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Abstract 

Indonesia has committed to reducing emissions from forest related issues by 26% from 

business as usual and by 41% with international support by 2020. Therefore, it is necessary to 

quantify potential biomass of the forest. Forest inventory has been carried out to provide 

forestry related information. However, its large forest coverage and different forest types 

become a distinct obstacle. RapidEye satellite imaging provides advantages in vegetation 

detection with a high spatial and temporal resolution. This study emphasizes  the linking of 

remotely sensed data with field inventory. The objective of the study is mainly to evaluate the 

suitability of RapidEye satellite imaging in determining forest structure and biomass. Field 

data was obtained through field inventory in the natural laboratory of peat swamp forest 

(LAHG) Sebangau, Central Kalimantan. All trees having DBH of ≥ 5 cm in a 120 x 120 m 

plot were tallied. The plot was a single full census plot as part of a research project 

Development of an integrated forest carbon monitoring system with field sampling and 

remote sensing. A subset of one ha within the plot was used for the data analysis. Individual 

trees above ground biomass (AGB) was estimated using three different biomass models of 

Brown (1997) and Chave (2005). This study shows a significant impact of wood density on 

overestimation of AGB with the range of 9 - 44 %. Incorporating height as a predictive 

variable may reduce the overestimation impact. In general, the variability of AGB estimates 

increase as DBH increase. Three single tiles of multi temporal Level 3A RapidEye images 

were evaluated. The acquisition date of each image is close to the field campaign. Image pre-

processing was done to convert image digital number to its at-sensor reflectance. However, no 

geometric nor atmospheric correction was performed. Vegetation indices such as NDVI, 

GNDVI, SAVI, and NDRE were derived from corresponding image spectral bands. Different 

sizes of simulated rectangular grids were established with the RapidEye pixel size (5 m) as 

the smallest unit and 50 m as the largest grid size. Analysis of correlation revealed a 

consistently high positive correlation between basal area and AGB. Structural diversity shows 

positive correlation with AGB at 20 m grid size. Similarly, at the same grid size, vegetation 

indices show positive correlation with basal area, although they are low. Meanwhile, no 

original RapidEye bands nor vegetation indices show strong correlation with AGB. However, 

analysis of predictor importance shows that NDVI and NDRE have the potential to be used to 

determine forest structure and estimate forest AGB. Meanwhile, spatial probability analysis 

revealed a promising integration of field inventory and remote sensing. A clump of relatively 

higher correlation between image spectral values and field variables occur within a close 

range from the original plot position. 



Zusammenfassung 

Indonesien hat sich dazu verpflichtet die Emissionen bedingt durch forstliche Aktivitäten in 

der bisher gängigen Praxis um 26 % zu senken und bis Ende 2020 mit internationaler Hilfe 

um 41 %. Deshalb ist es notwendig die potentielle Biomasse des Waldes zu bestimmen.  Es 

wurden Waldinventuren durchgeführt, um Informationen über das Forstwesen bereitzustellen. 

Jedoch wird dies bei zunehmender Waldgröße und in unterschiedlichen Waldarten ein 

ausgeprägtes Hindernis. Die RapidEye Satellitenbilder weisen Vorteile in 

Vegetationserkennung mit hoher räumlicher und zeitlicher Auflösung auf. Die vorgelegte 

Arbeit beschäftigt sich mit der Verknüpfung der Fernerkundungsdaten und denen der 

Waldinventur. Das Ziel dieser Untersuchung ist hauptsächlich die Eignung der RapidEye 

Satellitenbilder in Bezug auf die Bestimmung der Waldstruktur und Biomasse zu bewerten. 

Messdaten wurden erhoben durch die Waldinventur der natürlichen Untersuchungsstelle des 

Torfmoorwaldes (LAHG) in Sebangau auf Zentralkalimantan. Alle Bäume die einen BHD 

von ≥ 5 cm auf einer Fläche von 120 x 120 m aufwiesen wurden nachgezählt. Die Fläche 

wurde bereits komplett vermessen als Teil des Forschungsprojekts „Development of an 

integrated forest carbon monitoring system with field sampling and remote sensing“. Ein 

ausgewählter Hektar innerhalb der Fläche dient als Grundlage der Datenanalyse. Die 

oberirdische Biomasse einzelner Baum wurde mit Hilfe von drei unterschiedlichen 

Biomassemodellen von Brown und Chave geschätzt. Diese Studie zeigt einen signifikanten 

Einfluss der Holzdichte auf die Überschätzung der oberirdischen Biomasse mit Bereich von 9 

– 44 %. Das Einbeziehen der Höhe als voraussagende Regelgröße kann den Einfluss der 

Überschätzung verringern. Im Allgemeinen nehmen die Schwankungen der Schätzung der 

oberirdischen Biomasse mit zunehmenden BHD zu. Drei einzelne Kacheln mit 

mehrzeitlichem Level 3A RapidEye Bilder wurden beurteilt. Der Erwerb jedes Bildes erfolgte 

zeitnah zur Inventur. Eine Bildvorverarbeitung wurde durchgeführt um die digitale Nummer 

des Bildes zu seiner Sensor Reflexion zu konvertieren. Allerdings wurde weder eine 

geometrische noch eine atmosphärische Korrektur vollzogen. Die Vegetationsanzeiger wie 

NDVI, GNDVI, SAVI und NDRE wurde vom Bild der zugehörigen Spektralbänder 

abgeleitet. Verschiedene Größen simulierter rechteckiger Gitternetze wurden mit RapidEye 

angelegt. Die Pixelgröße betrug 5 m als kleinste Einheit und 50m als größte Gitternetzeinheit. 

Die Analyse der Korrelation ergab einen durchweg hohen positiven Zusammenhang zwischen 

Bestandesgrundfläche und oberirdischer Biomasse. Die Strukturvielfalt zeigte eine positive 

Korrelation mit der oberirdischen Biomasse bei einer Gitternetzgröße von 20 m. Ähnlich, bei 

gleicher Gitternetzgröße, zeigten die Vegetationsanzeiger einen positiven Zusammenhang zur 

Grundfläche, wenn auch niedrig. Derweil haben weder die originalen RapidEye Bänder noch 

die Vegetationsanzeiger eine starke Korrelation mit der oberirdischen Biomasse aufgewiesen. 

Trotzdem ergab die Analyse der Bedeutung des Prädiktors mit der Grundfläche, dass NDVI 

und NDRE das Potential besitzen die Waldstruktur zu bestimmen sowie die oberirdische 

Waldbiomasse zu schätzen. Indes offenbarte die Wahrscheinlichkeitsanalyse eine 

vielversprechende Integration der Waldinventur und der Fernerkundung. Ein Klumpen von 

relativ hoher Korrelation zwischen Spektralbildwerten und Felddaten trat innerhalb eines 

engen Bereichs von der originalen Flächenposition auf.    
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1.  Introduction 

1.1.  Background 

Indonesia has been recognized as one of tropical countries having a large 

coverage of forest. The latest FAO Global Forest Resources Assessment 2010 (FRA 

2010) ranked Indonesia in the 8
th

 place worldwide with the forest coverage of 94,432 

million ha or approximately 52 % of its land area, after Russian Federation, Brazil, 

Canada, United States of America, China, Democratic Republic of The Congo, and 

Australia (FAO, 2010). In another word, it makes Indonesia ranked as the third largest 

forest coverage among tropical countries after Brazil and Democratic Republic of the 

Congo. Not only its extent, different forest ecosystem types namely mangrove, swamp, 

peat swamp, heath forest, dryland forests from lowland to montane forests could be 

found here. 

It is obvious that Indonesia plays an important role in the global context, 

especially in recent emerging issues in relation to global climate change. Forest itself 

considered as one of main natural resources which has roles in controlling climate and 

carbon flow. Forests have the function of a potential carbon storage (Brown, 2002). 

Losi et al. (2003) and Samalca (2007) found that approximately 50 % of the forest 

biomass is carbon. In addition to that, Leigh (1999) in Ghazoul (2010) stated that 

tropical forests produce 49 billion tones of biomass annually. 

Politically, importance of forest has been acknowledged by the government of 

Republic of Indonesia as a potential resources to participate in the international 

framework. In September 2009 on climate change at the G-20 leaders summit, President 

Susilo Bambang Yudhoyono declared his commitment to reduce emission from forest 

related issues by 26% from business as usual and by 41% with international support in 

2020 (Forest Climate Center, 2010).  

In order to achieve the goal, measurement instruments are needed to monitor 

Above Ground Biomass (AGB) as the indicator of potential carbon storage, sequester, 

and emitter. However, its large coverage and various type of forest become a distinct 

obstacle in calculating forest biomass in Indonesia. Accurate and precise biomass value 

could be obtained by using direct method (destructive method), especially in 

quantifying biomass of small unit area (Bombelli et al., 2009). However, according to 

Gibbs et al. (2007) and Ketterings et al. (2001), the destructive method is more time 
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consuming, expensive, and impractical for large areas. Moreover, this method will 

threat existence of the forest itself.  

Realizing the issue, more advance researches in non-destructive biomass 

estimation were developed. Developing allometric equations are the most common 

method to estimate forest biomass based on measured variables in the field. For 

example, Brown (1997) gives a guideline to estimate biomass in tropical forests. Basuki 

et al. (2009), Ketterings et al. (2001), and Samalca (2007) use diameter at breast height 

(dbh) as variable to estimate individual tree biomass, while Yamakura et al. (1986) add 

height in addition to dbh to predict stem dry weight of the Dipterocarp forest. 

Hashimotio et al. (2000) use age of fallowland and include site conditions and dominant 

species for estimating above ground biomass of tropical lowland fallow forest. 

Ketterings (2001) and Chave (2005) add wood density as additional variable to estimate 

species-based individual tree biomass, as will be used for estimating biomass from 

forest inventory data in this study. 

Unfortunately, these allometric equations are only applicable for known measured 

variables collected from forest inventory and produce only statistical estimation, yet to 

represent the spatial extent. In this regards, remote sensing offers an alternative method 

to estimate biomass for a large area and includes spatial aspect in the application.  

There are some remote sensing - field inventory related researches in the tropics, 

but they are still limited to particular sensor, forest type and location. Optical sensor 

such as Landsat Thematic Mapper (TM), active remote sensing data as Synthetic 

Aperture Radar (SAR) and Light Detecting and Ranging (LiDAR) are the most 

common remotely sensed data used in biomass estimation. Using passive optical remote 

sensing data of Landsat Thematic Mapper (TM), Lu (2005) demonstrate the success of 

estimating biomass in the successional forest of Brazilian Amazon. Extensive 

researches on active remote sensing such as LiDAR were also showing its capacity to 

estimate biomass (Clark et al., 2011). Although Roy and Ravan (1996), Steiniger 

(2000), and Lu (2001) has shown the difficulty in estimating biomass in tropical moist 

region by using Landsat TM spectral features due to the complexity of forest structure. 
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Lu (2005) shown that forest structure has an important impact in biomass 

estimation using remote sensing data. Hence, it is important to evaluate the capability of 

remote sensing data to determine physical structure of the forest and in the same time 

estimating the biomass. 

1.2. Objectives 

The main objective of this study is to evaluate the suitability of remotely sensed 

data in determining forest structure and its biomass. In addition to support the main 

objective, structural diversity analysis, species-based biomass estimation, spectral 

consistency of multi temporal images, and relationship between remote sensing 

variables and field inventory variables will also be analyzed. 
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2.  Methods and material 

2.1. Study site 

The study site was a 120 x 120 m full census plot in a small part of 50,000 ha of 

The Natural Laboratory of Peat Swamp Forest (LAHG) managed by Center for 

International Cooperation in Sustainable Management of Tropical Peatland 

(CIMTROP) University of Palangkaraya Indonesia. Geographically, it is located on 

longitude 113
o
54.2' E and latitude 2

o
19.2' S, approximately 20 km south of 

Palangkaraya, the provincial capital of Central Kalimantan (Figure 1.). The area is ex 

forest concessionaire PT Setia Alam Jaya logged over peat swamp forest. It was 

selectively logged over 20 years period before 2002 (Morrogh-Bernard et al., 2003). 

 

Figure 1. Location of the study area 

The temperature ranged from 22.2 - 31.9 
o
C with mean annual temperature of 

26.7 
o
C. The annual precipitation is 2,578 mm. During July to September, precipitation 

is in the range of 124 - 148 mm with the mean temperature of 26.6 - 27.2 
o
C (Hijmans 

et al., 2005). According to Peel et al. (2007), Indonesia in general categorized as 

tropical rainforest with the characteristic of precipitation of the driest month ≥ 60 mm. 

The plot is laid on 12-24 masl elevation with mostly flat terrain. According to 

landsystem map of Kalimantan (RePPPRoT, 1986), the site belongs to Barah 

landsystem which has peat-covered sandy terraces consist of tropohemists, placaquods, 

and troposaments soil types. Peat distribution map of Wetlands International (2004) 

showing that the site has 4-8 m depth of peat with composition 60/40 of hemists and 

fibrists.  
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2.2. Forest inventory data 

Field inventory data was obtained from a full census plot of 120x120 m as part of 

the project of DFG KL 894/17 "Development of an integrated forest carbon monitoring 

system with field sampling and remote sensing" in Sebangau, Central Kalimantan. The 

data used for analysis was a compiled dataset of forest inventory. It contains unique ID 

and records for each recorded tree in the field. The format of the dataset was 

geometrically corrected SHP (shapefile) which can be displayed both on GIS software 

and spreadsheet processing software.  

2.3. RapidEye image 

RapidEye
™

 is an earth observation satellite launched in February 2009, owned 

and operated by Black Bridge. It has five identical satellite constellations which orbit at 

the altitude of 630 km. RapidEye categorized as a high resolution sun-synchronous 

satellite image with 6.5 ground sampling distance at nadir and resampled to 5 m pixel in 

the orthorectified products. The images are collected using 12 bit multi spectral push 

broom imager (MSI) and converted to 16 bit images during on-ground processing. The 

swath width is 77 km with the capability of daily image acquisition of 5 million km
2
. 

RapidEye is a multispectral image with five spectral bands namely Blue (440-510 nm), 

Green (520-590 nm), Red (630-685 nm), Red Edge (690-730 nm), and Near Infra 

Red/NIR (760-850 nm). Due to its spectral feature, Blackbridge claimed RapidEye as 

the first optical sensor which put Red Edge band which improves vegetation 

discrimination. The presence of Red Edge band introduced as the advantage of 

RapidEye among other satellites, especially in vegetation detection and discrimination 

purpose. The RapidEye imageries used in this study are level 3A products or 

orthorectified products with geometric, radiometric, and terrain corrections in a map 

projections (Blackbridge, 2013) 

 
Image source: Blackbridge (2013) 

Figure 2. Spectral characteristic of RapidEye 
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2.4. Software 

There are several software used in this study, mainly statistical software and 

remote sensing GIS software for data analysis purpose. Both licensed and open source 

software are used. 

Licensed: Open source: 

Microsoft office 2007 RStudio Version 0.98.994 under GNU 

Affero General Public License v.3 

STATISTICA v.10 QGIS Desktop 2.0.1 - Dufour under 

GNU General Public License v.2 

 

 

2.5. Field Inventory 

2.5.1. Data collection 

Field inventory data was carried out in natural laboratory of peat swamp forest 

(LAHG) Sebangau, Central Kalimantan. Field campaign was conducted during 

September-October 2013. 

2.5.2. Variables of Interest 

Tree species 

Species identification is an essential variable to be included in the forest 

inventory. In forest management system, precise species identification is considered as 

the most basic step (Lacerda and Nimmo, 2010). In this study, species name is required 

to obtain wood density value and estimates species-based above ground biomass.  

There are three major steps in tree species data handling. First step is vernacular 

names identification and spelling check. The identification of tree species in the field 

was done by local species identifier, hence the species recorded in the tally sheet were 

still in local name or Bahasa Indonesia. The output of this step is a list of vernacular 

names with a unique name and code for each species found. The next step is to find 

corresponding scientific or botanical name for each vernacular name. Main catalogues 

used as the reference were 4000 tree species in Indonesia (Kartasujana, 1993), 

Indonesian Wood Atlas I - IV (Martawijaya et al., 1989, 2005; Abdurrohim et al. (eds), 

2004; Muslich et al., 2013). The last step of the species data handling is to check 

botanical names collected in the previous step with the universally current accepted 

names.   
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The current tree species nomenclature reference used is based on The Plant List 

version 1.1 database. It is a collaborative venture on plants taxonomic database 

management coordinated by the Royal Botanic Gardens, Kew, and Missouri Botanical 

Garden. It provides approximately 1.3 million of Angiosperms, Gymnosperms, 

Pteridophytes, and Bryophytes scientific plant name records of which more than 600 

families and 17,000 plant genera are recorded (The Plant List, 2013). 

Diameter at breast height 

Stem diameter is the most common variable used in forest inventory. According 

to White (1998), stem diameter is an irreversible feature of a tree growth which is easily 

measured with a good precision. The ease and directly measured and usefulness in 

calculating basal area which is closely related to timber volume, making the diameter 

measurement becomes the most important tree attribute (Kleinn, 2011). 

The diameter was measured at 1.3 m height or so called diameter at breast height 

(DBH). Diameter tape was used as the measuring device. In a flat terrain and normal 

tree condition, DBH measured perpendicular to stem axis at 1.3 m height above the 

surface level. However, there are some cases that the measurement at 1.3 m is not 

possible to be done due to variation of slope where the tree is standing or shape of the 

stem (e.g. due to buttress, roots, and other deformations). Therefore, the measurement 

of special case DBH performed differently as depicted in Figure 3. 

 
Image source: Lutz Fehrmann 

Figure 3. DBH measurement at different conditions 
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Height 

Tree height is the second most common observed variable in forest inventory 

after DBH. It is another single tree dimension which relatively easy to be measured 

directly. Height may indicate the site quality if combined with stand age and the total 

production of a stand is proportional to it (Van Laar and Akca, 1997; Köhl, 2006). It is 

widely used as predictive variable in biomass estimation, determining yield tables, and 

stand volume estimation (Chave et al., 2005; Kleinn, 2011). In this study, total height 

was used as one of variables of interest and is defined as the distance from the level of 

the tree top perpendicular to the surface level (Van Laar and Akca, 1997). Height may 

affect to the remote sensing based biomass estimation since the sensor capture the 

reflectance of the object, while the object should receive lights which then be reflected 

to the sensor.  

 
Figure 4. Relationship between height and light intensity 

Wood density 

Köhl et al. (2006) defined wood density as wood mass divided by its volume at a 

specific moisture content. Another common term of wood density is wood specific 

gravity (ρ), calculated as oven-dry wood at 103 
o
C divided by green volume and 

expressed in the unit of kilogram per cubic meter or gram per cubic centimeter (Chave 

et al., 2005). The Tree Functional Attributes and Ecological Database (World 

Agroforestry Center, 2014) and Global wood density database (Zanne et al., 2009) are 

used as reference to obtain species wood density. 
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Basal area 

Basal area is defined as the cross-sectional area of the stem. Köhl et al. (2006) 

consider basal area as an important variable to determine stock density. In a single tree 

measurement, basal area is calculated as the area of the cross section at breast height 

(van Laar and Akca, 1997). It is assumed that basal area calculated based on circular 

cross section, hence the following equation is used: 

  
 

 
     

where g is basal area in m
2
 and DBH is diameter at breast height (m). 

 

2.6. Forest structure 

Forest structure refers to stand structure and defined as spatial arrangement of the 

various component of the forest in horizontal and vertical structure. Horizontal structure 

refers to spacing of trees, species diversity, mean diameter, while  structure heights of 

different canopy level could be interpret as vertical structure. (Lüttge, 1997; McElhinny 

et al., 2005).  

2.6.1. Horizontal structure 

Quadratic mean diameter 

Unlike ordinary mean using arithmetic method, mean stem diameter is using 

quadratic mean. 

     
     

  
   

 
 

where 

QMD  : Quadratic Mean Diameter 

DBH  : Diameter at breast height (DBH) 

n  : Number of tree in the stand 
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Stand density 

Density may express crown, stem count, volume, or biomass per unit area. Köhl 

(2006) stated that stem per unit area provides more informative estimate of stand 

density than crown density. McElhinny et al. (2005) use the term of tree spacing to 

express the number of trees per ha as a structural attribute. 

Stand basal area 

Stand basal area could be used as stand volume and biomass indication 

(McElhinny, 2005). It has been successfully used in Costa Rica to discriminate between 

primary and secondary Quercus forest and successional stages in hemlock-hardwood 

forests (Kapelle et al., 1996; Ziegler, 2000).  

2.6.2. Vertical structure 

The distribution of tree height is used to illustrate the vertical stand structure in 

complexity of a stand structure measurement (Lu et al., 2005). In relation to remote 

sensing, vertical structure is important since the sensor detect the object from above, 

which may not represent the real 3D condition in the field. 

2.6.3. Structural diversity 

Stand structural diversity or stand structural complexity measures the number of 

different structural attributes and relative abundance of each of the attributes 

(McElhinny et al., 2005). 

Shannon index has been widely used in diversity and ecological studies. It is also 

known as the Shannon-Wiener index or the Shannon-Weaver index. Stand structural 

diversity index used in this study is Post-hoc Shannon index. The Extensions of 

Shannon index is used to calculate stand diversity based on DBH, height and species 

proportional to basal area distribution (Staudhammer & LeMay, 2001). The following 

equations is used to calculate the stand structural diversity index      
   and        

  . 

  
      

 
          ;    

      
 
          ;    

      
 
         

where 

  
   : Shannon index for DBH; 

  
   : Shannon index for height;  

  
   : Shannon index for species; 
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pi  : the proportion of species basal area in the ith DBH class, height class, or 

species 

s  : the number of diameter classes, height classes or number of species 

The final index      
   is the average of the diameter and height indices, while 

the        
   final index is the average of the DBH, height, and species Shannon index. 

2.7. Above Ground Biomass (AGB) estimation 

There are numerous existing AGB estimation equations for almost all forest types 

in Indonesia (MoF, 2012). AGB models for peat swamp forest are also available as in 

Nugroho (2014) who develop a site-specific allometric equations for AGB in Riau 

Province. Widyasari (2010) and Novita (2010) estimates AGB and fix carbon of the 

peat swamp forest in Merang, South Sumatera. Jaya et al. (2007) conducted similar 

study in Central Kalimantan. However, those AGB models may not be suitable for 

other locations due to their limitations on number of tree sample, DBH range, and stand 

characteristics (Nugroho, 2014; Ketterings, 2001).  

Nugroho (2014) suggest to combine the dataset from a wide-range of 

geographical area and wider DBH range of different tree species to improve the AGB 

models. Ludang and Jaya (2007) found that Brown (1997) equation is applicable for 

estimating biomass in Central Kalimantan forest. In addition, several studies 

recommend to incorporate wood density and height as predictive variables to reduce 

estimate errors (Ketterings, 2001; Chave, 2005; Nugroho, 2014). Therefore, AGB 

model of Brown (1997) and Chave (2005) was used to estimates AGB within the 

sample plot. The selection of these equations was based on the reliability of the models 

to estimate a broad range of tropical forests aboveground tree biomass (Chave et al., 

2005). Description of the biomass model used is presented in Table 1. Mathematically, 

both Brown and Chave biomass models are presented as the following equations. 

Brown equation 

                               

Chave equations 
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where  

AGB  : Above ground biomass per tree in kg,  

DBH  : Diameter at breast height in cm 

ρ  : Wood density (oven dry mass 103 
o
C divided by green volume) in gr / cm

3 

Table 1.  Description of study site and sample source of Brown and Chave biomass 

model 

  Brown Chave 

Number of tree sample 170 2410 

Range in DBH (cm) 5 - 148 5 - 156 

Locations Australia, Asia, South 

America 

27 study sites in Australia, 

Asia, Africa, Central 

America, South America 

Forest type Moist Moist 

Rainfall (mm) n.a. 1,200-6,000 

Adjusted r
2
 0.97 n.a. 

 

2.8. Remote sensing analysis 

2.8.1. Image pre-processing 

Image pre-processing refers to geometric and radiometric corrections and data 

errors removal (Mather, 1999). These corrections are needed to correct the images for 

known errors occurred during the process of collection (Jones and Vaughan, 2010). In 

this study, image pre-processing performed by converting image Digital Numbers 

(DNs) to Top of Atmosphere reflectance (ToArefl). There are two major steps in this 

process, converting DNs to radiance and turn radiances into reflectance (Blackbridge, 

2013). 

Conversion of Digital Numbers (DNs) to radiance value was performed using 

equation: 

RADij = DNij*RSFj 

where 

RADij  : Top of Atmosphere (ToA) radiance value of the pixel i in the j band 

  (W / m
2 
sr μm) 

DNi  : Digital Number of pixel i of the j band 

RSFj  : Radiometric Scale Factor of the j band 
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To convert ToA radiance to ToA reflectance, the following equation is used: 

         

          

                       
 

where  

i  : Number of the spectral band 

REFi  : ToA Reflectance of the pixel j in the i band 

RADij  : Top of Atmosphere (ToA) radiance value of the pixel i in the j 

 band (W / m
2 

sr μm) 

SunDist  : Earth-sun distance at the day of acquisition in Astronomical Unit 

 (AU); The value is ranged between 0.983 289 8912 AU and 1.016 

 710 3335 AU 

EAI  : Exo-Atmospheric Irradiance 

Solar Zenith  : Solar zenith angle in degrees (= 90
o
 - sun elevation) 

 

EAI values of RapidEye spectral bands: 

Blue   : 1997.8 W / m
2
 μm 

Green   : 1863.5 W / m
2
 μm 

Red   : 1560.4 W / m
2
 μm 

Red Edge   : 1395.0 W / m
2
 μm 

Near Infra Red  : 1124.4 W / m
2
 μm 

No further image pre-processing such as geometric correction nor atmospheric 

correction was performed. Geometric correction was not performed due to the product 

level of RapidEye used. The Level 3A RapidEye image has been processed radiometric 

sensor and geometrically corrected to produce orthorectified image. Fine DEMs were 

used to perform this geometric correction. The horizontal accuracy of this product 

announced at 15 m. (Blackbridge, 2013; RESTEC, 2014). The atmospheric correction 

was not performed due to the insufficiency of atmospheric parameters needed.  

2.8.2. Image processing 

In this process, original spectral bands of RapidEye image used to generate new 

variables, in particular vegetation indices. There are numerous vegetation indices 

derived from two or more original bands of the images. NDVI or Normalized 

Difference Vegetation Index is a powerful normalization to reduce the effect of non-

uniform illumination. It is also good for Leaf Area Index (LAI) estimation (Rouse et al., 

1974). The NDVI is the most widely used and become a base for further development 

of vegetation index. GNDVI is an example of improvement of NDVI. It improves the 

sensitivity in detecting dense vegetation with rather high LAI (Jones and Vaughan, 
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2010). In this improvement, the green band is used as a substitute for the red band. 

Gitelson et al. (1996) stated that GNDVI is good at detecting chlorophyll in a wider 

range. SAVI (Soil Adjusted Vegetation Index) corrects the effect of soil reflectance 

within the vegetated area (Huete, 1988). The presence of Red Edge in the spectral 

properties of RapidEye gives an advantage in detecting forest damage and plant stress. 

Therefore, Normalized Difference Red Edge (NDRE) as the modification of NDVI is 

expected to improve vegetation detection, tree species identification, and biomass 

estimation, particularly within forested area (Kärgel and Jansen, 2013; Barnes et al. 

2000). 

Following equations are the mathematical forms of the mentioned vegetation 

indices above.   

     
       

       
 

      
         

         
 

          
       

         
 

     
            

            
 

 

2.9. Simulated grid 

Different simulated grid size have been applied to the plot. This simulated grids 

were established to generate artificial plots (grids) with different size. The reason 

behind the simulated grid establishment was due to the limitation of sample size. The 

inventory plot was the only plot in the study site having the particular plot design. 

Therefore, the plot was divided into smaller square grids as the artificial plots, 

regardless its spatial autocorrelation. The smallest grid having the size of image pixel (5 

m) while the largest grid size is 50 m and 10 m, 20 m, and 25 m grids in between. 

To analyze the plot positional effect, another simulated grid so called probability 

grid was generated. The underlying assumption is the probability of a field grid 

coincide with an image pixel. The horizontal accuracy of the RapidEye image and 

typical positional accuracy of handheld GPS which is reported 15 m (RESTEC, 2014; 
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Garmin, 2014) become a basis to set 30 m as the radius for generating the spatial 

probability simulated grids. There are 145 probabilities within this 30 m radius. 

 

Figure 5. Simulated grid size and spatial probability grid design 

2.10. Linking field and remote sensing data 

2.10.1. Field inventory data aggregation 

Individual records of inventory data which represent a single tree is treated as the 

input unit. The data is aggregated to generate variable of interests per grid. In this step, 

quadratic mean diameter, mean height, stand basal area, stand density, structural 

diversity indices as well as AGB density is calculated. The aggregation results will then 

be overlaid and linked with corresponding extracted image pixel value. 

2.10.2. Feature extraction 

In order to easier to link between the field data and remote sensing data, feature 

extraction is performed. In this regards, feature refers to image pixel value (ToA 

reflectance). Zonal statistics is selected as the method to extract the value of each 

RapidEye bands into corresponding simulated grids. For grids larger than pixel size, the 

zonal statistics assign mean of all pixel values within the grid. Each of original bands 

and vegetation indices is extracted independently. Fuchs et al. (2009) applied similar 

technique to assign average value of the pixels to the centers in the location of circular 

inventory plots. 
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2.10.3. Correlation analysis 

The correlation analysis performed to investigate the correlation between field 

variables and remote sensing for each simulated grid. The P-pearson correlation or 

product-moment correlation is used to measure the strength of the linear relation 

between field variables and remote sensing variables. Pairs of highly correlated 

variables are selected and evaluated. In this process, field variables treated as dependent 

variables while the remote sensing variables treated as independent variables. 
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3. Results 

3.1. Forest Inventory Data Analysis 

In order to get an overview of the forest stand condition, basic statistics 

calculation was performed based on inventory data on each site. Overall minimum, 

maximum and mean value of DBH, height, and wood density were produced, as well as 

stand density and basal area of the forest stands. The results of this inventory data 

exploration presented briefly in Table 2.  

Table 2. Descriptive statistics of forest inventory data 

Variables Mean Min Max Sum Variance Std.Dev. Coef.Var. 

DBH (cm) 13.1* 5.0 59.7 
 

45.484 6.744 60.204 

Tree height (m) 12.43 1.6 32.5 
 

20.404 4.517 36.340 

Wood density (g/cm
3
) 0.663 0.340 1.0575 

 
0.024 0.154 23.236 

Stand density (stems/ha) 
   

2343 
   

Basal area (m
2
) 0.013 0.002 0.2799 31.46 0.000 0.020 150.960 

AGB Brown (ton) 0.098 0.007 3.6849 228.86 0.044 0.210 214.859 

AGB Chave d, ρ (ton) 0.097 0.001 2.5920 227.24 0.047 0.217 223.994 

AGB Chave d, ρ, h (ton) 0.114 0.004 3.2719 267.75 0.070 0.265 231.871 

* Quadratic mean DBH 

3.2. Species and wood density 

There are 55 species found in Sebangau plot. These 55 species were the final 

identified species from 57 vernacular names, excluding the unidentified species. Of the 

total individuals found in the plot, the unidentified trees found were only two trees 

having DBH of 6.1 and 7.3 cm with the height of 4 and 3.3 m respectively. Therefore 

these unidentified trees shall not significantly affect the overall calculation in the latter 

step. Wood density (ρ) of the 55 species found in Sebangau plot ranging from 0.34 to 

1.0575 g / cm
3
 with an average of 0.663 g / cm

3
. The average value of ρ was assigned to 

unidentified species as their corresponding wood density. 

Trees having ρ slightly lower than the average are dominating the stand. In terms 

of its distribution, the variability of ρ value is almost similar between each DBH class 

with the most variability occur in the DBH smaller than 25 cm.  
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(a) 

 
(b) 

Figure 6. Wood density distribution (a) for the whole plot and (b) over DBH 

3.3. Diameter distribution 

From one hectare subset of full census plot, there were 2,343 trees recorded with 

diameter at breast height (DBH) ranging from 5 - 59.7 cm and the quadratic mean 

diameter of 13.1 cm. Most of the trees (59.3 %) have small DBH of 5 - 10 cm, followed 

by DBH 10 - 15 cm with the magnitude of 20.7 %. The trees with DBH of 15 - 30 cm 

occupy 17.7 % of the DBH distribution, while bigger trees having DBH more than 30 

cm were recorded only as low as 2.3 %. Overall, the DBH distribution creates a reverse 

J-shape curve as depicted in Figure 7. which is typical for tropical natural forest in 

general (Ferreira and Prance, 1998). 

 
Figure 7. DBH distribution in Sebangau full census plot 



Results 

19 
 

 

3.4. Height distribution 

 
Figure 8. Tree height distribution 

The tree heights are nearly normally distributed with the minimum, maximum, 

and mean diameter of 1.6 m, 32.5 m, and 12.43 m respectively. As depicted in Figure 

8. the stand is dominated by trees having height of 8 - 12 m. The height distribution for 

each diameter class is presented in Figure 9. It shows that the tree height considerably 

increase with the diameter increase. Overall, the tree heights are normally distributed 

with a close-to-smooth pattern. It shows that the canopy layer has no distinct strata. 

However, height variability in lower diameter classes is clearly observed. In the DBH 

class of 5 - 10 cm and 10 - 15 cm, the height ranges are nearly the same, although the 

median shows that the bigger diameter class generally having higher tree. 

 
Figure 9. Tree height over DBH 
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3.5. Forest structure 

There are four measures to indicate the forest structure, they are species diversity, 

diameter diversity, height diversity and combination of diameter and height diversity so 

called structural diversity measure (Table 3.). Since all diversity measures calculated 

based on the proportion of its basal area in terms of species, DBH, and height, the 

interpretation of the value could be equalized. From the calculated Shannon-Weaver 

index and its extensions, species diversity has a higher value than DBH and height 

diversity. However, in regards to their maximum values, all diversity indices show 

relatively high value. The extended Shannon-Weaver indices show the overall  

structural diversity of the stand which is moderately high.    

Table 3. Forest structure related indices  

Species diversity DBH diversity Height diversity Structural diversity 

H's Max H's H'd Max H'd H'h Max H'h H'd+h H'd+h+s 

3.430 4.007 2.056 2.303 1.593 1.946 1.825 2.360 

 

3.6. Biomass estimation 

Individual tree above ground biomass (AGB) estimations based on three different 

equations resulting different magnitude of estimates. Brown (1997) equation show 

smooth exponential increase of AGB with the increase of DBH. The variability of AGB 

on each DBH class is obviously low since this equation use only DBH as independent 

variable to estimate AGB of individual trees. In comparison with the result of using 

Brown equation, AGB estimates using Chave (2005) equations show different result. 

Incorporating wood density/WD (ρ) produce more variability in the AGB estimates. 

The AGB estimates tend to be over estimate with a significant variability within DBH 

class. However, by using another Chave equation which incorporate height as 

independent variable after DBH and wood density, individual tree AGB is tend to be 

closer with the result by using Brown equation, although the variability within each  

class is still remain. From all equations used, the AGB variability is increase as DBH 

increase. Figure 10. shows the individual tree AGB estimates over DBH for all AGB 

equations used.  

Smaller trees with the DBH less than 10 cm can have AGB of as low as 0.05 ton 

per tree. As the DBH reach 20 cm, individual AGB is estimated to increase more than 

ten folds.   
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Figure 10. Individual tree AGB distribution over DBH 

In terms of AGB density, estimated total AGB within the plot using Brown 

equation is 228.86 t/ha. Chave equation with DBH and wood density as predictive 

variables gives an estimate of 267.75 t/ha, while another Chave equation with height as 

additional variable is at the magnitude of 227.24 t/ha. Horizontally, AGB tend to 

increase from the lower DBH class to middle DBH class, significantly decrease at the 

mid-DBH class, and slowly decrease as DBH increase. On average, DBH of 5-30 cm 

contribute 72.16 % to the total AGB, while DBH of 30-50 cm having proportion of 

26.58 %. A single tree having DBH of 59.7 cm contribute 1.26 % to the total AGB of 

the plot. 

Similar to the AGB distribution over DBH class, AGB distribution over tree 

height class shows an increase from the shorter tree to the mid-height class (15 - 20 m). 

The biomass density continuously decrease afterwards. Different magnitude of AGB 

estimates between height classes are also clearly observed. The biggest difference in 

AGB is observed within the 15-20 m class with a magnitude of 12.06 ton/ha. 
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Figure 11. AGB distribution over DBH class 

 

 
Figure 12. AGB distribution over height class 
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Figure 13. AGB distribution over DBH and height classes 

Figure 13. show the biomass distribution in 3D, using DBH class and height class 

as the X and Y axis. Meanwhile AGB value from different equations is used as the Z 

axis. It shows that the peak value is in the mid-class of both DBH and height. Smaller 

AGB are observed in the surrounding of the peak. It is also clear that different biomass 

models giving different AGB estimates, in particular within the mid-class of DBH and 

height. 

3.7. RapidEye images evaluation 

The evaluation of RapidEye in this study is limited to its spectral characteristic 

only. This evaluation is necessary since the relationship analysis between Rapideye 

image involve the pixel value and field variables. The spectral analysis identified 

spectral differences between each different acquisition data. 

In general, ToA reflectance of each original band vary between acquisition dates. 

Overall, ToA reflectance of RapidEye image acquired in September 20, 2013 is higher 

than the one acquired in October 06, 2013, while the image acquired in September 26, 

2013 having the highest range of all.  
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Figure 14. RapidEye original band ToA reflectance distribution from different acquisition dates 

Vegetation indices derivation giving advantages in terms of value distribution. It 

may reduce the difference in ToA reflectance of a band with different acquisition dates. 

Figure 14. shows the value of indices for each acquisition date. By calculating NDVI, 

the difference between each image tile is still observable. GNDVI shows a very good 

image matching in terms of pixel value distribution, especially for the image acquired in 

September 20, 2013 and October 6, 2013. SAVI made all the three images into almost 

the same range of spectral value. Similarly, NDRE made the images having spectral 

value ranged from 0.4 - 0.5. 
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Figure 15. Vegetation indices distribution from different acquisition dates 

3.8. Analysis of relationship between variables 

Relationship between variables or variables correspondence is analyzed in this 

chapter. There are three different relationships to analyzed, they are forest structure and 

AGB relationship, image spectral and forest structure relationship, and image spectral 

and AGB relationship.  

3.8.1. Forest structure and above ground biomass relationship 

Analysis of relationship between forest structure and above ground biomass is 

performed within the simulated grid size. Figure 16. to Figure 20. show the superiority 

of basal area among other structural attributes in relation to AGB. Simulations show 

that stand basal area is strongly correlated with all AGB models. Table 4. shows the 

significant high correlation coefficient between stand basal area and AGB which remain 

above 0.86 for each simulated grid size and AGB models. Another structural attribute 

having relatively high correlation with AGB is quadratic mean diameter (QMD). The 

highest correlation coefficient between QMD and AGB is within ten meters grid which 

has value of 0.81, 0.84, and 0.80 for Brown model, Chave eq.1 and Chave eq. 2 

respectively. As visually observed in Figure 18. structural diversity measures are 

having relatively high correlation with all AGB models within the 20 m grid size. The 
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extensions of Shannon index to DBH, height and species has the second highest 

correlation coefficient after stand basal area. In contrary, stand density and species 

diversity have low correlation for each simulated grid size and AGB models. 

 

 
 

Figure 16. Scatterplot between diversity attributes and AGB at five meter grid size (n = 400) 

 

 
 

Figure 17. Scatterplot between diversity attributes and AGB at ten meter grid size (n = 100) 
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Figure 18. Scatterplot between diversity attributes and AGB at 20 m grid size (n = 25) 

 

 
 

Figure 19. Scatterplot between diversity attributes and AGB at 25 m grid size (n = 16) 
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Figure 20. Scatterplot between structural attributes and AGB at 50 m grid size (n=4) 

 

 

Table 4. Correlation coefficient of structural attributes and AGB 

Biomass model 
Structural attributes 

Grid size 

5m 10 m 20 m 25 m 50 m 

  

N = 

400 

N = 

100 

N = 

25 

N = 

16 

N = 

4 

 

Brown QMD 0.79* 0.81* 0.71* 0.75* 0.96* 

 

Mean height 0.56* 0.67* 0.63* 0.54* 0.87 

 

Stand density 0.41* 0.35* -0.10 0.13 -0.57 

 

Stand basal area 0.98* 0.98* 0.94* 0.96* 1.00* 

 

H's 0.14* -0.09 0.08 -0.37 -0.77 

 

H'd 0.50* 0.66* 0.72* 0.73* 0.87 

 

H'h 0.28* 0.43* 0.57* 0.62* 0.84 

 

H'd+h 0.46* 0.64* 0.77* 0.74* 0.86 

 

H'd+h+s 0.36* 0.48* 0.80* 0.50* 0.61 

Chave (DBH, ρ) QMD 0.78* 0.84* 0.74* 0.76* 0.89 

 

Mean height 0.56* 0.68* 0.61* 0.49 0.75 

 

Stand density 0.37* 0.28* -0.19 0.06 -0.38 

 

Stand basal area 0.95* 0.95* 0.86* 0.89* 0.98* 

 

H's 0.12* -0.12 0.07 -0.38 -0.63 

 

H'd 0.48* 0.66* 0.71* 0.73* 0.89 

 

H'h 0.26* 0.43* 0.60* 0.62* 0.88 

 

H'd+h 0.43* 0.64* 0.78* 0.73* 0.89 

 

H'd+h+s 0.33* 0.46* 0.81* 0.49 0.70 
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Grid 

Biomass model Structural attributes 5 m 10 m 20 m 25 m 50 m 

Chave (DBH, ρ, H) QMD 0.76* 0.80* 0.69* 0.72* 0.87 

 

Mean height 0.60* 0.74* 0.68* 0.58* 0.72 

 

Stand density 0.38* 0.32* -0.13 0.09 -0.35 

 

Stand basal area 0.94* 0.94* 0.86* 0.89* 0.98* 

 

H's 0.13* -0.08 0.06 -0.35 -0.61 

 

H'd 0.48* 0.64* 0.63* 0.65* 0.90 

 

H'h 0.30* 0.48* 0.62* 0.60* 0.89 

 

H'd+h 0.45* 0.66* 0.74* 0.68* 0.90 

  H'd+h+s 0.35* 0.50* 0.76* 0.46 0.72 

* significant at p < 0.05 

 

3.8.2. Images spectral and structural attributes relationship 

Analysis of relationship between images spectral and structural attributes in the 

original grid position showing no correlation between Rapideye original bands nor the 

vegetation indices and structural attributes. However, grid-specific correlation analysis 

show a consistent correlation of NDVI and SAVI with the stand density. 

 
Figure 21. Distribution of the highest coefficient correlation of NDVI and stand density 

within probability grids 
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3.8.2. Images spectral and aboveground biomass relationship 

The analysis of correlation between image spectral and aboveground biomass 

show no correlation in the original grid position. Simulation using simulated grid size 

giving no improvement in increasing the correlation coefficient. Simulation of 

probability grids show similarly. 
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4. Discussion 

The estimation of forest biomass is an essential key element to determine carbon 

stocks and their changes over time. Such estimates are needed as basis for carbon 

accounting on large areas. The choice of a biomass model is thereby a serious factor of 

uncertainty for market mechanisms like e.g. REDD. This study shows that different 

models applied to the same data collected in the Sabangau National park in Kalimantan 

result in significantly different estimates of above ground biomass and carbon stocks. 

As these field observations are also used as ground truth for remote sensing analysis 

and to produce e.g. carbon maps, the accuracy of these final products is as much 

affected by these problems as any other statistical estimate of mean values. 

One of the major problems in this context is how the final choice of a specific model 

could be justified. Both applied models (Brown 1997, Chave 2005) are generalized 

models that are derived based on compiled data from the whole humid tropics. They are 

here applied to a local population that is in the humid tropics but is also a special 

example in many respects. Swamp forests cannot necessarily be compared to the mean 

growing conditions in the humid tropics. Further, the species mixture and forest 

structure found in the study site is special to this biotope.  The common statistical 

estimates on the model performance, like e.g. the reported R² of the models is in both 

cases very high (R²>0.9). However, these statistics are derived from the dataset used for 

model development and refer to the model performance in this population exclusively. 

They do not allow any conclusion on how well the models fit a certain local population. 

In the actual case it is likely, that the data used by Chave and Brown do not contain any 

trees from swamp forests at all. 

It is interesting to note that the difference between the two Chave models applied 

here, and that is a consequence of considering the actual wood density of the existing 

tree species, is relatively large. At the same time predictions of the model of Chave 

become more similar to those of the Brown model, if the height variable is considered. 

This could also be evidence on the special characteristics of tree species in the swamp 

forest. Compared to trees growing on mineral soils, the poor nutrition in a swamp might 

lead to much slower growth of the trees. From temperate forests, where trees only grow 

in a certain period, it is known that slow growth is often related to higher wood density. 

The wood density might also help to "adapt" the general model to the special site 

conditions in the actual case. 
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 The results show that, depending on the choice of a model, different  estimates 

could be derived. As no own data from destructive sampling was collected in the study 

site, a final decision about a suitable model is not possible. Therefore the model 

predictions would need to be compared to a sufficient number of own observations on 

single tree biomass. This is a very usual case in carbon projects. 

As for the remote sensing data, it is surprising that none of the RapidEye spectral 

bands are able to capture the variability of the biomass in the field. The RapidEye has 

been advertised as so called vegetation detector. With the Red Edge band as its prime 

unique feature, RapidEye is expected to easily characterize vegetated area, including 

estimate the biomass. In the one hand, Red Edge band  provides the advantages in 

monitoring health status as the function of chlorophyll within the forest. On the other 

hand, it has no correlation with the forest aboveground biomass. However, the 

correlation between vegetation indices and stand density show a promising result to 

determine horizontal structure of the forest, although it needs further investigation.  
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5. Conclusion 

The study found that species identification may contribute to the uncertainty on 

estimation of Above Ground Biomass (AGB), in particular species based AGB 

estimation. Wood density value found to be significantly affect to the estimation of 

individual tree biomass which in turn affecting the estimation of the forest stand. 

The simulated grid size demonstrates an alternative option to analyze inventory 

data from a small sample area. Image processing by applying spectral enhancement 

such as vegetation indices may reduce the difference of original spectral band in a multi 

series RapidEye data. Vegetation indices gives a promising result in determining forest 

structure, although it is still limited to stand density as a horizontal structural attribute. 

However, further investigation is needed to evaluate the capability of RapidEye image 

spectral to estimate aboveground biomass. 
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