The Isotopic Signature of Ecosystem Respiration in a Temperate Beech Forest
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Motivation and Objective

Respiration provides important information about
the terrestrial carbon cycle. The stable 1sotopic com-
position of respired CO- has been e.g. used to 1den-
tify the transfer time of assimilates from photosyn-
thesis to respiration (see e.g. [1]) and to partition net
CO, fluxes (see e.g. [2]).

The objectives of this study are:

e Testing the new Isotope Ratio Infrared Spectrome-
ter (IRIS) Delta Ray (Thermo Scientific, Bremen)
to measure the 1sotopic composition of ecosystem
respiration B> C' and R O
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e Characterizing the measured seasonal variability
of R’ C' and R O

€CO

€CO

e Analyzing the correlation between this variability
in R..,”°C" and different meteorological variables

Methods

e Measurement campaign: Three months in a
managed beech forest in autumn 2015

e Set up: Measurement of CO, concentration,
61°C and 6'°0 in 9 different heights

¢ Instrument:
trometer (IRIS) Delta Ray (Thermo Scientific,
Bremen) with automatic calibration.

e Method: Based on a Keeling Plot approach
we calculated the 1sotopic composition of
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Figure 1: An example for using the isotopic
composition of respiration: flux partitioning
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Figure 2: Field site: managed beech forest
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(2.5 to 5 min)

Our 30 minutes measure-
ment cycle consisted of:

e Measuring all nine heights
(app. 2.5 min /height)

e Measuring a target standard
air with app. 400
ppm CO» - app. 2.5 min)

e Internal calibration

Results

Instrument performance

Precision

e Our measurement time was 20 s and the cell turnover time app. 12s

e Allan deviation 04(20s) < 0.1%. for both d-values (c.f. Figure 4).
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Figure 4: Allan deviation o 4 for different averaging times of the isotope ratio infrared spectrometer IRIS (Thermo Scientific),
compared to a 4Hz quantum cascade laser based spectrometer QCLAS that was running in parallel (Aerodyne Research Inc.)

Long-term stability under field conditions

The measured concentrations and o-values
for our target gas tank are shown with meta-
data in figure 5 and a comparison of the

target measurements to laboratory measure-

ments are shown 1n table 1.

only in the case of concentration.

— Calibration
—— Add. manual measurement
Trigger missed

Because the
tanks O0-values were outside the calibration
range, this reflects the long-term accuracy

. Errors denote standard deviations in both cases.

Remarkable target measurement

Instrument issue
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Field Meas.| Lab Meas.
C' [ppm] 396 4+ 0.2] 396.5 + 0.1
6B C meas [%o] | -37.9 £ 0.2 -37.0 £ 0.02
00 meas [%0] | -35.8 £0.2 -34.7 £0.2

Table 1: Left: Average over all target measurements -
excluding all time spans marked with diff. colors in fig.
5, Right: High precise laboratory measurements of the
same gas tank at MPI Biogeochemistry in Jena, Germany
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Figure 5: Time series of concentrations and 0-values for target measurements with color-coded meta-data
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Variability on seasonal timescale

The isotopic compositions of ecosystem respiration R,.,”’C' and R..,'°0O show vari-
ations on seasonal timescales that exceed the measurement error (shown in figure 6).
Additionally, they both change their behavior after the first (singular) snow event.
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Figure 6: Seasonal variability of the isotopic signatures of respiration, errorbars denote the resp. standard error

Among all n-day-sums over meteo-
rological variables we tested, we
found the strongest correlation between

R C (before first snow) and the 2-
day-sum of net radiation R,, with a time
lag of 2 days. This significant, mod-
erate, negative correlation can be inter-

preted 1n the following way:
R,, T = Photosynthesis 1 " Time shift T between the twozgignals [ZdEi »
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Figure 7: Pearson correlation for R!'? C' and net radiation R,,,

vapor pressure deficit (VPD) and the ratio of VPD and photo-
syn. active radiation (PAR) (period before first snow)

Main conclusions

e The instrument showed sufficient accuracy and long term stability to analyze the sea-
sonal variability of the isotopic composition of respiration in both *C and '°O.

e Before the first snow in autumn 2015 C discrimination was controlled dominantly by
photosynthesis (and therefore radiation) and not by the stomata (and therefore VPD).

e The time lag between photosynthesis and respiration during this period was 2-3 days.

e After the first snow event this correlation between photosynthesis and radiation van-
ished abruptly, yielding that the strong seasonal variations in R’ C' were not con-
trolled by photosynthetic flux for this period.
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