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ABSTRACT

A fully Bayesian method for quantitative genetic analysis of data consisting of ranks of, e.g., genotypes,
scored at a series of events or experiments is presented. The model postulates a latent structure, with an
underlying variable realized for each genotype or individual involved in the event. The rank observed is
assumed to reflect the order of the values of the unobserved variables, i.e., the classical Thurstonian model
of psychometrics. Parameters driving the Bayesian hierarchical model include effects of covariates,
additive genetic effects, permanent environmental deviations, and components of variance. A Markov
chain Monte Carlo implementation based on the Gibbs sampler is described, and procedures for inferring
the probability of yet to be observed future rankings are outlined. Part of the model is rendered
nonparametric by introducing a Dirichlet process prior for the distribution of permanent environmental
effects. This can lead to potential identification of clusters of such effects, which, in some competitions
such as horse races, may reflect forms of undeclared preferential treatment.

LATENT variable models for describing mechanisms
by which some continuous scale maps into or-

dered or unordered categories of response have a long
tradition in quantitative genetics and psychometry. For
example, the threshold-liability model for ordinal cate-
gories dates back to Wright (1934), Dempster and
Lerner (1950), Grüneberg (1952), and Falconer

(1965); see Gianola (1982) for a review. Extremal
models were pioneered in psychology by Thurstone

(1927) and were adapted by Bock and Jones (1968) to
explain choices between unordered alternatives.

Suppose that an observation is an assignment into
one of M mutually exclusive and exhaustive categories
of response. The classical Thurstonian extremal model
postulates the existence of some latent or unobserved
continuous valued vector yM31 ¼ fyig, such that cate-
gory i is observed when yi is larger than the other M � 1
elements of the vector. The probability of observing an
assignment into category M, say, is given by

PrðyM . yM�1; yM . yM�2; . . . ; yM . y1 jparametersÞ;

where ‘‘parameters’’ are typically unknown quantities
driving the process. The extremal model can also be
applied to data consisting of ranks, presumably reflect-
ing the outcome of some underlying continuous pro-
cess, e.g., competing ability. For instance, Henery

(1981) and Tavernier (1991) used this idea in the
context of horse races, and Johnson et al. (2002) for
analysis of ranked data collected in primate intelligence
experiments. Ranked data also arise in human genetics
(e.g., Lawrence et al. 1994). In Henery (1981) and
Tavernier (1991), the setting is one where several in-
dividuals compete in a series of events (e.g., horse races).
Prior to the event, each individual generates an un-
observable random variable, or ‘‘liability of winning the
event,’’ and these liabilities are regarded as mutually
independent, given some parameters. Posterior to the
event, the observed ranking corresponds to the order of
the realized values of these liabilities. Clearly, the latent
variables are no longer independent, a posteriori, be-
cause the ranking implies that y½1�. y½2� � � � . y½M�1�.

y½M �, where y[1] is the liability of the individual ranked
first, and so on. In particular, Tavernier (1991) de-
scribed an empirical Bayes procedure for inferring
features of the latent distribution, such as breeding
value of racing horses or competing ability of each of
the members of a list of competitors. The approach of
Tavernier (1991) is based on calculating, iteratively, a
conditional posterior mode, given some values of dis-
persion parameters; these, in turn, are estimated using
an approximation to marginal maximum-likelihood esti-
mation. Her procedure uses statistical and numerical
approximations that are not needed in a Bayesian imple-
mentation based on Markov chain Monte Carlo (MCMC)
sampling.

The objective of this study is to present theory for a
fully Bayesian method for quantitative genetic analysis
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of data consisting of ranks scored at each of a series
of runs, experiments, or events. The method uses a
Thurstonian representation of the mechanism by which
an underlying continuum is translated into observed
ranks. The parameters driving the Bayesian hierarchical
model include additive genetic and permanent envi-
ronmental effects, and the MCMC implementation
allows easy computation of probabilities of yet to be
observed runs. The article is organized as follows.
probability distribution of observed ranks out-
lines the Thurstonian concept and gives the sampling
model for the observed data. In bayesian structure,
a hierarchical specification is outlined. conditional

maximum a posteriori estimation reviews the empir-
ical Bayes methodology suggested by Tavernier (1991)
and discusses potential shortcomings of this type of treat-
ment of data. fully bayesian analysis gives details of
the MCMC scheme proposed and presents procedures
for inference and prediction. Some assumptions are
relaxed in nonparametric distribution for effects.
Specifically, the assumption of a normal distribution
of permanent environmental deviates is replaced by a
Dirichlet process, using a normal distribution as base-
line probability measure; a Gibbs sampling scheme is
presented. The article concludes with a discussion.

PROBABILITY DISTRIBUTION OF OBSERVED
RANKS

Suppose nk individuals ‘‘compete’’ in event k and that
the information available for analysis is that furnished
by the ranks observed in the event. It is assumed that no
ties are possible, but this restriction is easy to lift. As in
Henery (1981) and Tavernier (1991), it is supposed
that the observed ranking is a manifestation of the
magnitudes of latent variables, liability of winning the
event, which are specific to each of the individuals.

The model for the unobserved liability of individual j
ð j ¼ 1; 2; . . . ; J Þwinning event k ðk ¼ 1; 2; . . . ;K Þ is the
standard specification of quantitative genetics,

ljk ¼ xjk9 b 1 aj 1 pj 1 gk 1 ejk

¼ mjk 1 ejk ð1Þ

(Dempster and Lerner 1950; Falconer 1965;
Gianola 1982; Gianola and Foulley 1983), where b
is a set of F location effects affecting liability and x9jk is a
known incidence vector peculiar to individual j in event
k; aj and pj are the additive genetic and permanent
environmental effects, respectively, of individual j on
liability; gk is an effect peculiar to event k (which may or
may not be needed in the model) and ejk � N ð0;s2

eÞ is a
random residual, distributed independently of all terms
in the model, within and across subjects; and s2

e is the
residual variance. In (1), mjk ¼ xjk9 b 1 aj 1 pj 1 gk . The
liabilities are not observable, so it is assumed that s2

e ¼ 1
for parameter identification purposes. Hence, all effects
are measured in units of residual standard deviation.

The liabilities of the ‘‘competitors’’ present in event k
can be packed into the nk 3 1 vector lk, and the cor-
responding vectorial representation is

lk ¼ Xkb 1 Zaka 1 Zpkp 1 Zgkg 1 ek ; ð2Þ

where a is a Q 3 1 vector of additive genetic effects of all
potential participants or genetically related individuals;
p is a C 3 1 vector of permanent environmental effects
(including perhaps nonadditive genetic deviations) of
individuals with at least one record of competition; g is a
K 3 1 vector of event effects; ek � N ð0; Ink

Þ is a residual
vector, and Ink

is an identity matrix of order nk; and Xk,
Zak, Zpk, and Zgk are incidence matrices of appropriate
order. Vertical concatenation of all liabilities into aPK

k¼1 nk 3 1 vector l leads to the representation

l ¼ Xb 1 Zaa 1 Zpp 1 Zg g 1 e

¼ Wu 1 e; ð3Þ

where u¼½b9; a9;p9; g9�9 and W ¼ ½X;Za ;Zp ;Zg �.
Prior to the competition, and conditionally on b, a, p,

and g, the joint density of the yet to be realized liabilities,
in view of the mutual independence of the residuals, is

pðl1; l2; . . . ; lK jb; a;p; g; dÞ

¼
YK
k¼1

pðlk j u; dÞ ¼
YK
k¼1

YJ

j¼1

½N ðljk jmjk ; 1Þ�djk ; ð4Þ

where N ðljk jmjk ; 1Þ denotes the density of the normally
distributed liability ljk, with mean mjk and variance 1 and
d ¼ fdjkg is a set of indicator variables; i.e., djk ¼ 1 if
competitor j is present in event k and 0 otherwise.

Consider competition k, such that the ‘‘winner’’ is the
individual with the largest liability among the nk com-
petitors. An ordered variable is denoted as lj½rank�k , which
is the realized liability of individual j attaining rank ¼ 1,
2, . . . , nk in the event; for instance, if a competitor whose
identification is 20 places second in the event, then the
corresponding liability is denoted as l20½2�k . Following
Henery (1981) and Tavernier (1991), the probability
that a given order or ranking is observed in event k
ðDATAkÞ is given by

PkðuÞ ¼ PðDATAk ju; dÞ ¼ Pðlj½1�k . lj½2�k � � � . lj½nk �k
j uÞ

¼
ð‘

�‘

ð‘

lj½nk �
k

. . .

ð‘

lj½2�k

YJ

j¼1

½N ðljk jmj½ j �k
; 1Þ�djk

3 dlj½1�kdlj½2�k . . . dlj½nk �k
: ð5Þ

This probability can also be expressed in terms of nine
contrasts between liabilities being .0. Since the latent
variables are not observable, one can ‘‘anchor’’ the
liability of the winner to 0, so that all other liabilities are
negative; the mean liability of a ‘‘perfect’’ competitor
(i.e., one winning all events) would then be null. The
probability of the ranks observed in all K competitions
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(DATA), assuming that outcomes of different races are
conditionally independent, given u, is

PðDATA j uÞ ¼
YK
k¼1

PkðuÞ: ð6Þ

BAYESIAN STRUCTURE

Consider now the problem of inferring, via the Bayes-
ian approach, unobserved features of interest, e.g., the
vector of additive genetics a, as it would be the case
in horse breeding, or the linear combination v ¼ a 1 p,
which can be termed ‘‘competing ability.’’ Define
L ¼ ½s2

a;s
2
p;s

2
g�9, a vector of variance parameters. As-

sume that the density of the joint prior distribution of u
and L has the form

pðu;L jH Þ ¼ NF ðb j 0; Is2
bÞNQ ða j 0;As2

aÞNCðp j 0; Is2
pÞ

3 NK ðg j 0; Is2
gÞ3

Y
i¼a;p;g

pðs2
i j ni ; S

2
i Þ: ð7Þ

Above, NF ðb j 0; Is2
bÞ;NQ ða j 0;As2

aÞ;NCðp j 0; Is2
pÞ, and

NK ðg j 0; Is2
gÞ denote multivariate normal densities of

orders F, Q, C, and K, respectively; s2
b is a variance

reflecting uncertainty about location parameters in b (it
is assumed known and large); A is the numerator ad-
ditive relationship matrix (Henderson 1976) and s2

a is
the additive genetic variance; s2

p is the variance of per-
manent environmental effects and s2

g is the variance
between events. In addition, pðs2

i j ni ; S
2
i Þ is the density

of a scaled inverted chi-square distribution on ni degrees
of freedom, with S2

i interpretable as a prior guess for
s2

i , and H ¼ ½s2
b; na; S

2
a ; np; S

2
p ; ng; S

2
g �9 is a set of known

hyperparameters.
The density of the joint posterior distribution of u

and L is proportional to the product of (6) and (7):

pðu;D jDATA;H ; dÞ

}
YK
k¼1

PkðuÞNF ðb j 0; Is2
bÞNQ ða j 0;As2

aÞNC ðp j 0; Is2
pÞ

3 NK ðg j 0; Is2
gÞ
Y

i¼a;p;g

pðs2
i j ni ; S

2
i Þ: ð8Þ

CONDITIONAL MAXIMUM A POSTERIORI
ESTIMATION

Prior to the advent of MCMC procedures for sam-
pling from posterior distributions, it was standard to
use two-stage approaches to carry out an approximate
Bayesian analysis. In the first stage, a Gaussian approx-
imation to ½D jDATA� is used to obtain an approximate
maximum marginal-likelihood estimate of L (Gianola

et al. 1986; Foulley et al. 1987), L̂, say. In the second
stage, the joint mode of the conditional posterior distri-
bution ½u jL ¼ L̂;DATA� is used to obtain point esti-

mates of u (Gianola and Foulley 1983) given L ¼ L̂,
or ‘‘conditional maximum a posteriori’’ (MAP). If the dis-
tribution ½u jL;DATA� is exactly Gaussian, its posterior
mode yields directly the posterior means of each of the
elements of u (Gianola and Fernando 1986). If, in
addition, a flat prior is used for b, the posterior mean
vector of ½u jL;DATA� yields the best linear unbiased
predictor of b and the best linear unbiased predictors
of a, p, and g. Also, if a flat prior is assigned to b and to
each of the elements of L, under Gaussian assumptions
the elements of the mode of the marginal distribution
½D jDATA� coincide with the restricted maximum-likeli-
hood estimates of the variance components (Harville

1974).
Tavernier (1990, 1991) used this type of approach

for finding the u-maximizer of the log of the conditional
posterior density pðu jL;DATA; dÞ, assuming a flat prior
for b. The objective function for the model in (1),
assuming a normal prior for b, is

Lðu jL;DATA; dÞ

¼
XK

k¼1

log PkðuÞ �
1

2

b9b

s2
b

1
a9A�1a

s2
a

1
p9p

s2
p

1
g9g

s2
g

 !
:

ð9Þ

Tavernier (1990, 1991) employed the Newton–
Raphson algorithm for maximizing (9) in the context
of horse races. This requires calculation of first and
second derivatives of (9) with respect to u. The gradient
vector and the Hessian matrix needed for the Newton–
Raphson machinery are

@L

@u
¼
XK

k¼1

1

PkðuÞ
@PkðuÞ
@u

� S�1u;

and

@2L

@u@u9
¼
XK

k¼1

1

PkðuÞ
@2PkðuÞ
@u@u9

� 1

PkðuÞ
@PkðuÞ
@u

� ��

3
1

PkðuÞ
@PkðuÞ
@u9

� ��
� S�1;

respectively, where

S�1 ¼

IF s�2
b 0 0 0

A�1s�2
a 0 0

IC s�2
p 0

symmetric IK s�2
g

2
6664

3
7775:

These derivatives are not trivial and involve integration
of multivariate normal densities, as well as differentia-
tion under the integral sign. Tavernier (1991) gives ap-
proximations to first and second derivatives that require
calculation of expectations, variances, and covariances
of order statistics. Also, numerical calculation of high-
order multivariate normal integrals is cumbersome. Since
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the Newton–Raphson algorithm is iterative and the
number of competitors and races in a data set can be
very large, the procedure is numerically intensive, as
a large number of calculations must be effected.

Aside from these technical issues, the procedure re-
lies on statistical approximations that may not be always
adequate. For instance, in a high-dimensional, nonnor-
mal, multivariate distribution, the components of the
mode of the joint posterior density may be far from the
corresponding posterior expectations. Also, computing
a measure of precision of estimates of u is a task by itself:
a Gaussian approximation to the conditional (given L)
posterior covariance matrix is obtained by inverting the
negative of the Hessian matrix and by evaluating this
inverse at the converged values of u. The diagonal ele-
ments of this inverse give a large sample approximation
to the conditional posterior variances of the elements
of u. Last but not least, the procedure for estimating
parameters in L is also based on Gaussian approxima-
tions and, furthermore, the approximate modal infer-
ences about u do not take into account the uncertainty
of the approximate estimates of L. All these difficulties
can be circumvented via MCMC procedures, as dis-
cussed in the following sections.

FULLY BAYESIAN ANALYSIS

Joint posterior distribution: The Bayesian structure
given above is maintained, but the parameter vector
is augmented with the unobserved liabilities as latent
variables (Tanner and Wong 1987; Sorensen et al.
1995). A main difference with a standard latent variable
problem is that, in our setting, the sample space of the
liabilities is order constrained, within events.

After augmentation with the liabilities l, the joint
posterior density is expressible as

pðl; u;D jDATA;H ; dÞ

}
YK
k¼1

YJ

j¼1

½N ðljk jmjk ; 1Þ�djk Ik

( )
NF ðb j 0; Is2

bÞ

3 NQ ða j 0;As2
aÞNC ðp j 0; Is2

pÞ

3 NK ðg j 0; Is2
gÞ
Y

i¼a;p;g

pðs2
i j ni ; S

2
i Þ: ð10Þ

Above, the indicator set Ik ðk ¼ 1; 2; . . . ;K Þ denotes
the order of liabilities, or ranking attained, observed in
competition k. For example, if competitors 1, 5, 7, and
14 participate in event 20, and the ranking observed is
5 . 14 . 1 . 7, then, following the notation employed
in (10), I20 ¼ l5½1�20; l7½4�20; l14½2�20; l1½3�20

� �
.

Markov chain Monte Carlo sampling: A Gibbs sam-
pler is described for effecting draws from the joint
posterior distribution (10). This is a well-known pro-
cedure for sampling from joint distributions; see, e.g.,
Gilks et al. (1996) and Robert and Casella (2005).

Briefly, the Gibbs sampler loops through all conditional
posterior distributions, with uncertain quantities sam-
pled either blockwise or piecewise. All samples from
the fully conditionals are accepted with probability 1.
Samples from early iterations are discarded as ‘‘burn
in’’; subsequently, at the end of each cycle of sampling,
the coordinates of sample ðl½s�; u½s�;D½s�; s ¼ 1; 2; . . . ; SÞ
are regarded as draws from the corresponding marginal
posterior distributions. The chain can be thinned, such
that samples are as lowly correlated (serially) as desired.
If storage capacity is not a limiting factor, then it is better
to use all samples in the post-Gibbs analysis. Conver-
gence diagnostics and processing issues are discussed in
Cowles and Carlin (1996), Sorensen and Gianola

(2002), and Gelman et al. (2003).
Sampling of liabilities: The form of (10) indicates

that the conditional posterior distribution of the liabil-
ities in event k has the form

pðlk jELSEÞ }
YJ

j¼1

½N ðljk jmjk ; 1Þ�djk Ik ; k ¼ 1; 2; . . . ;K ;

ð11Þ

where ELSE denotes the unknown liabilities at all other
events, u, D, d, and DATA. Note that, conditionally on
ELSE, the liabilities at different events are mutually in-
dependent. However, within event k, liabilities are not
independent, because of the sample space constraint
imposed by knowledge of its outcome, represented by
Ik. The dependence arises through the sample space,
but the kernel of the conditional distribution of the nk

liabilities in event k, given ELSE, is proportional to
the product of the kernels under conditional indepen-
dence. Sampling from the space-constrained distribu-
tion is straightforward:

Draw ‘‘independently’’ the nk liabilities of competitors in
event k (whose indexes are in Ik) from the distribu-
tions N ðljk jmjk ; 1Þ, j 2 Ik.

If the liabilities sampled satisfy the order constraint in Ik,
then accept the vector lk as a draw from the posterior
distribution. Otherwise, reject the proposal and re-
peat the sampling until a valid draw is effected.

This procedure, although simple, is typically ineffi-
cient and it may have a large rejection rate. A more
efficient sampling technique, described by Devroye

(1986), is given in more detail in Sorensen and
Gianola (2002). To illustrate, let the outcome of com-
petition 20 be as in the example above; that is, I20 ¼

l5½1�20; l14½2�20; l1½3�20; l7½4�20

� �
. Hence, in event 20, the sam-

ple space of the liabilities is l7,20 , l1,20 , l14,20 , l5,20. To
sample the four liabilities, one proceeds from either first
to last or last to first (the liability of the winner can be set
equal to zero, as stated above). For instance:

Sample l7,20 from N ðl jm7;20; 1Þ without any constraint.
This is the realized value of the liability of the last
competitor.
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Sample l1,20 from the truncated normal distribution
TNl7;20;‘ðl jm1;20; 1Þ, where the parameters are as in the
absence of truncation. The realized value is formed as

l1;20 ¼ m1;20 1 F�1fFðl7;20 � m1;20Þ1 U ½1�Fðl7;20 � m1;20Þ�g
¼ m1;20 1 F�1fU 1 ð1� U ÞFðl7;20 � m1;20Þg;

where Fð:Þ is the standard normal distribution function
and U is a uniform random number in ð0; 1Þ.

Sample l14,20 from the truncated normal process
TNl1;20;‘ðl jm14;20; 1Þ, forming the realized value as

l14;20 ¼ m14;20 1 F�1fU 1 ð1� U ÞFðl1;20 � m14;20Þg:

Sample the liability of the winner from TNl14;20;‘ðl jm5;20; 1Þ
as

l5;20 ¼ m5;20 1 F�1fU 1 ð1� U ÞFðl14;20 � m5;20Þg:

Once the K events are processed independently, this
produces a realization of the

PK
k¼1nk 3 1 vector of

liabilities at iteration s, lðsÞ, which becomes the ‘‘data’’
in model (3) at iteration s ¼ 1, 2, . . . , S of the Gibbs
sampler.

Sampling of parameters: Given the liabilities, the
conditional posterior density of all parameters can
be deduced from (10) after fixing the vector l. This
yields

pðu;D j l;H ; dÞ

}
YK
k¼1

YJ

j¼1

½N ðljk jmjk ; 1Þ�djk

( )
NF ðb j 0; Is2

bÞ

3 NQ ða j 0;As2
aÞNCðp j 0; Is2

pÞ

3 NK ðg j 0; Is2
gÞ
Y

i¼a;p;g

pðs2
i j ni ; S

2
i Þ: ð12Þ

Note that, given the liabilities, the information provided
by the sets Ik is redundant. The density above is that of a
Bayesian mixed-effects model under Gaussian assump-
tions (Gianola and Fernando 1986; Wang et al. 1993,
1994) with the sampled liabilities playing the role of
data. The conditional posterior distributions of u and D
are in closed form (Wang et al. 1993, 1994), as follows.
The location parameters u can be sampled from the
multivariate normal process

u jELSE � N ðC�1r;C�1Þ; ð13Þ

where

C ¼ W9W 1 S�1;

and

r ¼ W9l:

The draw from distribution (13) can be done either in
a single pass (Garcia-Cortés and Sorensen 1996) or

element by element (Wang et al. 1994); the rate of con-
vergence to the equilibrium distribution is lower and
the autocorrelation between samples higher when sam-
pling is piecewise.

All conditional posterior distributions of the disper-
sion parameters are scaled inverted chi square and are
mutually independent. The distributions are

s2
a jELSE � ða9A�1a 1 naS2

a Þx�2
na1Q ; ð14Þ

s2
p jELSE � ðp9p 1 npS2

pÞx�2
np1C ; ð15Þ

and

s2
g jELSE � ðg9g 1 ngS2

g Þx�2
ng1K : ð16Þ

The Gibbs sampling algorithm consists of drawing
liabilities from distributions (11), such that the order
constraints are satisfied, followed by draws from (13)
and (14)–(16) to obtain parameter updates. The sam-
pling process is repeated as needed, after convergence
diagnostics are satisfied, and such that the Monte Carlo
error of estimation of features of the posterior distribu-
tion is small enough.

Inference: The procedure of Tavernier (1991) pro-
duces conditional posterior modes of location parame-
ters, as already noted, but can also be used to estimate
the probability of observing a certain outcome, even in
a hypothetical competition, although ignoring uncer-
tainty about estimates. The fully Bayesian Markov chain
Monte Carlo procedure is more flexible. First, it is pos-
sible to produce a complete posterior distribution for
any uncertain quantity, e.g., the competing ability aj 1 pj

of individual j or the additive genetic variance s2
a. In

addition, it is possible to estimate the probability of any
event related to a future competition. Let If be an order
associated with a yet to be realized event referred to as
‘‘future,’’ with nf participants. The predictive probability
distribution of If, posterior to historical data (DATA), is
given by

PðIf jDATA;H ; dÞ

¼
ð

Pðlj½1�f . lj½2�f � � � . lj½nf �f
j uÞpðu jDATA;H ; dÞdu

¼ EujDATA ½Pðlj½1�f . lj½2�f � � � . lj½nf �f
j uÞ�; ð17Þ

where Eð:j:Þ denotes expectation with respect to the dis-
tribution (. j .). The integral in (17) does not have a closed
form, since the posterior distribution ½u jDATA;H ; d�
is unknown. However, it can be estimated from the Mar-
kov chain Monte Carlo samples via ergodic averaging.

Let u½s�, s¼ 1, 2, . . . , S be the u-coordinate of a sample
from the posterior distribution ½l; u;D jDATA;H ; d�,
with density (10), and let

Pðlj½1�f . lj½2�f � � � . lj½nf �f
j uðsÞÞ
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be the probability of observing the ranking in If in the
future liabilities when u ¼ u½s�. Note that, since event
effects are assumed to be independent, DATA will not
contain information about a future event effect gf. This
does not pose a problem, as the posterior distribution
can be augmented with this effect; however, DATA will
convey information about s2

g. A simulation-consistent
estimator of (17) is

P̂ðIf jDATA;H ; dÞ ¼ 1

S

XS

s¼1

J ðsÞ lj½1�f . lj½2�f � � � . lj½nf �f

� 	
;

ð18Þ

where J ðsÞ lj½1�f . lj½2�f � � � . lj½nf �f

� 	
is an indicator variable

taking the value 1 if the ranking in If is attained
in sample s and 0 otherwise. In practice, one samples
liabilities for future event f from

pðlf j uðsÞÞ}
YJ

j¼1

½N ðljf jmðsÞjf ; 1Þ�djf

and checks whether or not the realized values satisfy
lj½1�f . lj½2�f � � � . lj½nf �f

; if so, J ðsÞ lj½1�f . lj½2�f � � � .



lj½nf �f
Þ ¼ 1.

This process is repeated for every Monte Carlo sample,
leading directly to (18).

A similar procedure can be used to estimate the
probability of any future event A, such as whether
‘‘participant’’ j is first, second, or third in a competition
involving nf competitors; let such an event be denoted
as A. Then, the probability of observing A in a future
event can be estimated as

P̂ðA jDATA;H ; dÞ ¼ 1

S

XS

s¼1

J ðsÞð j first; second; or thirdÞ:

Operationally, one samples liabilities lf from ½lf j uðsÞ�
as given above and checks whether or not A is realized,
in which case J ðsÞð j first; second; or thirdÞ ¼ 1 and 0
otherwise.

NONPARAMETRIC DISTRIBUTION FOR EFFECTS

Above, it was assumed that prior uncertainty about
permanent environmental or event effects could be de-
scribed reasonably by the normal distributions NCðp j 0;
Is2

pÞ and NK ðg j 0; Is2
gÞ, respectively. However, it might

be sensible to make less strong assumptions about these
distributions. For instance, there may be clusters of
events that are more similar to each other, i.e., clusters
representing different, unknown, levels of competition.
Likewise, there may be some competitors that receive
similar ‘‘preferential’’ treatment. A suitable represen-
tation of uncertainty may be that furnished by the
Dirichlet process prior (Escobar 1994; MacEachern

1994; Kleinman and Ibrahim 1998; Van Der Merwe

and Pretorius 2003). The case of the permanent en-

vironmental effects is discussed here. A priori, let the
permanent effects pi be independently distributed as

pi � G ;

where G is some general distribution. In turn, assume
that G follows a Dirichlet process (DP) prior

G � DPðM ;G0ðs2
pÞÞ

(Ferguson 1973; Antoniak 1974), meaning that G is a
random member of a space of distributions, with M and
G0ðs2

pÞ being parameters of these process. For example,
it could be that G0ðs2

pÞ[ NCðp j 0; Is2
pÞ is taken as ‘‘base

prior,’’ a distribution approximating the nonparametric
shape of G, with M interpretable as a degree of belief on
how close NCðp j 0; Is2

pÞ is to G. The parameter M is such
that, when M/‘, then G/G0; the same is true if all
random effects are identical (Kleinman and Ibrahim

1998). When G is mixed over the Dirichlet process, the
Polya urn representation of the prior distribution of the
random effects (Kleinman and Ibrahim 1998) is, for
N ð0;s2

pÞ as base prior,

p1 � N ð0;s2
pÞ

p2

¼ p1 with Prðp2 ¼ p1Þ ¼ P1

� N ð0;s2
pÞwith probability 1� P1

(

p3

¼ p1 with Prðp3 ¼ p1Þ ¼ P1

¼ p2 with Prðp3 ¼ p2Þ ¼ P2

� N ð0;s2
pÞwith probability 1� P1 � P2

8><
>:

:

:

:

pC

¼ p1 with PrðpC ¼ p1Þ ¼ P1

¼ p2 with PrðpC ¼ p2Þ ¼ P2

: : :

¼ pC�1 with PrðpC ¼ pC�1Þ ¼ PC�1

� N ð0;s2
pÞwith probability 1�

PC�1

i¼1
Pi ;

8>>>>>>>><
>>>>>>>>:

where the probabilities P1, P2, . . . , PC�1 follow from the
parameters of the Dirichlet process. Using results in
Escobar (1994), Kleinman and Ibrahim (1998), and
Van Der Merwe and Pretorius (2003), the prior dis-
tribution of the random effects generates the sequence

p1 � N ð0;s2
pÞ

pC j p1; p2; . . . ; pC�1

¼ pj with PrðpC ¼ pjÞ ¼ 1
M 1 C�1;

j ¼ 1; 2; . . . ;C � 1

� N ð0;s2
pÞwith probability M

M 1 C�1:

8><
>:

Note that as M/‘, the prior distribution tends
toward the parametric process N ð0;s2

pÞ, as noted ear-
lier. The preceding implies that the conditional prior
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distribution of a permanent environmental effect (i,
say), given all other such effects, is

pðpi jp�iÞ ¼
1

M 1 C � 1

XC

j 6¼i

dðpj ;BÞ

1
M

M 1 C � 1
N ð0;s2

pÞ; ð19Þ

where

dðpj ;BÞ ¼
pj when pj 2 B
0 when pj ;B;

�
and B is the set over which the sum is taken (Escobar

1994; Van Der Merwe and Pretorius 2003). Note that
pi can be equal to the permanent environmental effect
of other subjects with nonnull prior probability; this
has an implication in the construction of conditional
posterior distributions. Representation (19) illustrates
that the conditional prior distribution of any of the
permanent effects, given all other p’s, is a mixture of
C � 1 degenerate distributions (dðpj ;BÞ) with point
masses at pj ð j 6¼ iÞ and of the parametric base distribu-
tion N ð0;s2

pÞ. The mixing probabilities of states j 6¼ i
are 1=ðM 1 C � 1Þ for each of the C� 1 ‘‘conditioning’’
states, and M=ðM 1 C � 1Þ for the probability that pi is
a draw from the normal process.

Given the liabilities, and assuming temporarily that M
is assigned a fixed value, the joint posterior density of all
uncertain quantities is obtained by modifying (12) into

pðu;D j l;H ; d;M Þ

}
YK
k¼1

YJ

j¼1

½N ðljk jmjk ; 1Þ�djk

( )
NF ðb j 0; Is2

bÞNQ ða j 0;As2
aÞ

3
YC
i¼1

½pi � G �½G � DPðM ;G0ðs2
pÞÞ�

3 NK ðg j 0; Is2
gÞ
Y

i¼a;p;g

pðs2
i j ni ; S

2
i Þ: ð20Þ

Above, pi � G denotes that pi follows the unknown
distribution G drawn from a Dirichlet process with
G0ðs2

pÞ[ N ðpi j 0;s2
pÞ as base measure and with known

parameter M. Since the Dirichlet process allows pi to
take any of the other p’s as a current value, data from
all individuals with records of performance contribute
to the conditional posterior distribution of pi. One has
as conditional posterior distribution

pðpi jELSEÞ

}
YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik

( )
pðpi jp�iÞ

}
YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik

( )

3
1

M 1 C � 1

XC

j 6¼i

dðpj ;BÞ1
M

M 1 C � 1
N ðpi j 0;s2

pÞ

2
4

3
5

}
XC

j 6¼i

YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik

( )
dðpj ;BÞ

1 M
YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik N ðpi j 0;s2
pÞ: ð21Þ

Under standard parametric assumptions, the fully con-
ditional posterior distribution of pi is given by

pðpi jELSE;parametricÞ

¼
Q

K
k¼1

QJ
i¼1½N ðlik jmik ; 1Þ�dik N ðpi j 0;s2

pÞÐ ‘

�‘

Q
K
k¼1

QJ
i¼1½N ðlik jmik ; 1Þ�dik N ðpi j 0;s2

pÞdpi

:

ð22Þ

Using well-known results (e.g., Wang et al. 1993, 1994;
Sorensen and Gianola 2002) it can be shown that

pi jELSE;parametric � N ðp̃i ; ṽpi
Þ; ð23Þ

where

p̃i ¼
zpi
9 ðl� Xb� Zaa �

P
C
j 6¼i zpj

pj � Zg gÞ
zpi
9 zpi

1 ð1=s2
pÞ

;

zpj
is the column of Zp in (3) pertaining to individual j,

and

ṽpi
¼ zpi

9 zpi
1

1

s2
p

 !�1

:

In addition, let

ð‘

�‘

YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik N ðpi j 0;s2
pÞdpi ¼ Ki ; ð24Þ

with this integral expressible in closed form. Note that
the integrand is the product of the densities of all
liabilities of individual i, with b, a, and g as fixed pa-
rameters (the p’s of other individuals do not enter into
the model for the liabilities of individual i) times the
N ðpi j 0;s2

pÞdensity. Hence, with li being the ri 3 1 vector
of liabilities of the individual, and Xi ;Zai , and Zgi being
incidence matrices relating li to b, a, and g, respectively,
a standard integration yields

Ki ¼ Nri
ðli jXib 1 Zaia 1 Zgig; Jri

s2
p 1 Iri

Þ

¼ 1

ð2pÞri=2 j Jri
s2

p 1 Iri
j1=2

exp �Ti

2

� �
; ð25Þ

where

Ti ¼ ðli � Xib� Zaia � ZgigÞ9ð Jri
s2

p 1 Iri
Þ�1

3 ðli � Xib� Zaia � ZgigÞ;

and Jri
is a matrix of 1’s of order ri. Employing (23) and

(24) in (22) leads to
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YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik N ðpi j 0;s2
pÞdpi ¼ KiN ðp̃i ; ṽpi Þ;

so that

pðpi jELSEÞ}
XC

j 6¼i

YK
k¼1

YJ

i¼1

½N ðlik jmik ; 1Þ�dik

( )

3 dðpj ;BÞ1 MKiN ðp̃i ; ṽpi
Þ: ð26Þ

The form of (26) indicates that the fully conditional
posterior distribution of pi is a mixture of the C � 1
degenerate distributions dðpj ;BÞ with point masses at pj

ð j 6¼ iÞ and of the parametric distribution N ðp̃i ; ṽpi
Þ. Let

now

Q j ¼
Q

K
k¼1

QJ
i¼1½N ðlik jmik ; 1Þ�dikP

C
j 6¼i

Q
K
k¼1

QJ
i¼1½N ðlik jmik ; 1Þ�dik

n o
1 MKi

;

j ¼ 1; . . . ; i � 1; i 1 1; . . . ;C

1�
XC

j 6¼i

Q j ¼
MKiP

C
j 6¼i

Q
K
k¼1

QJ
i¼1½N ðlik jmik ; 1Þ�dik

n o
1 MKi

:

Similar to that in Van Der Merwe and Pretorius

(2003), the rule for drawing samples from the condi-
tional posterior distribution pi jELSE is to take as a
current value for pi

pi

¼ pj with Prðpi ¼ pj jELSEÞ;

j ¼ 1; . . . ; i � 1; i 1 1; . . . ;C

� N ðp̃i ; ṽpi Þwith probability 1�
PC
j 6¼i

Q j; ð27Þ

8>>>><
>>>>:

where pj is the current state in the Markov chain of the
permanent environmental effect of individual j, and Q j

is evaluated at the current values of all parameters
entering into this probability. In the calculation of Q j,
the permanent effect pi is replaced by pj when comput-
ing

QK
k¼1

QJ
i¼1 N ðlik jmik ; 1Þ½ �dik . This means that values of

pj that generate liabilities li with higher plausibility are
assigned a higher probability of selection. Eventually,
this leads to clustering of permanent environmental ef-
fects into ‘‘plausibility’’ groups.

The fully conditional posterior distributions of all
other parameters can be readily deduced from (20) by
fixing p as well as the liabilities

pðb; a; g;D j l;p;H ; d;M Þ

}
YK
k¼1

YJ

j¼1

½N ðljk jmjk ; 1Þ�djk

( )

3 NF ðb j 0; Is2
bÞNQ ða j 0;As2

aÞ

3 NK ðg j 0; Is2
gÞ
Y

i¼a;pg

pðs2
i j ni ; S

2
i Þ: ð28Þ

The conditional posterior distribution of b, a, and g
given everything else is the multivariate normal process

b; a; g j l;p;D;H ; d;M � N ðC�1
* r*;C

�1
* Þ; ð29Þ

where

C* ¼
X9X 1 IF s�2

b X9Za X9Zg

Za9 X Za9 Za 1 A�1s�2
a Za9 Zg

Zg9 X Zg9 Za Zg9 Zg 1 IK s�2
g

2
64

3
75;

r* ¼
X9ðl� ZppÞ
Za9 ðl� ZppÞ
Zg9 ðl� ZppÞ

2
64

3
75:

The conditional posterior distributions of the variance
components are as in the parametric model, that is,

s2
a jELSE � ða9A�1a 1 naS2

a Þx�2
na1Q ; ð30Þ

s2
p jELSE � ðp9p 1 npS2

p Þx�2
np1C ; ð31Þ

and

s2
g jELSE � ðg9g 1 ng S2

g Þx�2
ng1K : ð32Þ

The Gibbs sampler draws liabilities as before, perma-
nent environmental effects from (27), b, a, and g from
(29), and the three variance components from the pre-
ceding expressions.

At each iteration of the Gibbs sampler, the procedure
induces a clustering structure of permanent environ-
mental effects, with each cluster consisting of individu-
als sharing the same value of pi. Following Van Der

Merwe and Pretorius (2003), let t be the number of
unique permanent environmental effects (0 , t # C).
The posterior distribution of t can be obtained readily
from the sampling procedure. Bush and MacEachern

(1996) suggest embedding an optional additional step
in the Gibbs sampling procedure: let the number of
clusters identified at iteration m be tðmÞ; this means that
there are tðmÞ distinct values of the p’s, which are labeled
as hðmÞ ¼ h1ðmÞ ;h2ðmÞ ; . . . ;htðmÞ½ �9. The model for the
liabilities in (3) is then rewritten as

l ¼ Xb 1 Zaa 1 ZpðmÞh 1 Zg g 1 e;

where ZpðmÞ is a condensation of Zp of orderPK
k¼1 nk 3 tðmÞ obtained by assigning liabilities to the

appropriate cluster of permanent environmental effects
to which they belong. At that point of the scheme,
Kleinman and Ibrahim (1998) and Van Der Merwe

and Pretorius (2003) suggest drawing a sample of h
from the process

h jELSE � N ðĥ; V̂hÞ;
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where

ĥ ¼ ZpðmÞ9 ZpðmÞ 1 ItðmÞ
1

s2
p

 !�1

ZpðmÞ9 ðl� Xb� Zaa � Zg gÞ;

and

V̂h ¼ ZpðmÞ9 ZpðmÞ 1 ItðmÞ
1

s2
p

 !�1

:

Once a sample of h is obtained, say hðmÞ, the permanent
environmental effects are reconstituted as pðm11Þ ¼
LðmÞhðmÞ, where LðmÞ is a C 3 tðmÞ matrix that allocates
cluster values to permanent environmental effects.
Then, the MCMC process continues for other parame-
ters as usual.

Turn attention now to inferring M, the degree of
belief parameter of the Dirichlet process. Using results
in Antoniak (1974) and West (1992), but giving more
details, as their developments are compact, the prior dis-
tribution of the number of clusters t may be written as

pðt jM Þ ¼ wCðtÞM t GðM Þ
GðM 1 CÞ; t ¼ 1; 2; . . . ;C ;

where the factor wCðtÞ does not involve M; Gð:Þ is the
Gamma function. As pointed out by West (1992), if one
has samples of t (see above), the conditional posterior
distribution of M is expressible as

pðM j t; ELSEÞ} ðM j tÞ ¼ pðt jM ÞpðM ÞP
C
t¼1 pðt jM ÞpðM Þ;

where p(M) is the prior density of M. This result follows,
because, if one knows p, this gives immediately the num-
ber of clusters t as well as the number of permanent en-
vironmental effects per cluster. Then, with B(. , .) being
the Beta function

pðM j t; ELSEÞ} M t GðM Þ
GðM 1 CÞpðM Þ

¼ M tðM 1 CÞBðM 1 1; CÞ
MGðCÞ pðM Þ

} M t�1ðM 1 CÞpðM Þ
ð1

0
xM ð1� xÞC�1dx:

West (1992) notes that this density results from
marginalizing the joint distribution [M, x j t, ELSE],
where x is a continuous random variable taking values
between 0 and 1. Hence, it follows that

pðM ; x j t; ELSEÞ} M t�1ðM 1 CÞpðM ÞxM ð1� xÞC�1dx:

Consequently, the conditional posterior density of the
auxiliary variable x is

pðx j t;M ;ELSEÞ} xM ð1� xÞC�1dx; ð33Þ

so that x j t;M ;ELSE � BetaðM 1 1;CÞ. In addition, the
conditional posterior distribution of M is

pðM j x; t;ELSEÞ} M t�1ðM 1 CÞpðM ÞxM ;

and its form depends on the prior adopted for M. Since
M must be positive, West (1992) suggests a Gamma
(a, b) distribution as prior, so that

pðM j x; t; ELSEÞ} M t�1ðM 1 CÞM a�1expð�bM ÞxM

} M t1a�1exp½�M ðb � log xÞ�

1 CM t1a�2exp½�M ðb � log xÞ�:

The normalized density is

pðM j x; t; ELSEÞ

¼ M t1a�1exp½�M ðb � log xÞ�1 CM t1a�2exp½�M ðb � log xÞ�Ð ‘

0 fM
t1a�1exp½�M ðb � log xÞ�1 CM t1a�2exp½�M ðb � log xÞ�gdM

:

The integrals in the denominator yieldð‘

0
M t1a�1exp½�M ðb � log xÞ�dM ¼ Gðt 1 aÞ

ðb � log xÞt1a

ð‘

0
CM t1a�2exp½�M ðb � log xÞ�dM ¼ CGðt 1 a � 1Þ

ðb � log xÞt1a�1:

Hence, letting a* ¼ (t 1 a) and b* ¼ ðb � log xÞ the
conditional posterior distribution becomes

pðM j x; t; ELSEÞ

¼ M a*�1expð�Mb*Þ1 CM a*�1�1expð�Mb*Þ
ðGða*Þ=b*a*Þ1 ðCGða*� 1Þ=b*a*�1Þ

¼ ðGða*Þ=b*a*Þðb*a*=Gða*ÞÞM a*�1expð�Mb*Þ1 CðGða*� 1Þ=b*a*�1Þðb*a*�1=Gða*� 1ÞÞM a*�1�1expð�Mb*Þ
ðGða*Þ=b*a*Þ1 ðCGða*� 1Þ=b*a*�1Þ

¼ px Gammaða*; b*Þ1 ð1� px ÞGammaða*� 1; b*Þ: ð34Þ

This is a mixture of the two Gamma distributions in-
dicated, with mixing probabilities px and 1 � px. Note
that

px ¼
Gða*Þ=b*a*

ðGða*Þ=b*a*Þ1 ðCGða*� 1Þ=b*a*�1Þ

¼ Gða*Þ
Gða*Þ1 Cb*Gða*� 1Þ:

Since Gða*Þ ¼ ða*� 1ÞGða*� 1Þ,

px ¼
a*� 1

a*� 1 1 Cb*

1� px ¼
Cb*

a*� 1 1 Cb*
:

At the end of the MCMC sampling process there will be S
samples of the number of clusters t and of the auxiliary
variables x. The density of the marginal posterior dis-
tribution of M can be estimated (West 1992) using the
Rao–Blackwell estimator

Quantitative Genetic Analysis of Ranks 1621



pðM jELSEÞ

¼ 1

S

XS

s¼1

pðM j xðsÞ; tðsÞ;ELSEÞ

¼ 1

S

XS

s¼1

½pxðsÞGammaða*ðsÞ; b*ðsÞÞ

1 ð1� pxðsÞ ÞGammaða*ðsÞ � 1; b*ðsÞÞ�;
ð35Þ

where a*ðsÞ ¼ tðsÞ1 a, and b*ðsÞ ¼ b � log xðsÞ. If a ¼ 0
and b¼ 0, the Gamma prior degenerates to pðM Þ} M�1

or, equivalently, to p½logðM Þ� } constant. If such an im-
proper prior is adopted, the Rao–Blackwell estimator
reduces to

pðM jELSEÞ

¼ 1

S

XS

s¼1

½pxðsÞGammaðtðsÞ;�log xðsÞÞ

1 ð1� pxðsÞ ÞGammaðtðsÞ � 1;�log xðsÞÞ�;

with a* ¼ t and b* ¼ �log x used in the calculation of
pxðsÞ . While the conditional posterior distribution of M is
well defined for a ¼ b ¼ 0, this does not guarantee that
its marginal posterior distribution will be always proper.
Hence, the uniform prior on logðM Þ should be used
with caution.

CONCLUSION

This study presents parametric and semiparametric
procedures for analysis of rank data. Observations
presented as ranks arise often in behavioral or cognitive
sciences and in the context of competitions such as
horse jumping events or greyhound races. For instance,
Johnson et al. (2002) carried out a metaanalysis of
30 primate (24 genera represented) intelligence ex-
periments grouped into ‘‘paradigms’’ and ‘‘procedures
within paradigm.’’ Paradigms are types of intelligence
tests (e.g., ‘‘reversal learning,’’ where individuals learn to
pick one object rather than another, and then the value
of the objects changes, so that a previously unrewarded
object is now rewarded); ‘‘procedures’’ refer to different
methodologies used to investigate the paradigm. In
one of six reversal studies the observed ranking was
Cebus . Hylobates . Aotus . Saimiri. In the analysis of
the ranks, they used Thurstonian models similar to
those described in this article. Their Bayesian formula-
tion allowed a clear assessment of uncertainty, which was
viewed as especially important because, in these experi-
ments, raters usually do not rank .15 items, so asymp-
totic approximations may be inadequate.

In a study of competitions of jumping horses,
Tavernier (1990) argued that a ‘‘physical’’ measure of
performance (e.g., time, number of obstacles broken or
refused) is not always available, and that it is unclear how

to measure the technical difficulty of an event. Also,
measures such as yearly earnings are available only for
horses that earn money, so that the information comes
from a selected sample, which may distort inference
considerably. As discussed earlier, Tavernier (1990,
1991) proposed an approximate Bayesian method in
which ranks are viewed as being the manifestation of
latent variables, as in the present study. In the analysis,
involving �19,000 horses participating in all jumping
competitions that took place in France in 1987,�14% of
the horses had an accuracy ,0.14 ("accuracy" ranges
between 0 and 1), and 28% did not reach 0.45. These
accuracies are approximations and probably under-
state uncertainty, because the error of estimates of pa-
rameters is not taken into account in the calculations.
Important numerical problems were encountered by
Tavernier (1990). For each Newton–Raphson itera-
tion, and for a race with n horses, she had to calculate
the following multivariate normal integrals: (1) an
integral of order n � 1, (2) n � 1 integrals of order
n � 2, and (3) ðn � 2Þ! integrals of order n � 3. For this
reason, she used approximations to integrals based on
Taylor series expansions. None of these integrals need
to be computed explicitly or approximated in our pro-
cedure, as all calculations rely on Monte Carlo sampling.
Another difficulty in the conditional maximum a
posteriori method of Tavernier (1990, 1991) is the
computation of the joint posterior mode, which, in
the context of horse races in France may involve solving
(reiteratively) a system exceeding 100,000 unknowns. In
our procedure, solving of equations is replaced by
effecting draws from conditional posterior distributions
and, under the assumptions of this article, all these are
recognizable. A potential difficulty may be slow mixing
of the MCMC algorithm, but this can often be acceler-
ated by either changing the algorithm or adopting a
different parameterization. Introducing a Dirichlet
process prior enhances the level of difficulty of the
calculations, but it confers robustness with respect to
possible departures from the normality assumption for
the distributions of events or of permanent environ-
mental effects. Further, the nonparametric treatment
of permanent environmental effects is a flexible alter-
native to a thick-tailed distribution (Strandén and
Gianola 1998, 1999; Rosa et al. 2001, 2003, 2004), in
the sense that it allows for asymmetry, as well as for
allocation of effects into clusters with some biological
meaning.

Here, it was assumed that event effects were equally
distributed a priori, but there may be heterogeneity with
respect to level of difficulty. This can be accommodated
via hierarchical modeling. For instance, the prior dis-
tribution NK ðg j0; Is2

gÞ could be modified into NK ðg jMa;
Is2

gÞ, where a is a vector of unknown ‘‘levels of difficulty’’
effects, and M is a known matrix relating g to a; in turn,
a could be assigned a vague prior. In their primate stud-
ies, Johnson et al. (2002) fitted a latent variable model
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including a genus effect and a ‘‘paradigm-genus’’ devia-
tion; they found that the latter did not contribute to
variability appreciably and concluded that taxa differed
in domain-general ability. A nonparametric alternative
would be to assign a Dirichlet process prior to the event
effects g and let the data drive to clusters representing
level of difficulty.

In the context of horse breeding, it may be that there
are individuals whose genes predispose them to per-
form well in certain types of competition, but not in
others; i.e., there may be differents sets of genes for
different types of competition. Our model can be ex-
tended by assuming that each individual has a liability
peculiar to each type of competition. Suppose there are
three types of competition; here, there would be three
liabilities per individual with a within-individual corre-
lation matrix R0, say. All three liabilities would be real-
ized only if the individual in question participates in the
three types of events. A simpler model could postulate
that liabilities for different events are independent, but
that each individual possesses an additive genetic ef-
fect peculiar to the type of event. An additive genetic
variance–covariance matrix G0 would be introduced
and inferred as in a multivariate Bayesian mixed-effects
model (Sorensen and Gianola 2002).

In many sports events, e.g., races or marathons, there
are no ties. However, ties can be handled in our proce-
dure via a simple modification of the limits the liability
variates can take. For example, consider a competition
with four participants (5, 7, 14, and 20), such that the
observed ranking is 5½1�; 7½2:5�; 14½2:5�; 20½4�; here, ½2:5� de-
notes a tie in second place between individuals 7 and 14.
In the process of sampling the liabilities, it suffices to
accept samples such that 5 and 20 take the largest and
smallest values, respectively, with the liabilities 7 and 14
taking any order between those of 5 and 20; then, the
ranking of 7 and 14 would vary at random over MCMC
samples. Alternatively, one could assign the average
of the two liabilities sampled for 7 and 14 in each of
the MCMC iterations. Johnson et al. (2002) handled
ties via a parametric model for the probability that two
genera are tied, with one additional parameter (with a
corresponding prior distribution) introduced in the
implementation.

A useful extension of this model, at least in the con-
text of evaluation of horse races, would be one for a
joint analysis of ranks and of some ‘‘continuous’’ variate,
such as time in the event or earnings. As mentioned
above, there are situations in which the rank infor-
mation is available for all competitors, but earnings
are available only for the placed competitors. Clearly,
earnings for the other competitors are not missing com-
pletely at random. However, if the conditional proba-
bility of missing earning information depends on the
ranks, then missingness would be ignorable in a joint
analysis of ranks and of earnings (Rubin 1976; Im et al.
1989; Sorensen et al. 2001). For example, such a model

could postulate a joint normal distribution of the lia-
bilities and of the continuous trait measured on some
competitors.
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Grüneberg, H., 1952 Genetical studies on the skeleton of the
mouse. IV. Quasi-continuous variations. J. Genet. 51: 95–114.

Harville, D. A., 1974 Bayesian inference of variance components
using only error contrasts. Biometrika 61: 383–385.

Henderson, C. R., 1976 A simple method for computing the in-
verse of a numerator relationship matrix used in prediction of
breeding values. Biometrics 32: 69–83.

Henery, R. J., 1981 Permutation probabilities as models for horse
races. J. R. Stat. Soc. B 43: 86–91.

Im, S., R. L. Fernando and D. Gianola, 1989 Likelihood inferences
in animal breeding under selection: a missing data theory view-
point. Genet. Sel. Evol. 21: 399–414.

Johnson, V. E., R. O. Deaner and C. P. Van Schaik, 2002 Bayesian
analysis of multi-study rank data with application to primate in-
telligence ratings. J. Am. Stat. Assoc. 97: 8–17.

Kleinman, K. P., and J. G. Ibrahim, 1998 A semiparametric Bayesian
approach to the random effects model. Biometrics 54: 921–938.

Lawrence, S., R. Beasley, I. Doull, B. Begishvili, F. Lampe et al.,
1994 Genetic analysis of atopy and asthma as quantitative traits
and ordered polychotomies. Ann. Hum. Genet. 58: 359–368.

Quantitative Genetic Analysis of Ranks 1623



MacEachern, S. N., 1994 Estimation of normal means with a conju-
gate style Dirichlet process prior. Comm. Stat. Sim. 23: 727–741.

Robert, C. P., and G. Casella, 2005 Monte Carlo Statistical Methods,
Ed. 2. Springer, New York.

Rosa, G. J. M., D. Gianola and J. I. Urioste, 2001 Assessing rela-
tionships between genetic evaluations using robust regression
with an application to Holsteins in Uruguay. Acta Agric. Scand.
Sect. A 51: 21–34.

Rosa, G. J. M., C. R. Padovani and D. Gianola, 2003 Robust linear
mixed models with normal/independent distributions and Bayes-
ian MCMC implementation. Biom. J. 45: 573–590.

Rosa, G. J. M., D. Gianola and C. R. Padovani, 2004 Bayesian lon-
gitudinal data analysis with mixed models and thick-tailed distri-
butions using MCMC. J. Appl. Stat. 31: 855–873.

Rubin, D. B., 1976 Inference and missing data. Biometrika 63: 581–
582.

Sorensen, D., and D. Gianola, 2002 Likelihood, Bayesian, and MCMC
Methods in Quantitative Genetics. Springer–Verlag, New York.

Sorensen, D., S. Andersen, D. Gianola and I. Korsgaard,
1995 Bayesian inference in threshold models using Gibbs sam-
pling. Genet. Sel. Evol. 27: 229–249.

Sorensen, D. A., R. L. Fernando and D. Gianola, 2001 Inferring
the trajectory of genetic variance in the course of artificial selec-
tion. Genet. Res. 77: 83–94.

Strandén, I., and D. Gianola, 1998 Attenuating effects of prefer-
ential treatment with Student-t mixed linear models: a simulation
study. Genet. Sel. Evol. 30: 565–583.

Strandén, I., and D. Gianola, 1999 Mixed effects linear models
with t-distributions for quantitative genetic analysis: a Bayesian
approach. Genet. Sel. Evol. 31: 25–42.

Tanner, M. A., and W. Wong, 1987 The calculation of posterior dis-
tributions by data augmentation. J. Am. Stat. Assoc. 82: 528–550.

Tavernier, A., 1990 Estimation of breeding value of jumping horses
from their ranks. Livest. Prod. Sci. 26: 277–290.

Tavernier, A., 1991 Genetic evaluation of horses based on ranks in
competitions. Genet. Sel. Evol. 23: 159–173.

Thurstone, L. L., 1927 A law of comparative judgement. Psych. Rev.
34: 278–286.

Van Der Merwe, A. J., and A. L. Pretorius, 2003 Bayesian estima-
tion in animal breeding using the Dirichlet process prior for cor-
related random effects. Genet. Sel. Evol. 35: 137–158.

Wang, C. S., J. J. Rutledge and D. Gianola, 1993 Marginal infer-
ences about variance components in a mixed linear model using
Gibbs sampling. Genet. Sel. Evol. 25: 41–62.

Wang, C. S., J. J. Rutledge and D. Gianola, 1994 Bayesian analysis
of mixed linear models via Gibbs sampling with an application to
litter size in Iberian pigs. Genet. Sel. Evol. 26: 91–115.

West, M., 1992 Hyperparameter estimation in Dirichlet process
mixture models. Technical Report 92-A03. ISDS, Duke Univer-
sity, Durham, NC.

Wright, S., 1934 An analysis of variability in number of digits in an
inbred strain of guinea pigs. Genetics 19: 506–536.

Communicating editor: J. B. Walsh

1624 D. Gianola and H. Simianer


