei

ζ2 =
1

Ep

7∑

i=2

pz
i

E0 = (ζ1 + ζ2) · Ep

pz
0 = (ζ1 + ζ2) · Ep

E1 = (ζ1 − ζ2) · Ep

pz
1 = − (ζ1 − ζ2) · Ep
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A.2. WmassKinematic

Ep = 3500 GeV is the energy of the incoming protons.

A.2. WmassKinematic

The calculations for this set of integration variables can be found in [52].

The integration variables for WmassKinematic are E2, E3, E4, E5, E6 and m2
W,lep. ηi

and φi are known for i = 2, . . . 6.

The calculations for i = 2, . . . 6 and the neutrino’s transverse momentum are carried out

in exactly the same way as shown above in Section A.1. Then, the neutrino’s z-momentum

is calculated from the W boson mass.

m2
W,lep = (p6 + p7)2 = 2E6E7 − 2 (px

6px
7 + py

6py
7 + pz

6pz
7)

m2
W,lep

2
+ (px

6px
7 + py

6py
7 + pz

6p
z
7)

︸ ︷︷ ︸

κ

= E6E7 − pz
6pz

7

There are two possible solutions for pz
7:

pz
7 = κ

pz
6

p2
T 6

± 1

p2
T 6

√

E2
6(κ − p2

T 6p
2
T 7) .

Afterwards, the neutrino’s energy can be calculated, followed be the initial partons’

momenta.

A.3. FourMassesKinematic

The integration variables for FourMassesKinematic are E4, E6, m2
W,had, m2

W,lep, m2
t,had

and m2
t,lep.

The algorithm to reconstruct all particles’ four-momenta from the integration is rather

sophisticated. It is an adaption of the one found in [42].
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A. Phase space transformations and reconstruction of event kinematics

The reconstruction of ~p4 and ~p6 is trivial.

pT,4 = E4 · sin
(

2atan
(

e−η4

))

~p4 = pT,4 ·








cos φ4

sin φ4

sinhη4








pT,6 = E6 · sin
(

2atan
(

e−η6

))

~p6 = pT,6 ·








cos φ6

sin φ6

sinhη6








The energy of the second light jet, E5, can be calculated using the mass of the hadronic

W boson,

E5 = =
m2

W,had

2E4(1 − cos θ45)
,

where θij is the angle between particle i and particle j.

pT,5 = E5 · sin
(

2atan
(

e−η5

))

~p5 = pT,5 ·








cos φ5

sin φ5

sinhη5








Calculating the hadronic b-quark’s energy is more complicated, because its mass cannot

be neglected. The b-quark’s absolute momentum, ρ2 = |~p2|, is:

ρ2 =
−M · D − P ·

√

M2 + m2
b(D

2 + P 2)

D2 − P 2
, with

M =
1

2
(m2

t,had − m2
W,had − m2

b) ,

P = E4 + E5 ,

D = E4 · cos θ24 + E5 · cos θ25 .

Using conservation of energy and momentum (Equation A.1), the shorthand notations Sx
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A.3. FourMassesKinematic

and Sy are defined as:

Sx := −px
3 − px

7 = px
2 + px

4 + px
5 + px

6

Sy := −py
3 − py

7 = py
2 + py

4 + py
5 + py

6

Another shorthand notation for the angles of a momentum is introduced, as well as a few

new terms.

p̂i =








sin θi cos φi

sin θi sin φi

cos θi








=:








sci

ssi

ci








Sx and Sy are combined to get rid of ρ3 and ρ7.

Sy(sc3) − Sx(ss3) = ρ7(sc7 · ss3 − ss7 · sc3) =: α0

Sy(sc7) − Sx(ss7) = ρ3(sc3 · ss7 − ss3 · sc7)

These two equations are then solved for ρ3 and ρ7, respectively.

ρ7 =
Sy(sc3) − Sx(ss3)

(sc7)(ss3) − (ss7)(sc3)
(A.2)

ρ3 =
Sy(sc7) − Sx(ss7)

(sc3)(ss7) − (ss3)(sc7)
(A.3)

The leptonic W boson’s mass is expanded.

m2
W,lep = E2

W,lep − ~p2
W,lep

= m2
6 + m2

7 + 2(E6E7 − ~p6 · ~p7)

m2
W,lep

2
= E6E7 − ~p6 · ~p7

= ρ6ρ7 − ρ6ρ7

(

px,6px,7 + py,6py,7 + pz,6pz,7

ρ6ρ7

)

m2
W,lep

2ρ6
= ρ7 (1 − (sc6)(sc7) − (ss6)(ss7) − (c6)(c7))

With the definition of α1 as

α1 :=
m2

W,lep

2α0ρ6
,
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A. Phase space transformations and reconstruction of event kinematics

this becomes

α1α0

ρ7

= 1 − (sc6)(sc7) − (ss6)(ss7) − (c6)(c7) . (A.4)

Next, Equations A.2 and A.4 are combined.

α1α0

α0
[(ss3)(sc7) − (sc3)(ss7)] = 1 − (sc6)(sc7) − (ss6)(ss7) − (c6)(c7)

(c6)(c7) = 1 − [(sc6) + α1(ss3)](sc7) − [(ss6) − α1(sc3)](ss7)

(c7) =
1 − β1(sc7) − β2(ss7)

(c6)
, with (A.5)

β1 := (sc6) + α1(ss3)

β2 := (ss6) − α1(sc3)

From sin2 x + cos2 x = 1 directly follows (sc7)
2 + (ss7)

2 + (c7)2 = 1.

Inserting Equation A.5 yields

a(sc7)2 + 2b(sc7)(ss7) + c(ss7)2 + 2d(sc7) + 2e(ss7) + f = 0 (A.6)

with

a = (c6)2 + β2
1

b = β1β2

c = (c6)2 + β2
2

d = − β1

e = − β2

f = 1 − (c6)
2 .

Next, mt,lep is used.

m2
t,lep = E2

t,lep − ~p2
t,lep

= m2
W,lep + m2

b + 2(EW,lepE3 − ~pW,lep · ~p3)
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A.3. FourMassesKinematic

A new variable Ml is defined.

Ml :=
1

2
(m2

t,lep − m2
W,lep − m2

b)

⇒ Ml = EW,lepE3 − ~pW,lep · ~p3

= (E6 + E7)E3 − (~p6 + ~p7) · ~p3

= ρ6E3 + ρ6E3 − ρ6ρ7 cos θ336 − ρ6ρ7

(

~p3 · ~p7

ρ3ρ7

)

From this point on, E3 will be written as E3 := ρ3(1 + δ). δ is a nuisance parameter; it is

first approximated as zero and then, after having calculated ρ3, δ is adjusted accordingly

and another iteration of the calculations from here on is done.

Ml = ρ3ρ6(1 + δ − cos θ36) + ρ3ρ7

(

1 + δ − ~p3 · ~p7

ρ3ρ7

)

(A.7)

Ml

ρ3
= d0 + ρ7[1 − (sc7)(sc3) − (ss7)(ss3) − (c7)(c3)] (A.8)

with d0 := ρ6(1 + δ − cos θ36).

Equations A.2 and A.5 are inserted into this:

Ml

ρ3
= d0 +

α0

(sc7)(ss3) − (ss7)(sc3)

×
[

1 + δ − (sc7)(sc3) − (ss7)(ss3) − 1 − β1(sc7) − β2(ss7)

(c6)
(c3)

]

Ml

ρ3
=

γ0 + γ1(sc7) + γ2(ss7)

(sc7)(ss3) − (ss7)(sc3)
(A.9)

with

γ0 = α0

(

1 + δ − (c3)

(c6)

)

γ1 = d0(ss3) − α0(sc3) +
α0β1(c3)

(c6)

γ2 = − d0(sc3) − α0(ss3) +
α0β2(c3)

(c6)
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A. Phase space transformations and reconstruction of event kinematics

Equation A.3 is inserted into Equation A.9:

−Ml(sc3)(ss7) + Ml(ss3)(sc7)

Sx(ss7) − Sy(sc7)
=

γ0 + γ1(sc7) + γ2(ss7)

(sc7)(ss3) − (ss7)(sc3)

A(sc7)2 + 2B(sc7)(ss7) + C(ss7)
2 + 2D2(sc7) + 2E(ss7) = 0 (A.10)

with

A = Ml(ss3)
2 + γ1Sy

B = − Ml(ss3)(sc3) − 1

2
γ1Sx +

1

2
γ2Sy

C = Ml(sc3)
2 − γ2Sx

D2 =
1

2
γ0Sy

E = − 1

2
γ0Sx

Equation A.10 is multiplied with (cdiv) := c
C

and subtracted from Equation A.6:

a′(sc7)
2 + 2b′(sc7)(ss7) + 2d′(sc7) + 2e′(ss7) + f = 0

with

a′ = a − (cdiv)A

b′ = b − (cdiv)B

d′ = d − (cdiv)D2

e′ = e − (cdiv)E

Solving this for (ss7) yields

(ss7) =
−f − a′(sc7)

2 − 2d′(sc7)

2b′(sc7) + 2e′
. (A.11)

Inserting Equation A.11 into Equation A.6 to replace all (ss7) terms and grouping by

(sc7) gives the following fourth order polynomial:

β4(sc7)
4 + β3(sc7)3 + β2(sc7)

2 + β1(sc7) + β0 = 0 (A.12)
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A.3. FourMassesKinematic

with

β4 = a′2c + 4ab′2 + 4bΛ3

β3 = 8ab′e′ + 8db′2 + cG3 + 4bΛ2 + 4eΛ3

β2 = 4ae′2 + 16db′e′ + 4b′2f + cG2 + 4bΛ1 + 4eΛ1

β1 = 8de′2 + 8b′e′f + 4eΛ1 + 4bΛ0 + cG1

β0 = cf 2 + 4eΛ0 + 4fe′2

G3 = 4d′a′

G2 = 2a′f + 4d′2

G1 = 4d′f

Λ3 = − a′b′

Λ2 = − a′e′ − 2b′d′

Λ1 = − 2d′e′ − fb′

Λ0 = − fe′

Equation A.12 has 4 solutions, up to two of which are real. With these, one solves

Equation A.11, then EquationA.5, followed by Equations A.2 and A.3.

Both solutions are checked for consistency (e.g. (sc7)
2 + (ss7)

2 + (c7)
2 has to be ≈ 1).

From the solution for ρ3, a better approximation for the nuisance parameter δ can be

obtained:

δ = 1 −
√

ρ2
3 − m2

b

ρ3
. (A.13)

If two valid solutions for ρ3 exist, the larger one is used.

With the new value for δ, all calculations starting from Equation A.7 are repeated once

more.

Finally, the initial partons’ momenta are calculated in the same way as in Section A.1.

83





Bibliography

[1] The D0 Collaboration, “A Precision Measurement of the Mass of the Top Quark”,

Nature 429:638-642,2004 (2004) arXiv:hep-ex/0406031.

[2] The D0 Collaboration, “Precise measurement of the top-quark mass from

lepton+jets events at D0”, Phys.Rev.D 84:032004,2011 (2011) arXiv:1105.6287.

[3] D. Griffiths, “Introduction to Elementary Particles”, John Wiley & Sons, New

York, USA, 1987.

[4] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett.

12 (1964) 132–133.

[5] Tevatron Electroweak Working Group, “Combination of cdf and do results on the

mass of the top quark using up to 5.8 fb-1 of data”, arXiv:1107.5255.

[6] The CDF Collaboration, “Observation of top quark production in p̄p collisions”,

Phys. Rev. Lett. 74 (1995) 2626–2631, arXiv:hep-ex/9503002.

[7] The D0 Collaboration, “Observation of the top quark”, Phys. Rev. Lett. 74 (1995)

2632–2637, arXiv:hep-ex/9503003.

[8] J. Pumplin et al., “New generation of parton distributions with uncertainties from

global QCD analysis”, JHEP 07 (2002) 012, arXiv:hep-ph/0201195.

[9] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for

the LHC”, Eur.Phys.J.C 63:189-285,2009 (2009) arXiv:0901.0002.

[10] N. Kidonakis, “Top quark pair and single top production at Tevatron and LHC

energies”, arXiv:1008.2460.

[11] N. Kidonakis, “Higher-order corrections to top-antitop pair and single top quark

production”, arXiv:0909.0037.

[12] The D0 Collaboration, “Observation of Single Top-Quark Production”,

Phys.Rev.Lett. 103:092001,2009 (2009) arXiv:0903.0850.

85

http://xxx.lanl.gov/abs/hep-ex/0406031
http://xxx.lanl.gov/abs/1105.6287
http://xxx.lanl.gov/abs/1107.5255
http://xxx.lanl.gov/abs/hep-ex/9503002
http://xxx.lanl.gov/abs/hep-ex/9503003
http://xxx.lanl.gov/abs/hep-ph/0201195
http://xxx.lanl.gov/abs/0901.0002
http://xxx.lanl.gov/abs/1008.2460
http://xxx.lanl.gov/abs/0909.0037
http://xxx.lanl.gov/abs/0903.0850


Bibliography

[13] P. de Jong, “Top Physics at the LHC”, arXiv:0902.4798.

[14] N. Kidonakis, “Heavy-Flavor Production at Accelerators”, Nucl.Phys.A

827:448c-453c,2009 (2009) arXiv:0901.2155.

[15] N. Kidonakis, “Single top quark production cross section at hadron colliders”, PoS

DIS 2010:196,2010 (2010) arXiv:1005.3330.

[16] J. M. Campbell, R. Frederix, F. Maltoni, and F. Tramontano, “NLO predictions for

t-channel production of single top and fourth generation quarks at hadron

colliders”, JHEP 10(2009)042 (2009) 10042, arXiv:0907.3933.

[17] J. Wang, C. S. Li, H. X. Zhu, and J. J. Zhang, “Factorization and resummation of

t-channel single top quark production”, arXiv:1010.4509.

[18] The CDF Collaboration, “First Observation of Electroweak Single Top Quark

Production”, Phys.Rev.Lett. 103:092002,2009 (2009) arXiv:0903.0885.

[19] K. Nakamura et al. (Particle Data Group), “Review of Particle Physics”, J. Phys.

G 37, 075021 (2010).

[20] M. Goebel, for the Gfitter group, “Status of the global fit to electroweak precisions

data”, arXiv:1012.1331.

[21] M. W. Grunewald, “Precision Electroweak Measurements and Constraints on the

Standard Model”, arXiv:1012.2367.

[22] The D0 Collaboration, “Measurement of ttbar production in the tau + jets

topology using ppbar collisions at
√

s = 1.96 TeV”, Phys. Rev. D82 (2010) 071102,

arXiv:1008.4284.

[23] The ATLAS Collaboration, “Measurement of the top quark-pair production cross

section with ATLAS in pp collisions at
√

s = 7 TeV”, The European Physical

Journal C - Particles and Fields 71 (2011) 1–36, 10.1140/epjc/s10052-011-1577-6.

[24] The CMS Collaboration, “Measurement of the tt production cross section in pp

collisions at 7 TeV in lepton + jets events using b-quark jet identification”, Phys.

Rev. D 84 (2011) 092004.

[25] The CMS Collaboration, “Measurement of the tt̄ production cross section in pp

collisions at
√

s = 7 TeV using the kinematic properties of events with leptons and

jets”, The European Physical Journal C - Particles and Fields 71 (2011) 1–27,

10.1140/epjc/s10052-011-1721-3.

86

http://xxx.lanl.gov/abs/0902.4798
http://xxx.lanl.gov/abs/0901.2155
http://xxx.lanl.gov/abs/1005.3330
http://xxx.lanl.gov/abs/0907.3933
http://xxx.lanl.gov/abs/1010.4509
http://xxx.lanl.gov/abs/0903.0885
http://xxx.lanl.gov/abs/1012.1331
http://xxx.lanl.gov/abs/1012.2367
http://xxx.lanl.gov/abs/1008.4284


Bibliography

[26] The CMS Collaboration, “Measurement of the tt̄ production cross section and the

top quark mass in the dilepton channel in pp collisions at
√

s = 7 TeV”, Journal of

High Energy Physics 2011 (2011) 1–49, 10.1007/JHEP07(2011)049.

[27] The CMS Collaboration, “First measurement of the cross section for top-quark pair

production in proton–proton collisions at
√

s = 7 TeV”, Physics Letters B 695

(2011), no. 5, 424 – 443.

[28] G. Aad et al., “Measurement of the top quark pair production cross-section with

ATLAS in the single lepton channel”, arXiv:1201.1889.

[29] G. Aad et al., “Measurement of the top quark pair production cross section in pp

collisions at in dilepton final states with ATLAS”, Physics Letters B 707 (2012),

no. 5, 459 – 477.

[30] R. Schwienhorst, “Single top quark production and Vtb at the Tevatron”,

arXiv:1009.5629.

[31] The CDF and D0 Collaborations, “Combination of cdf and d0 measurements of the

w boson helicity in top quark decays”, Tech. Rep. CDF Note 10622-CONF, D0

Note 6231-CONF, 2011.

[32] The CDF Collaboration, “Exclusion of an Exotic Top Quark with -4/3 Electric

Charge Using Soft Lepton Tagging”, Phys. Rev. Lett. 105 (2010) 101801,

arXiv:1006.4597.

[33] The ATLAS Collaboration, “The ATLAS Experiment at the CERN Large Hadron

Collider”, JINST 3 (2008) S08003.

[34] The CDF Collaboration, “Measurement of the Top Quark Mass with the

Dynamical Likelihood Method using Lepton plus Jets Events with b-tags in ppbar

Collisions at s**(1/2) = 1.96 TeV”, Phys.Rev.D 73:092002,2006 (2006)

arXiv:hep-ex/0512009.

[35] The ATLAS Collaboration, “Measurement of the top-quark mass using the

template method in pp collisions at root(s)=7 tev with the atlas detector”, Tech.

Rep. ATLAS-CONF-2011-033, CERN, Geneva, 2011.

[36] svn+ssh://svn.cern.ch/reps/atlasgrp/Institutes/Goettingen/Carsten/MEMTool.

[37] G. P. Lepage, “A New Algorithm for Adaptive Multidimensional Integration”, J.

Comput. Phys. 27 (1978) 192.

87

http://xxx.lanl.gov/abs/1201.1889
http://xxx.lanl.gov/abs/1009.5629
http://xxx.lanl.gov/abs/1006.4597
http://xxx.lanl.gov/abs/hep-ex/0512009
svn+ssh://svn.cern.ch/reps/atlasgrp/Institutes/Goettingen/Carsten/MEMTool


Bibliography

[38] G. Lepage, “VEGAS – An Adaptive Multi-dimensional Integration Program”,

Cornell Preprint CLNS-80/447 (1980).

[39] M. Galassi et al., “GNU Scientific Library Reference Manual (3rd Ed.)”, Network

Theory Ltd, 2009.

[40] J. Alwall et al., “MadGraph 5 : Going Beyond”, JHEP 1106 (2011) 128,

arXiv:1106.0522.

[41] R. Kleiss and W. Stirling, “Top quark production at hadron colliders: some useful

formulae”, Z.Phys. C40 (1988) 419–423.

[42] B. N. Mohr, “A precise measurement of the top quark mass”, PhD thesis,

University of California, 2007. Ph.D. thesis (advisor: Jay Hauser),

[43] V.M. Abazov et al., “Measurement of the top quark mass in the lepton + jets final

state with the matrix element method”, Phys. Rev. D 74 (2006) 092005.

[44] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton

shower simulations”, JHEP 0206 (2002) 029, arXiv:hep-ph/0204244.

[45] S. Frixione, P. Nason, and B. R. Webber, “Matching NLO QCD and parton showers

in heavy flavor production”, JHEP 0308 (2003) 007, arXiv:hep-ph/0305252.

[46] S. Frixione, F. Stoeckli, P. Torrielli, and B. R. Webber, “NLO QCD corrections in

Herwig++ with MC@NLO”, JHEP 1101 (2011) 053, arXiv:1010.0568.

[47] G. Corcella et al., “HERWIG 6: An Event generator for hadron emission reactions

with interfering gluons (including supersymmetric processes)”, JHEP 0101 (2001)

010, arXiv:hep-ph/0011363.

[48] G. Corcella et al., “HERWIG 6.5 release note”, arXiv:hep-ph/0210213.

[49] J. M. Butterworth, J. R. Forshaw, and M. H. Seymour, “Multiparton interactions

in photoproduction at HERA”, Z. Phys. C72 (1996) 637–646,

arXiv:hep-ph/9601371.

[50] S. Agostinelli et al., “GEANT4: A Simulation toolkit”, Nucl.Instrum.Meth. A506

(2003) 250–303.

[51] J. Allison et al., “Geant4 developments and applications”, IEEE Transactions on

Nuclear Science 53 (2006) 270–278.

88

http://xxx.lanl.gov/abs/1106.0522
http://xxx.lanl.gov/abs/hep-ph/0204244
http://xxx.lanl.gov/abs/hep-ph/0305252
http://xxx.lanl.gov/abs/1010.0568
http://xxx.lanl.gov/abs/hep-ph/0011363
http://xxx.lanl.gov/abs/hep-ph/0210213
http://xxx.lanl.gov/abs/hep-ph/9601371


Bibliography

[52] A. Knue, “Studies with the Matrix Element Method using the example of a top

quark mass measurement with the ATLAS experiment”, Master’s thesis,

Georg-August-Universität Göttingen, 2009.

89



Erklärung nach §18(8) der Prüfungsordnung für den Bachelor-Studiengang

Physik und den Master-Studiengang Physik an der Universität

Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbstständig ver-

fasst habe, keine anderen als die angegebenen Quellen und Hilfsmit-

tel benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus

veröffentlichten Schriften entnommen wurden, als solche kenntlich

gemacht habe.

Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch

nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an

dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 22. Februar 2012

(Carsten Brachem)


	1 Introduction
	2 Theoretical background
	2.1 The Standard Model
	2.2 Top quark physics
	2.2.1 Hadron collider physics
	2.2.2 Top pair production
	2.2.3 Single top production
	2.2.4 Decay channels
	2.2.5 Measurable properties


	3 Experimental setup
	3.1 The Large Hadron Collider
	3.2 The ATLAS Detector
	3.2.1 Prerequisites and Coordinate system
	3.2.2 The Magnets
	3.2.3 The Inner Detector
	3.2.4 The Calorimeter system
	3.2.5 The Muon detector
	3.2.6 The Trigger and Data Acquisition systems
	3.2.7 Current status


	4 The Matrix Element Method
	4.1 The differential cross section as a production likelihood
	4.2 Accommodating finite detector resolution
	4.2.1 Transfer functions
	4.2.2 Detector acceptance

	4.3 The event likelihood
	4.4 Parameter estimation
	4.5 Application of the matrix element method in this analysis

	5 The transfer functions
	5.1 Gaussian transfer functions
	5.2 Mc10b transfer functions
	5.2.1 Transfer function for light jets
	5.2.2 Transfer function for b-jets
	5.2.3 Transfer function for electrons
	5.2.4 Transfer function for muons


	6 MEMTool
	6.1 Details of the integration process
	6.1.1 Numerical integration with VEGAS
	6.1.2 Integration variables and phase space transformations

	6.2 MEMTool's components
	6.2.1 Matrix elements
	6.2.2 Transfer functions
	6.2.3 Parton distribution functions
	6.2.4 Integration variables

	6.3 Default configuration

	7 Tests with simulated parton level events
	7.1 Results with unsmeared data
	7.2 Results with Gaussian transfer functions
	7.3 Results with Mc10b transfer functions

	8 Tests with ATLAS Monte Carlo events
	9 Systematic uncertainties
	10 Conclusion and outlook
	A Phase space transformations and reconstruction of event kinematics
	A.1 SimplePznuKinematic
	A.2 WmassKinematic
	A.3 FourMassesKinematic


