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Zusammenfassung
Diese Bachelorarbeit präsentiert Neutrinorekonstruktionen mittels neuronaler Netzwerke.
Die Neutrinorekonstruktion wird im resonanten HH → bbWW ∗ Kanal mit einem Lep-
ton im Endzustand und geboosteter Topologie durchgeführt. Die Daten für diese Analyse
stammen von Simulationen, die auf dem ATLAS Experiment am CERN beruhen. Moti-
viert ist diese Arbeit von der Suche nach skalaren Teilchen außerhalb des Standardmodells
mit einer Masse zwischen 0.8 TeV und 5 TeV. Die Aufgabe des neuronalen Netzwerks ist
hierbei eine Abschätzung für die z-Komponente des Neutrinoimpulses zu generieren, so-
dass die invariante Masse von H → WW ∗, mH , und X → HH, mHH , rekonstruiert
werden können. Das neuronale Netzwerk benutzt dafür die kinematischen Informationen
von den messbaren Objekten des Endzustandes. Da dies der erste Einsatz eines neuronalen
Netzwerks in diesem Kanal mit dieser Topologie ist, beginnt diese Arbeit mit der Mes-
sung einfacher Konfigurationen, um die Nutzbarkeit festzustellen. Danach werden mehrere
Möglichkeiten zur Verbesserung der Präzision des neuronalen Netzwerks überprüft und
vorgestellt. Die finale Konfiguration der Analyse verwendet ein einziges neuronales Netz-
werk für die komplette Spanne der untersuchten Massen und liefert gute Ergebnisse für
die Rekonstruktion von mHH und besonders gute Ergebnisse für die Rekonstruktion von
mH→WW ∗ .

Stichwörter: Physik, Bachelorarbeit, ATLAS, Neutrino Rekonstruktion, resonante
Higgs Paarproduktion, Neuronale Netzwerke

Abstract
This Bachelor’s thesis presents studies of neutrino reconstruction with neural networks.
The analysis is conducted in the boosted resonantHH → bbWW ∗ channel with one lepton
in the final state using simulated data. This thesis motivated by the search for particles
beyond the Standard Model with the ATLAS collaboration. The search is conducted for
heavy scalar particles with masses between 0.8 TeV and 5 TeV that decay into a pair of
Higgs bosons. For this analysis, a full event reconstruction is strived for, but the kinematic
information of the neutrino gathered from measurements are not complete. The neural
networks task is to give an estimate of the neutrino’s momentum in the z-direction pνz as
this quantity cannot be measured such that the invariant mass of H → WW ∗, mH , and
the invariant mass of X → HH, mHH , may be reconstructed. The neural network uses
the kinematic information of the measurable particles in the final state to approximate
pνz . In the following, various possibilities to increase the performance are explored and
presented. The final configuration relies on a single neural network that is trained and
applied on the entire mass range. The resulting configuration of the neural network yields
very good reconstruction of mHH as well as mH→WW ∗ using the approximated pνz and
improves on prior analyses that used pνz = 0 when performing the event reconstruction.

Keywords: Physics, Bachelor thesis, ATLAS, neutrino reconstruction, resonant Higgs
pair production, neural network
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1. Introduction

The Large Hadron Collider (LHC), displayed as part of the CERN accelerator complex in
Figure 3.1, and the ATLAS experiment, displayed in Figure 3.2, present an opportunity
to find physics beyond the Standard Model (BSM) in the Higgs sector. Numerous BSM
theories predict particles that could decay into two Higgs bosons. The search in the
HH → bbWW ∗ channel is motivated by its high branching ratio and the possibility
of a single lepton in the final state, which can be used as an additional handle in the
reconstruction and analysis of the channel and to reduce the multijet background. The
final state is composed of two b-jets, two light-quark jets from a hadronically decaying
W boson, a lepton and a neutrino from the leptonically decaying W boson. For the
investigation, events are simulated using pp collisions at

√
s = 13 TeV. Indications of such

a BSM Higgs boson could be found by observing excesses in invariant mass distributions
of mHH . Reconstructing mHH , or the complete event, of the 1-lepton final state of the
HH → bbWW ∗ decay requires knowledge about the neutrino that comes from the leptonic
decay of oneW boson. A full event reconstruction is necessary to understand and measure
the properties of the predicted particle. The momentum of the neutrino in the plane
perpendicular to the beam axis can be inferred by determining the missing transverse
momentum pmiss

T . The momentum along the beam axis, however, cannot be acquired with
such an approach.
There are analytical approaches such as using the W boson mass constraint, but this

method is insufficient for several reasons. The main reason for this is that there is always
an off-shell W boson present that has a broad mass distribution and constraining it to a
certain mass is not a good approximation. Using this constraint in combination with a
constraint on the Higgs mass mH→WW ∗ results in dropping a significant fraction of events
due to requirements in the analytical solution.
This thesis presents an effort to estimate the neutrino’s momentum along the z-axis, pνz ,

in the single HH → bbWW ∗ channel utilizing neural networks. Neural networks have the
potential to deliver good estimations for pνz even with incomplete information. To that
end, this thesis gives an overview of the workflow, performance and requirements that are
expected when using neural networks for this analysis by presenting several approaches to
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1. Introduction

training and evaluation. This approach is based on using 4-vector information of particles
in the event to approximate pνz .
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2. Theoretical background

2.1. The Standard Model

The Standard Model (SM) is to date the best theoretical description of the elementary
particles in our universe and their interactions. It describes twelve fermions, consisting of
six quarks and six leptons, four gauge bosons and the Higgs boson [1]. The fundamental
particles of the SM are displayed in Figure 2.1. The particles are grouped and differen-
tiated by their distinct features. Such features include the spin, electrical charge, color
charge, weak isospin and mass. The mass is used to categorize the fermions into three
generations. The SM also is able to describe the electromagnetic (EM), weak and strong
nuclear forces [2, 3]. Notably, gravity is not described by the SM.
The fermions in the SM are spin-1

2 particles. There are three charged leptons, the elec-
tron, muon and tau, which have an electrical charge of −1 e with e being the elementary
charge. The electrically neutral leptons are the neutrinos which are named after their
charged partners. The quarks are classified according to the flavors, the up-type and
down-type quarks. The important quantity for this is the electric charge. With the down,
strange and bottom quarks being down-type quarks they have an electrical charge of −1

3e.
The up-type quarks, being the up, charm and top quarks have a charge of +2

3e.
One of the forces described by the SM is the weak nuclear force, which has two carrier

particles. The weak nuclear force is described by the SU(2) gauge group. The W boson
has a charge of ±e and the Z boson is electrically neutral. The weak force couples to
the weak isospin T3 of particles. This means it can only interact with particles that have
T3 6= 0. Only fermions with a negative chirality or antifermions with a positive chirality
possess a weak isospin. The W boson mediates between particles with T3 = +1

2 and
T3 = −1

2 , which promotes quark flavor and lepton flavor changes. The W boson therefore
has an integer weak isospin of T3 = ±1 depending on the direction of the transition. The
W and Z bosons are the only massive gauge bosons. They are the third and fourth most
massive particles in the SM with mW = 80.4 GeV and mZ = 91.2 GeV. Their mass is
acquired via the Higgs mechanism described in Section 2.1.1 [4].
The electromagnetic force is described in quantum electrodynamics (QED). The force
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2. Theoretical background

carrying particle for QED is the photon. It is massless, it has no electrical charge and is
a spin-1 particle. It couples to the electric charge of particles. The photon therefore does
not self-interact. The symmetry of QED is built upon the U(1) gauge group.
The strong nuclear force is described by quantum chromodynamics (QCD) and is me-

diated by the gluon [5]. There are 8 gluons described within the SM but since the physics
do not change for each of the gluons this is usually abbreviated by speaking of a single
gluon. The gluon is massless, has no electric charge and, being a vector boson, it is a
spin-1 particle. It couples to the color charge of particles. The color charge is carried by
all quarks and the gluon itself, thus resulting in gluon self-interaction. There are three
color charges, called red, green and blue. The three orthogonal charge states emerge from
the SU(3) symmetry of QCD. Gluons and quarks are subject to color confinement, which
states that particles with a color charge can only exist in colorless states. A combination of
red, green and blue charges produces a colorless state. Further a color and an anticolor,
which is carried by antiquarks, produce a colorless state. The states of multiple color
charged quarks are called mesons in the case of one quark and one antiquark entering a
state with colorless charge and baryons in the case of three quarks or antibaryons if three
antiquarks are in a colorless state. For gluons the color confinement is expressed in short
scale interactions, because gluons do not travel over macroscopic distances. If quarks in
a colorless state are subjected to strong forces that drive them apart, the energy in the
color field between the quarks is sufficient to pair produce new quarks. This results in the
forming of new colorless states between the initial quarks and the newly formed quarks.
This process ensures the confinement of the quarks. The ensemble of particles from this
process usually propagate in the same direction within a narrow cone which is called a
jet. Many particle analyses depend heavily on jets.
The forces of the SM can be differentiated also by their strength. The strength can

be described in the form of the coupling constants αi. These are not strictly constant
though. The coupling constant of the EM force for example is "running" and changes with
higher momentum transfers but the low energy value is αem ≈ 1

137 . The other constants
take values of αstrong ≈ 1 and αweak ≈ 1

30 but they are also running constants [6]. The
strength of the weak interaction is suppressed because of the high masses of the gauge
bosons.
It is important to note that many predictions of the SM are verified in experiments

and measurements. The SM is the most successful description of particle physics to date.
But it is evident that the SM is not a complete theory as there are multiple effects that
cannot yet be explained by the SM, such as gravity and dark matter.
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2.1. The Standard Model
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Figure 2.1.: The fundamental particles of the Standard Model. Diagram taken from
Ref. [7]

2.1.1. The Higgs mechanism

The Higgs mechanism describes the breaking of the electroweak local gauge symmetry
SU(2)L×U(1)Y [8]. The electroweak sector of the SM represents the unification of the weak
nuclear force and the EM force. As already stated in Section 2.1, the Higgs mechanism
gives rise to the masses of theW boson and the Z boson, as well as the fermions. Without
the Higgs mechanism, these masses cannot be explained.
The Higgs mechanism involves two complex scalar fields in a weak isospin doublet

φ =
φ+

φ0

 = 1√
2

φ1 + iφ2

φ3 + iφ4

 . (2.1)

The terms in the Lagrangian relevant for these fields are written

L = (∂µφ)†(∂µφ)− V (φ), (2.2)

with the potential being referred to as Higgs potential

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.3)
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2. Theoretical background

The potential is required to have a finite minimum, called a vacuum state, therefore it
is set to λ > 0. However µ can be chosen to be either µ2 > 0 or µ2 < 0. If µ2 > 0 is
chosen the single vacuum state of the potential is at the origin and from that point the
potential is symmetric in all directions. This changes when µ2 < 0 is chosen, because now
the potential has acquired an infinite amount of vacuum states at a distance v from the
origin. At the origin, the potential is not at the minimum. From the point of any of those
vacuum states the potential is not symmetric anymore. The field can be expanded about
such a minimum, which is chosen to be at

〈φ(x)〉v =
0
v

 (2.4)

without loss of generality and be written in unitary gauge yielding

φ(x) = 1√
2

 0
v + h(x)

 . (2.5)

The field h(x) is identified as the physical Higgs field. In this representation the La-
grangian yields among other terms

L ⊃ −λv2h2 − λvh3 − 1
4λh

4. (2.6)

From the first term, which is quadratic in the Higgs field, we can infer the Higgs boson
mass with mH =

√
2λv. The other terms give rise to the Higgs boson 3-point and 4-point

self-interactions. The Higgs boson is therefore identified as the quantum excitation of
this Higgs field. The resultant masses of the W and Z bosons are mW = 1

2gWv and
mZ = gW v

2 cos θW . The angle θW depicts the Weinberg angle, or weak mixing angle, [9] and is
derived from the mass ratio of the W boson and the Z boson via

sin2 θW = 1−
(
mW

mZ

)
= 0.222 90(30) (2.7)

⇒ θW ≈ 28.17°. (2.8)

The mass of the fermions mf = 1√
2gfv is also dependent on the Yukawa coupling gf , since

one can construct gauge invariant mass terms from two Lagrangians. These Lagrangians
are derived by a similar process as the W and Z boson masses. Though, one has to
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2.1. The Standard Model

account for the handedness of the fermions, thus obtaining:

L = −gf
[
LφR +

(
LφR

)†]
(2.9)

L = gf

[
LφcR +

(
LφcR

)†]
(2.10)

with L and R denoting left-handed and right-handed fermions and φc = −iσ2φ
∗. These

Lagrangians also gives rise to a term that describes the interaction between the fermions
and the Higgs boson.

2.1.2. The Higgs boson and Higgs boson pair production

The Higgs boson is subject of many analyses to date as it is the latest particle of the
SM that has been discovered [10]. It was discovered in 2012 by ATLAS and CMS in the
LHC at CERN. Next to precision measurements of the Higgs boson itself to pin down its
properties, there are also efforts to use the Higgs boson in analyses involving BSM physics
[11].
The Higgs boson is a spin-0 particle and the only scalar particle discovered thus far.

The latest measurements of the Higgs boson suggest mH = 125.09 GeV with a total cross
section of σtotalH = 55.62 pb at

√
s = 13 TeV for pp collisions [12]. The branching ratios

(BR) of the Higgs boson as a function ofmH as predicted by the SM are displayed in Figure
2.2. The Higgs boson couples to itself, with the relevant Feynman vertices displayed in
Figure 2.3. The measurement of this self-coupling strength is an important measurement
for current physics [13].
It is possible to measure the self-coupling strength of the Higgs boson through Higgs

pair production. The relevant leading order Feynman diagrams for this process are shown
in Figure 2.4. In Figure 2.4(left) the off-shell Higgs boson is produced by gluon-gluon-
Fusion (ggF) and a triangular loop of heavy quarks (bottom or top quarks). The quarks
in the loop then couple via the Yukawa coupling to the virtual Higgs boson which then
decays into two on-shell Higgs bosons with a coupling strength of λv, which allows for
measurements of the Higgs self-coupling in this process. There are, however, also Higgs
pair production processes that do not depend on the Higgs self-coupling and are therefore
not suited for Higgs self-coupling strength measurements. A Feynman diagram for such
a process is displayed in on the right of Figure 2.4. There the process only depends
on the Yukawa coupling between the quarks in the loop and the Higgs bosons. The
two productions both contribute to the non-resonant Higgs pair production but interfere
destructively with each other. The SM predicts an inclusive ggF HH cross section of

7



2. Theoretical background

 [GeV]HM
120 121 122 123 124 125 126 127 128 129 130

B
ra

nc
hi

ng
 R

at
io

-410

-310

-210

-110

1

L
H

C
 H

IG
G

S
 X

S
 W

G
 2

01
6

bb

ττ

µµ

cc

gg

γγ

ZZ

WW

γZ
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Figure 2.3.: Feynman diagrams of the Higgs boson self interactions and the respective
couplings strengths.

σggFHH = 31.02 pb assuming
√
s = 13 TeV in pp collisions and mH = 125.09 GeV [12]. Other

Higgs pair production modes have significantly lower cross sections.

g H

H
g

q H

g

g

H

H

q

Figure 2.4.: Leading order Feynman diagrams for Higgs pair production at the LHC
with a triangular loop and Higgs self-coupling (left) and with a box loop
(right).

The search for Higgs pair production is also motivated because several BSM theories
predict, among others, heavy particles that are expected to decay into two SM Higgs
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2.1. The Standard Model

bosons. A selection of such BSM theories is more closely discussed in Section 2.2. A
candidate process that would include the production of a BSM Higgs boson which decays
into a pair of Higgs bosons is the process of the Feynman diagram shown in Figure 2.5. In
this diagram, the aforementioned off-shell Higgs boson H is replaced with a heavy on-shell
BSM particle X. This production mode is called resonant Higgs pair production.

The search for resonant Higgs pair production would benefit greatly from the recon-
struction of the resonant HH mass. The data mentioned in the following thesis stems
exclusively from the simulation of pp collisions at

√
s = 13 TeV. The decay mode used

in this thesis is the HH → bbWW ∗ decay with one leptonically decaying W boson. This
reconstruction requires the measured kinematic information of objects in the final state.
These objects include two b-jets, two light quark jets and a lepton (leptons refers to either
a muon or an electron). From the jets the reconstruction of mH→bb and mWhad is possible.
For mWLep and therefore mH→WW ∗ , however, the kinematic information of the neutrino,
that is associated with the WLep decay, is necessary.

The neutrino’s energy and momentum cannot be measured directly but the energy and
momentum in the transverse plane can be acquired by measuring Emiss

T . The pνz component
cannot be obtained by measurements or be calculated exactly with analytical methods.
The mass of the di-Higgs system mHH is not highly dependent on the kinematics of the
neutrinos as the neutrino carries only small amounts of kinetic energy compared to other
particles in the final state. ButmHH is still affected by the missing pνz and its uncertainties.
The possible gains in performance of themHH and the possibility to reconstructmH→WW ∗

are the motivation of this thesis’ efforts to acquire an approximation for pνz with neural
networks.

g H

H
g

q X

Figure 2.5.: Feynman diagram for resonant Higgs pair production at the LHC with a
triangular loop and a BSM particle X.
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2. Theoretical background

2.2. Extensions of the Standard Model

There are several attempts to extend the SM in order to find possible explanations for
phenomena that currently cannot be explained by the SM. However, these models beyond
the SM must also be consistent with the measurements already made.
One such class of models would be the two Higgs doublet model (2HDM) [15]. In a

addition to the already existing complex Higgs doublet in the SM, a second complex Higgs
doublet is introduced. The two complex Higgs doublets also result, amongst others, in
the existence of five physical scalar states, i.e. five Higgs bosons. Two Higgs bosons, H
and X, are CP even and electrically neutral in terms of electric charge. The X boson is
heavier than H boson per construction. In the alignment limit, the light H boson would
have couplings that are similar to those of the SM Higgs boson. The X boson could be
a potential candidate for the heavy resonance of the simulated data investigated in this
thesis. The other Higgs bosons are a electrically neutral CP odd pseudoscalar A and two
charged Higgs bosons H±. Testing the 2HDM by observing the SM Higgs boson is crucial
to make a more compelling argument for or against 2HDM.
A motivation for the 2HDM model is to potentially give rise to the required number

of Higgs bosons for super-symmetry (SUSY) [16]. Two Higgs doublets are a structural
requirement to suppress anomalies that would otherwise arise for SUSY. Next to the
additional Higgs boson SUSY introduces super-partners for all particles of the SM. It is a
sensible assumption that the SUSY particles have a mass scale of at least O(TeV), since
lower masses have been excluded by experiments.
The search for evidence or proof of BSM physics is one of the main goals of current

physics.
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3. The Large Hadron Collider and
the ATLAS experiment

3.1. The CERN accelerator complex

Figure 3.1.: Diagram of the CERN accelerator complex [17].
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3. The Large Hadron Collider and the ATLAS experiment

The CERN accelerator complex is comprised of multiple synchrotrons, linear acceler-
ators and other experiments. The CERN accelerator complex is displayed in Figure 3.1.
At CERN there are accelerators for protons, antiprotons, heavy ions and electrons. The
biggest accelerator at CERN to date is the Large Hadron Collider (LHC), a synchrotron
with a circumference of close to 27 km. It is built 175 m below the surface to shield it from
outside radiation but also keep outcoming radiation contained as most of the radiation is
emitted in the plane of the accelerator. The LHC is a proton-proton collider.
Smaller and older experiments that are partly superseded by the LHC are used as

boosters to bring the protons to the minimum velocity for the LHC to use them. First,
protons are accelerated in the linear particle accelerator LINAC 2 bringing them to an
energy of 50 MeV. In the Proton Synchrotron Booster (PSB), protons are brought to
an energy of 1.4 GeV. The Proton Synchrotron (PS) then accelerates the protons up to
26 GeV and the Super Proton Synchrotron (SPS) to 450 GeV, at which point the protons
are injected into the LHC.
There are four experiments at the LHC, ALICE, LHCb, CMS and ATLAS. With

ATLAS and CMS being general purpose experiments, they do not specialize in detecting
certain types of particles but concentrate on measurements of a multitude of processes.
The ALICE experiment is a heavy ion collider experiment and is exploring key issues in
QCD like quark deconfinement and quark-gluon plasma. The LHCb experiment concen-
trates on b-physics and primarily measures CP violation.
The LHC provides bunch crossings at a rate of 40 MHz with up to 1011 protons per

bunch. This results in a peak design luminosity of 10× 1034 cm−2s−1. The LHC has
operated at multiple energies over time. In Run 1 the LHC operated at a center-of-mass
energy of

√
s = 7 TeV producing 5.46 fb−1 of data from 2010 to 2011 and at

√
s = 8 TeV

producing 22.8 fb−1 of data from in 2012. After 2012 the LHC was taken offline to prepare
Run 2 beginning in 2015, where the LHC operated at

√
s = 13 TeV. Run 2 produced

139 fb−1 of data from 2015 until 2018. In 2018 the LHC was shut down again to prepare
Run 3.

3.2. The ATLAS experiment

The ATLAS experiment [18] is a general purpose detector with a cylindrical and forward-
backward symmetry with respect to the interaction point, where the proton-proton (pp)
beams collide. The detectors dimensions are 25 m in height and 46 m in length, and the
detector weighs 7 Gg. The ATLAS experiment uses a right-handed coordinate system
with the beam axis being defined as the z-axis and the xy-plane is transverse to the beam
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3.2. The ATLAS experiment

Figure 3.2.: Cut-away view of the ATLAS detector [18].

direction. The positive x-axis points from the interaction point to the center of the LHC
and the positive y-axis points upwards. The detector is comprised of multiple detector
subsystems. These are arranged concentrically with increasing radius as the detectors are
layered upon each other, or as layered end-caps of the cylinder and closing off its sides. A
cut-away view of the ATLAS experiment is displayed in Figure 3.2. The end-caps account
for particles with high pseudo-rapidity values, η ≡ − ln

[
tan θ

2

]
, where θ, the polar angle, is

the angle between the measured object and the positive direction of the z-axis. The angle
φ describes the azimuthal angle. The pseudorapidity η converges for particle velocities
close to the speed of light towards the rapidity y = 1

2 ln
[
E+pz
E−pz

]
. For massless particles,

η and y are equal. The difference between two pseudorapidity values is approximately
invariant for Lorentz boosts along the beam axis. The ATLAS experiment has almost full
azimuthal coverage apart from technical necessities like the standing feet of the apparatus.
The maximum polar coverage is at |η| = 4.9 for EM and hadronic energy measurements
in the end-caps.
The ATLAS experiment has four major detector systems, the inner detector (ID), the

electromagnetic calorimeter (ECAL), the hadronic calorimeter (HCAL) and the muon
spectrometer.
The innermost detector is the ID. It is made up of silicon semiconductor pixels and strips
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3. The Large Hadron Collider and the ATLAS experiment

and the transition radiation tracker (TRT) at its outer perimeter. The TRT is made up
from gaseous straw tubes filled with a mixture of Xe/CO2/O2 gases. The objective being a
measurement of momentum and charge of electrically charged particles without impeding
the momentum of the particles. The ID provides momentum measurements and primary,
as well as secondary, vertex measurements for charged tracks with |η| < 2.5. Furthermore
it contributes to electron identification within |η| < 2.0 in addition to the electromagnetic
calorimeter. The electrons are identified when transition radiation is emitted by highly
relativistic electrons. The transition radiation is EM radiation that is emitted when
charged particles move through an inhomogeneous medium and happens at polymer fibers
between the straw tubes. The ID operates inside a magnetic field generated by a solenoid
with a field strength of 2 T. As this detector is closest to the high energy particle collisions,
it is exposed to the most radiation. To counteract the resulting radiation damages to the
silicon sensors, the ID is cooled to about −5 ◦C to −10 ◦C. The resolution of the ID for
the transverse momentum of charged tracks is σpT

pT
= 0.05 %pT ⊕ 1 % [GeV].

The next detector subsystem is the calorimeter system. It is made up of one barrel
region in shape of a cylinder around the beam axis and two end-caps. The calorimeter
consists of two alternating materials. The first layer is the absorber material and the
second layer, or active layer, is the sampling material. Used absorber materials in the
different calorimeter sections are steel, lead and tungsten. The active layers use liquid
Argon or scintillating tiles. The absorber layer causes particles to shower in the calorimeter
and in the sampling layer, the energy deposits are measured. The calorimeter is divided
into two sections each detecting different particles. The ECAL specializes in detecting
particles that interact via the EM force. The HCAL specializes in detecting particles
that interact via the strong nuclear force. Although the calorimeters are specialized
towards certain interactions, in practice there is no clean cut between the two calorimeters
and what particles they measure. The calorimeter section is situated between the inner
solenoid magnet and the outer toroidal magnetic field.

The first, and inner, calorimeter is the ECAL. It mainly measures the energy of photons
and electrons as they pass through the detector material. Here, the electrons and photons
shower and are absorbed by the detector after passing through multiple radiation lengths
worth of matter. The physical processes the showering is based on, are pair productions of
electrons and positrons and bremsstrahlung. Both processes are reliant on the presence of
matter. The nominal energy resolution of the ECAL for EM showers is σE

E
= 10 %/

√
E⊕

0.7 % [GeV].

The second calorimeter layer is the HCAL. It measures hadrons in similar fashion as
the EM calorimeter does. The hadrons shower and are absorbed by the calorimeter
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material. Hadronic showers are the result of strong interactions between the hadrons
and the detector material resulting in the production of other hadrons. Usually there
are also EM showers accompanying hadronic showers. Its energy resolution for hadronic
showers are σE

E
= 50 %/

√
E ⊕ 3 % [GeV] for the barrel and end cap region and σE

E
=

100 %/
√
E ⊕ 10 % [GeV] for the forward region.

The calorimeters allow for measurements between 0 < |η| < 3.2 with additional
hadronic calorimeter coverage at pseudo-rapidities of 3.1 < |η| < 4.9 for the forward
region of the calorimeter.

The outermost detector is the muon spectrometer. It is designed to detect the charged
particles, predominantly muons, that are not stopped by the calorimeters in the barrel,
as well as the end-cap region. The muon spectrometer relies on gas-filled drift chambers.
When a muon travels through the chamber it ionizes the gas inside. This causes a cascade
of ionization and the built up charge is measured with wires throughout the chamber. The
muon spectrometer is capable of measuring the particles momenta within |η| < 2.7 and
capable on triggering on charged particles within |η| < 2.4. This is achieved by three layers
of detectors in the form of three concentric shells in the barrel region and four end-caps at
each side. Each shell in the barrel region has overlapping detector chambers as reference
for relative alignment measurements of the detector parts. The tracking performed by the
muon spectrometer works complementary to the tracking performed by the ID. A total of
three toroid magnets with 8 coils each are deployed within the muon spectrometer with
one toroid magnet placed along the beam axis as barrel toroid and one toroid magnet
placed on each end-cap. These toroids produce a bending power of 1 T ·m to 7.5 T ·m
and achieve a peak magnetic field strength of 3.9 T to 4.1 T in the windings of the barrel
and the end-cap toroid respectively. The individual detector chambers are made up of four
different types of drift chambers, each having its strengths and weaknesses, depending on
their task and position in the detector. The muon spectrometer achieves a momentum
resolution of σpT

pT
= 10 %pT [GeV] at pT = 1 TeV.

ATLAS uses a trigger system to record the collision data. The ATLAS Level 1 trigger is
hardware-based and responsible to quickly decide which information of the huge amounts
of data that is produced by all the different detectors is kept. It does this by identifying
the incoming data with particles and objects like hadronic jets. This is based upon
predefined criteria. These criteria usually identify hard-scatter events with high energy
particles in which we are interested as oppose to soft-scatter events with low energy
particles. It decides to discard events within a latency of 2.5× 10−6 s. This event selection
is also necessary reduce the data load for the high level trigger (HLT) from 40 MHz to
100 kHz. It also marks Regions-of-Interest where it detects special patterns and features
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for reconstructions of the HLT. The HLT is software based and performs full or partial
event reconstruction from information passed on by the Level 1 trigger. The HLT passes
on interesting events upon predefined criteria at a rate of 1.5 kHz to the subsequent data
collection where the events are saved to hard drives in the data storage and reconstructed
for analysis.
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4.1. The theory of neural networks

Figure 4.1.: Schematic of a neural network with five inputs, one output, three hidden
layers and eight neurons per hidden layer.

The goal of a neural network (NN) is to map a set of correlated variables that stem
from measurements or simulations to a set of outputs. This function can be described as
a cost function and is being minimized by the NN during the training. An NN consists
of layers of neurons, where neurons resemble an intermediate step in the calculation of
the cost function. The first layer of neurons takes on the input variables as values. A
schematic of a NN is displayed in Figure 4.1. The ath neuron in a following layer i receives
the preceding value of the bth neuron of the (i−1)th layer as xai = fi(wabi xbi−1 + bai ), where
wabi is the weight that connects the two neurons, bi is the bias and fi is the activation
function for the ith layer. The activation function is a non-linear function that acts like
a converter and is inspired by biological neurons. Biological neurons can either fire or
not fire but they cannot fire negatively. This behavior can be simulated by implemented
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a Heaviside step function or a rectified linear unit (ReLU). The bias acts as a constant
with which the activation function can be shifted. This thesis solely used ReLU with
f(x) = max(0, x) as an activation function. The weight and the bias are subject of the
training and are initialized with some values. All neurons of a layer are connected to all
neurons of adjacent neurons but there are no weights that connect neurons across non-
adjacent layers. The introduced cost function describes all these individual links between
the neurons. To minimize this cost function will be the objective of the training. The
numbers of neurons, hidden layers, input and output variables can be chosen arbitrarily
but these values have to be defined before the training and cannot be changed during the
training. The layers between the input and the output layer are called hidden layers and
when there is more than one hidden layer the NN is called a deep NN.
The sets of input variables are then fed into the NN and an output is generated. The

output is then compared to a reference and the mean squared error (MSE) between them
is calculated. The cost function of the MSE is then gradually minimized by taking a
step towards a local minimum using gradient descent. With each step taken the weights
between the neurons are changed according to the present position. Around the local
minimum one can define a dropout interval, the minimum delta. When crossing the
dropout interval a number of times, defined in patience, the training is concluded and
the optimized function is set. This method of concluding the training before reaching
the defined number of epochs is called early stopping. Now the function can be used on
orthogonal data to produce an output according to the found correlations in the training.
This step is called evaluation of the NN.

4.2. Application of the neural network

The subject of this work is to obtain a sensible approximation for the missing pνz to achieve
a full event reconstruction in the HH → bbWW ∗ channel in the 1-lepton final state. The
process is displayed in Figure 4.2. The input variables consist of the 4-vector components
of three other particles in the event, namely the lepton of the leptonically decaying W
boson (Wlep), the Higgs boson of theH → bb decay and the hadronically decayingW boson
(Whad), and the pmiss

x , pmiss
y of the associated event. This yields a total of 15 variables.

The truth as well as reconstructed variables are available but the final NN should only
use reconstructed variables. A training on truth variables and on reconstructed variables
are called truth training and reco training respectively. The training data stems from
MC simulation because access is needed to the truth pνz for the training process as the
experience. The evaluation also happens on simulated data but can in principle also be
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Figure 4.2.: Feynman diagram of theHH → bbWW ∗ channel. Depending on the charge
of the W bosons either the lepton or the neutrino is an antiparticle.

executed on measured data. The advantage for an evaluation on simulated data is that
the truth pνz is still present and can be used to compare the output. The samples used to
simulate the signal events are listed in Appendix B.1.
The dataset for each mass point is split into three parts, the training, the validation

and the evaluation samples. The training sample contains 20 % of the events and the
validation sample contains 40 %. Both are used for the training algorithm. The training
set is used for the training itself while the validation set is used to monitor the NN at
any stage to detect and reduce overfitting. This happens by evaluating the NN during
the training and measuring the MSE between the output and the truth pνz . If the MSE
increases due to overfitting the course of the NN training will be changed accordingly.
The evaluation sample contains 40 % and is used in the evaluation algorithm on the NN
after finishing the training.
Next to the input variables, one has to provide the hyperparameters for the NN. In this

analysis the following hyperparameters have been used:

• Number of neurons: The number of neurons defines how many neurons are present
in a hidden layer. The number of neurons per hidden layer can vary for each hidden
layer.

• Number of hidden layers: The hidden layers are the layers of neurons which are
between the input layer and the output layer.

• Number of epochs: The number of epochs defines how often the NN training algo-
rithm runs over the entire training set.
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• Batch size: The batch size of the chunks of training data the NN processes before
updating the model.

• Minimum delta: The minimum delta is a positive value and is used for early stopping.
If the absolute change of the MSE is smaller than the minimum delta the change
does not qualify as improvement.

• Patience: If the number of epochs that did not yield an improvement is equal to the
to patience, the training is stopped.

• Activation: The activation defines the activation function with which the neurons
value is determined in the hidden layers. The activation functions are chosen from
a set of available options.

• Last activation: The last activation defines the activation function for the output
layer.

• Learning rate: Describes the how much a model changes in response to the measured
error

These hyperparameters describe how the training is executed and represent its settings,
like the aforementioned number of neurons and hidden layers. The hyperparameters can
be changed and will be changed during the course of the analysis but have to be set
before every training. Different input sizes, that is number of variables and/or number
of events, different types of outputs and different optimizers perform best with suiting
hyperparameters. A table of the used hyperparameters and optimizers can be seen in
Table 4.1. The starting hyperparameter set will also be called Set 1 and the final set of
hyperparameters Set 2 for the remainder of this chapter. There are also optimizer specific
variables that can be configured. For SGD two additional variables have been considered.
The decay rate determines the impact of data on the training over time. A positive decay
rate results in a deacrease of the learning rate for each time step. The momentum prevents
oscillations and potentially results in faster convergence of the SGD method by building
up velocity.
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Hyperparameters starting parameters final parameters
Neurons 60 40
Hidden layers 4 3
Epochs 100 40
Batch size 32 64
Minimum delta - -
Patience - -
Dropout rate 0.0 0.0
Activation ReLU ReLU
Last activation linear linear
Optimizer starting parameters final parameters
Type SGD SGD
Learning rate 0.01 0.0001
Momentum 0.0 0.99
Decay rate 0.0 0.0

Table 4.1.: List of the neural networks hyperparameters for its starting point and its fi-
nal version. The parameters that are particularly connected to the optimizer
are displayed separately in the lower half.
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5.1. Measures

To evaluate the performance of the NN and its subsequent output, several measures have
been introduced, which all compare the NN output against a reference. The raw output,
the estimate of the pνz , called NN pνz in the following, can be compared to the pνz of the
simulated neutrino on truth level, the true pνz . Further, the pνz can be used to build
invariant masses of particles preceding the neutrino in the decay chain, such as mH→WW ∗

and mHH . Now, there are several options how to reconstruct such a mass. It can be built
from either reconstructed variables, truth variables or a mixture of those and the true pνz
or NN pνz , respectively. However, the reference always uses the true pνz , the NN output
always uses the NN pνz . Comparing the invariant masses allows insight into the effects of
an inaccurate pνz estimate on the invariant mass distributions.
In addition to a visual comparison of distributions, a discrete measure to easily quantify

the differences is introduced. The difference between distributions is measured in terms
of the width of response distributions Value containing NN pνz

Value containing true pνz
. The values for the response

distribution can be either pνz itself or an invariant mass built from pνz . The width is
defined as the 1σ range in which 68 % of the entries are situated, centered around the
median. With this measure, the response of pνz or an invariant mass can be expressed by
a single number summarizing the results.
This method, however, also has some limitations. For one, the measure cannot differ-

entiate for different compared distributions. Thus, two comparisons of invariant masses
against the same reference could be assigned a similar 1σ range, although the tested
distributions that contain the NN pνz exhibit very different behavior. One such example
would be that one training produces an output that shifts the mass peak but retains the
overall width and structure of the mass distribution compared to the shape of the refer-
ence distribution. The other training could produce an output that broadens the shape
of the mass distributions in a way that the peak is exactly at the same value but almost
vanishes as a result of the broadening. There is no single variable or measure to quantify
such different behavior without examining the distributions themselves. Another problem
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that arises is not limited to the width of response distributions but also affects the mass
and pνz distributions themselves. There is no way to know if the NN took into account the
proper dependencies and correlations or if the training essentially failed but the output of
the NN looks similar to the reference. This can only be ruled out by looking at a sufficient
number of evaluations of the NN with sufficiently large datasets.

5.2. Single mass point training

The first NN training performed is a simple training on events of one mass point and
evaluated on events of the same mass point. This matching of mass points for train-
ing and evaluation will also be called a native training and evaluation. The training is
performed with the hyperparameter set 1 from Table 4.1 and the input variables used
are the standard set of 15 variables displayed in Table 5.1. The training is conducted
on truth variables since this study is supposed to validate the basic concept of the NN.
The training on truth variables is presumed to have an improved performance over the
training on reconstructed variables as the NN does not have to take the resolution and
uncertainties of the reconstructed variables into account. A separate training under the
same conditions but on reconstructed variables is conducted to compare the performances
and assess the impact of the reconstruction in the training. The distributions of the NN
pνz compared to the truth pνz can be seen in Figure 5.1. The responses are displayed in
Appendix A.1. One can clearly see the difference between the trainings in the pνz distri-
butions. In Figure 5.2, it is also visible how the pνz performance differences carry through
to the invariant masses mH→WW ∗ and mHH , although they are not as pronounced as in
the pνz distributions. Looking at the truth variable training one can also find that the NN
has the ability to provide a very good approximation of the pνz , even without tweaking
the hyperparameters or using elaborate methods and inputs.

4-vector H → bb Whad Lepton MET
px pH→bbx pWhad

x plep
x pmiss

x

py pH→bby pWhad
y plep

x pmiss
y

pz pH→bbz pWhad
z plep

x -
E EH→bb EWhad plep

x Emiss
T

Table 5.1.: List of the used standard set of 15 input variables for the NN.
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Figure 5.1.: Distributions of the NN pνz compared to the truth pνz . The NN is trained
on truth variables (left) and reconstructed variables (right).
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Figure 5.2.: Distributions of mH calculated from reconstructed variables and NN pνz
compared to mH calculated from reconstructed variables and truth pνz .
The NN is trained on truth variables (left) and reconstructed variables
(right).

5.3. Training on multiple mass points

With the training method in Section 5.2, it is necessary to train one NN for every mass
point. This section describes an effort to reduce the number of NNs needed for the analysis
by retaining the number of mass points covered by the analysis. The basic concept being
to train a NN on a combination of events of multiple mass points. This NN is then
supposed to cover multiple mass points for the analysis.
This method entails to evaluate the NN with a set of events that is possibly very different

from the training and validation sets both in terms of the number of events and magnitude
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of the kinematic variables. The energies of the decay particles are usually significantly
lower for a resonance with mX = 0.8 TeV than for a resonance with mX = 5 TeV. The
effect of training and evaluation sets of different mass points are assessed for single mass
point trainings before training on groups of mass points. To do this, three mass points
across the range of mass points are chosen for NN trainings to roughly represent low,
medium and high mass points: mX = 1.2 TeV, mX = 2 TeV and mX = 4 TeV. The
resulting NNs are then evaluated on all available evaluation sets of single mass points.
The performances of the three NNs are compared to the performances of native pairings
for each mass point.

The widths of the response distributions of mH are displayed in Figure 5.3. The distri-
butions for mX = 1 TeV and mX = 3 TeV are displayed in Appendix A.2. Two tendencies
can be inferred from the results. Firstly, the width of the native test series increases for
higher mass points. This is probably the result of the low statistics for the high mass
point events. Secondly, the width for the non-native pairings of training and evaluation
sets increases significantly the bigger the difference in mass for the two sets is.

In the next step, NNs are trained on sets of multiple mass points. The mass point
groups contain three to twelve mass points. A training on twelve mass points is equal to
a training on all the available simulated events in this study.

The widths of the response distributions of mH for a selection of mass point groups
are displayed in Figure 5.4. The distributions for mX = 1 TeV and mX = 3 TeV are
displayed in Appendix A.3. One can see that the overall behavior of the NN does not
change from the single mass point trainings in Figure 5.3. The native pairings used as
reference in both figures are equal. The two identified tendencies are still present. The
width generally increases towards higher mass points and the width increases significantly
when the mass point of the evaluation is not part of the group of mass points the NN
is trained on. The latter tendency, however, can be avoided by the NN that is trained
on all mass points. Also the NN trained on mass points between mX = 0.9 TeV and
mX = 4 TeV covers enough mass points and is close enough to the two mass points which
are not included in the training that this effect can be mitigated. The low statistics, also
“low stat”, group is a control group to assess the impact of the higher statistics present in
the sets of multiple mass points. The statistics were cut individually for every mass point
to match the statistics of the native pairing. Therefore we can see the positive impact
of higher statistics on the performance as the difference between the mX = 0.9 TeV to
mX = 4 TeV NN and the mX = 0.9 TeV to mX = 4 TeV low stat NN. The loss in
performance introduced by generalizing the NN can be seen as the difference between the
widths of the native pairings and the mX = 0.9 TeV to mX = 4 TeV low stat NN.
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The consequence taken from this investigation is that it is sufficient and even beneficial
for some mass points to only use a single NN trained on all mass points in terms of
performance. This also simplifies the application of such a NN in the analysis workflow.
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Figure 5.3.: 1σ ranges formH calculated from reconstructed variables and NN pνz versus
mH calculated from reconstructed variables and truth pνz . Training is on
reconstructed variables and for varying mass points.
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5.4. Input variables

To understand the role of the individual variables better the input variables are changed
to exclude the four components of one of the 4-vectors. Subsequently the created training
sets include only eleven input variables and in the case of training without the MET 4-
vector components there are twelve input variables. The training and evaluation are kept
on one the same mass point to isolate possible effects of this training. The distributions
of pνz and mH can be seen in Figure 5.5 and the 1σ ranges in Figure 5.6 for mX = 2 TeV.
This investigation produces three interesting findings.
The first finding is that the NN is very resilient towards missing variables as the per-

formance is hardly impacted by reducing the number of input variables significantly such
that a training without the H → bb̄ 4-vector and the lepton 4-vector is almost identical to
a training on the full set of reconstructed variables. This opens the possibility of cutting
out individual variables if their measuring precision is too low or a variable is difficult
or outright impossible to measure. If the performance is affected, as it is the case for
the missing Whad or MET 4-vector the performance does not suffer too harshly. In such
an event, one could probably still justify not using certain variables if they are poorly
modelled.
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Secondly the training without H → bb̄ 4-vector even decreased the 1σ range. Even
though the actual difference is minimal it demonstrates the possibility of gaining precision
for the NN. In the present case, however, the performance gain seems to be too small to
pick up this lead.
The third piece of information is also an insight into how the NN works. The dependency

of the different 4-vectors towards the pνz does not seem intuitive, as one would believe
that the lepton and MET variables are most important for the reconstruction of our
discriminating variable. Accordingly, the Whad and the H → bb̄ should have a lower
impact. But the situation depicted in the 1σ ranges does not reflect this exact picture.
The important take away would then be that we cannot necessarily apply intuition to the
NNs results. Though, one could consider to influence the NNs decision making on the
importance on variables by applying some kind of weighting to variables that one would
deem to be strongly dependent on the discriminating variable.
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Figure 5.5.: Distributions for pνz (left) and mH (right). The mH is calculated from
reconstructed variables and NN pνz . Trainings are executed on different
sets of reconstructed and truth variables for mX = 2 TeV. The evaluation
is on the mX = 2 TeV sample.
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sets of reconstructed and truth variables for mX = 2 TeV. The evaluation
is on the mX = 2 TeV sample.

5.5. Differentiation for on-shell and off-shell W
bosons

The variables for the W bosons can differ significantly depending on its mass, since the
Higgs mass does not support a decay into two on-shellW bosons with mH = 125 GeV and
mW = 80 GeV. In general one W boson is produced on-shell and the other one off-shell.
The mass of the W boson does not have any influence though, on whether the W boson
will decay hadronically or leptonically. As the NN learns on the Whad variables, it has to
come across two sets of data that correspond to theWhad being either on-shell or off-shell.
To investigate possible implications on the learning and evaluation process, the events are
divided into on-shell and off-shell accordingly. This has been done by cutting on the truth
W boson mass of the hadronic W boson. Every W boson with a mass of mW ≥ 60 GeV is
considered to be on-shell and with a mass of mW < 60 GeV it is considered to be off-shell.
It is also required that each event has exactly one off-shell and one on-shell W boson.

Therefore if a Whad is identified as being on-shell the Wlep is automatically assumed to be
off-shell and vice versa, such that the following on- and off-shell statements are in terms
of the Wlep. The investigation was conducted on a NN trained on events from the mass
points mX = 0.9 TeV to mX = 4 TeV. Among the multiple tested scenarios, a training on
on-shell and off-shell events combined with an evaluation on only on-shell events and only
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5.5. Differentiation for on-shell and off-shell W bosons

off-shell events to see whether there is a preference when reconstructing the pνz by the NN.
In the second step a NN was trained exclusively on- or off-shell events and then evaluated
on either a combination of on-shell and off-shell events or only on on-shell events for the
on-shell training and only on off-shell events for the off-shell training. In the last step
the separate trainings and evaluations for either on-shell or off-shell were combined and
primarily compared to a mixed training and evaluation, as they have the same amount of
events and the most preferable applications as they retain full statistics.

The results are displayed in Figure 5.7 for 1σ interval of the mH distribution. The
distributions for mX = 1 TeV and mX = 3 TeV for the combined training and evaluation
method are displayed in Appendix A.4. We can see that there is almost no gain or
loss with any of the variations. An exception is the NN with a mixed training and an
evaluation on off-shell which shows a particularly bad performance for higher mass points
for themH distribution. Since the extra steps taken to conduct such a separated approach
do not pay off in either necessary computing or performance this approach is not pursued
further.
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5. Analysis

5.6. Neural network optimizer

In the next, step the optimizer is configured. The NN’s optimizer describes the method
with which the NN finds the best composition of weights to reach the best possible ap-
proximation of the true pνz . The commonly used optimizer for the task of regression is
stochastic gradient descent (SGD). This methods uses gradient descent to find a minimum
of the mean squared error (MSE) between the NN’s estimate and the truth pνz in the phase
space that is spanned by the input variables and therefore has a dimension dependent on
the number of input variables. Other optimizers use different methods to derive the out-
put with the lowest MSE towards the truth comparison. Examples for other optimizers
are Adam, RMSprop and AdaDelta. Although, only Adam is tried next to SGD in an
effort to find a suitable optimizer.
The initial reason to change the optimizer or the optimizer settings is that the regression

for a NN of all mass points, mX = 0.8 TeV to mX = 5 TeV, and all 15 input variables
with full statistics failed. But since this NN seemed to be the strongest contender for the
final NN the optimizer is adjusted to fit this training. The error is due to the learning
rate (LR) being too high. The values are shown in Table 4.1. After trying several LRs,
the LR with outstanding performance and a stable training process is 0.0001. Since there
are performance improvements to be gained, the other parameters, momentum and decay
rate, are also adjusted. Introducing a decay rate in this training led to grave performance
losses, though. On the other side, introducing a momentum greatly benefited the training
and after trying multiple values for the momentum a value of 0.99 is selected.
Simultaneously, the Adam optimizer is configured. It is given the same learning rate,

but Adam does not have a momentum for its process and other variables that can be fed
into Adam are not configured. Since it shows a worse performance, it is not chosen as
the main optimizer for this study and further configurations are not investigated. The
resulting Higgs mass distributions for SGD and Adam can be seen in Figure 5.8. Looking
at the pνz distributions in Figure 5.9, there is a particular feature towards higher mass
points. This feature is backtraced to the imbalance of the number of events representing
higher and lower mass points. Utilizing that there is an abundance of events, since all mass
point are used in the training, it is attempted to lower the number of events representing
lower mass points. The mass point with the least events corresponds to the mX = 5 TeV
sample. All other mass points are allowed to only contribute the same number of events
to the training as this mass point does. This does not completely remove the imbalance
since the density of mass points towards lower masses is still significantly higher but it
counteracts the effects.
The effects become immediately clear looking at the performance increases in the dis-
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5.6. Neural network optimizer

tribution for pνz in Figure 5.10. The difference for themH distribution in Figure 5.11 is not
as pronounced but this is in part because the Higgs mass is already modeled very good.
Cutting the events to achieve a better balance between the mass points but retaining as
many events as possible seems to be a great handle to improve the learning process. In
general, though, one has to add that more events usually impact the training positively
or not at all if there are already enough events for the training and the effects of more
data diminish.
The SGD optimizer has been chosen in accordance to the results, although the differ-

ences between both optimizer are small, making adam a valid choice.
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ings are conducted with reconstructed variables and and the SGD opti-
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Evaluation is for mX = 3 TeV.
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5. Analysis

5.7. Neural network hyperparameters

Continuing to tune the NN for the training on the full set of variables, the hyperparameters
are now under investigation. The examined hyperparameters are the number of neurons
and hidden layers as well as the epochs and batch size. Beginning from the starting set
of parameters in Table 4.1, one higher and one lower value is tested for the neurons, the
hidden layers and the epochs. For the batch size a value of 32 and 64 was tested. Increasing
the batch size only has little impact on the performance but benefits the training speed
so a batch size of 64 is now used. Similar effects are seen with the neurons, hidden layers
and epochs. Higher values do not result in a performance increase and, in the case of the
epochs, there even is a very slight decrease in accuracy. Lower values on the other hand
also do not change the result noticeably but lower values are usually more desirable since
they speed up the training and reduce the necessary computing power. Thus, the lower
values are chosen in such cases and the final values can be seen in Table 4.1.
The values are not lowered until there is a performance loss since bringing the NN

so close to its boundary can result in unexpected performance losses if the NN is used
in slightly different way. Values that could push the NN training over such a boundary
are numbers of events and input variables. However, if events, input variables and such
are frozen, one can chose to optimize the NN settings a little more for the sake of small
performance gains in accuracy and necessary computing power.

5.8. Evaluation on background

Important for the actual usability in an analysis is the NN’s performance on background,
as one would gain considerably less from a NN that reconstructs background to have
similar distribution to signal. This test is conducted after all the preceding changes are
made to the training, variables, hyperparameters and the optimizer and, thus, not trained
on any background. The already trained NN is simply evaluated on various backgrounds.
The tested backgrounds are dijet, tt̄ all hadronic, tt̄ non all hadronic, tt̄ di-lepton, W+Jets
and Z+Jets. The results can be seen in Figure 5.12 formH andmX = 1 TeV. The samples
used to simulate the background events are listed in Appendix B.2.
For mHH , the signal exhibits a good separation of signal and background, which is

expected to improve further for higher mass points. The reconstruction of mH exhibits
mixed results since some of the background distributions have a significant overlap with
the signal distribution. Despite this overlap, the signal distribution is still separable from
the background.
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Figure 5.12.: Background distributions on the mX = 1 TeV signal distributions of mH

(left) andmHH (right) built from reconstructed variables and NN pνz . The
training is on the final version of the NN.

37





6. Conclusion and Outlook

A short summary of the analysis and of the research results is now given. The performance
differences between training on reconstructed and truth variables was assessed. The mass
points were combined into a single training resulting in a single NN that was used for all
masses in the analysis with a performance close to specialized trainings for every single
mass point. This includes training on all resonant masses between 0.8 TeV and 5 TeV.
The performance benefits of separating the dataset for on- and off-shell WLep bosons were
investigated, and were shown to be negligible. The importance of the respective input
variables was examined, with the result being that the NN is able to be trained with a
smaller set of input variables without impacting the performance much. The optimizer
and the hyperparameters were tuned to fit the final training of one NN on 0.8 TeV <

mX < 5 TeV. There the statistics were adjusted to be uniform over all mass points
and the optimizer chosen was SGD with momentum. The introduction of a momentum
granted a noticeable increase in performance. The impact of the hyperparameters were
barely noticeable for big ranges of the respective hyperparameters in terms of performance
but lowering the number epochs and neurons for example sped up the training. The final
set of hyperparameters and optimizer settings have been summarized in Table 4.1.
The final NN exhibits good performance in terms of the reconstructed mHH and

mH→WW ∗ , without the background being reconstructed as signal. Compared to other
methods of reconstructing, for example pνz = 0, the NN exhibits better resolution for
these mass variables, although the difference is small for mHH . The comparisons can
be seen in Figure 6.1 for mHH and in Figure 6.2 for mH→WW ∗ . The differences in the
reconstruction of mH→WW ∗ , however, are very noticeable.
Potential tests that are not included in this work are other approaches to machine

learning on a fundamental level. Not all possible setups of the NN used in this work were
tested. This includes introducing inhomogeneous hidden layers, meaning that that the
NN has different numbers neurons per hidden layer. The settings of the hyperparameters
and the optimizer are only loosely optimized to make a general argument to whether this
is a possibility to improve the NN or not. Possibly some performance could be gained
by matching these settings exactly to the used dataset. Using different or more input
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6. Conclusion and Outlook

variables, like the number of b-tags in the event could also lead to gains in performance.
The use of a NN in the boosted resonant HH → bbWW ∗ channel with a 1-lepton final

state is definitely a viable option and the NN can potentially be applied to any analyses
of channels with one neutrino in the final state, as long as there is enough kinematic
information in the final state to make a NN training possible. The improved performances
for these event reconstructions by NNs could potentially be vital for the search of BSM
physics in the future.
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Figure 6.1.: Comparison of distributions for mX = 1 TeV (left) and mX = 3 TeV (right)
for calculations from NN pνz and without pνz . Training is on the final model
of the NN.
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Figure 6.2.: Comparison of distributions for mX = 1 TeV (left) and mX = 3 TeV (right)
for calculations from NN pνz and without pνz . Training is on the final model
of the NN.
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A. Figures

A.1. Distributions for native pairings and training on
single mass points
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Figure A.1.: Response of pνz . The NN is trained on truth variables (left) and recon-
structed variables (right). The black dotted lines indicate the 16th and
the 84th percentile and the blue line indicate the median.
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Figure A.2.: Response of mH calculated from reconstructed variables and NN pνz com-
pared tomH calculated from reconstructed variables and truth pνz . The NN
is trained on truth variables (left) and reconstructed variables (right).The
black dotted lines indicate the 16th and the 84th percentile and the blue
line indicate the median.

A.2. Distributions for non-native pairings and
training on single mass points
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Figure A.3.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN training and evaluation is a native pairing formX = 1 TeV
(left) and mX = 3 TeV (right).
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Figure A.4.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . The NN is trained on mX = 1.2 TeV and evaluated for mX =
1 TeV (left) and mX = 3 TeV (right).
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Figure A.5.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN is trained on mX = 2 TeV and evaluated for mX = 1 TeV
(left) and mX = 3 TeV (right).
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Figure A.6.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN is trained on mX = 4 TeV and evaluated for mX = 1 TeV
(left) and mX = 3 TeV (right).
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A.3. Distributions for training on multiple mass points

A.3. Distributions for training on multiple mass
points
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Figure A.7.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN training and evaluation is a native pairing formX = 1 TeV
(left) and mX = 3 TeV (right).
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Figure A.8.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN is trained on 0.9 TeV < mX < 1.6 TeV and evaluated for
mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.9.: Distributions of mH calculated from reconstructed variables and NN pνz or
true pνz . The NN is trained on 1.6 TeV < mX < 3 TeV and evaluated for
mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.10.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . The NN is trained on 3 TeV < mX < 5 TeV and evaluated for
mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.11.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . The NN is trained on 0.9 TeV < mX < 4 TeV and evaluated
for mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.12.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . The NN is trained on 0.9 TeV < mX < 1.6 TeV with lowered
statistics and evaluated for mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.13.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . The NN is trained on 0.8 TeV < mX < 5 TeV and evaluated
for mX = 1 TeV (left) and mX = 3 TeV (right).
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Figure A.14.: Distributions of mH calculated from reconstructed variables and NN pνz
or true pνz . Two NNs are trained on either on-shell or off-shell events
and evaluated respectively on only on-shell or off-shell events. The NNs
are trained on 0.8 TeV < mX < 5 TeV and evaluated for mX = 1 TeV
(left) and mX = 3 TeV (right). The results of both evaluations are then
combined.
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B. Tables

B.1. Signal samples

signal
mc16_13TeV.450220.MadGraphHerwig7EvtGen_PDF23LO_X800tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450221.MadGraphHerwig7EvtGen_PDF23LO_X900tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450219.MadGraphHerwig7EvtGen_PDF23LO_X1000tohh_WWbb_1lep.evtgen.EVT.e7329
mc16_13TeV.450222.MadGraphHerwig7EvtGen_PDF23LO_X1200tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450223.MadGraphHerwig7EvtGen_PDF23LO_X1400tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450224.MadGraphHerwig7EvtGen_PDF23LO_X1600tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450225.MadGraphHerwig7EvtGen_PDF23LO_X1800tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450229.MadGraphHerwig7EvtGen_PDF23LO_X2000tohh_WWbb_1lep.evtgen.EVT.e7329
mc16_13TeV.450226.MadGraphHerwig7EvtGen_PDF23LO_X2500tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450239.MadGraphHerwig7EvtGen_PDF23LO_X3000tohh_WWbb_1lep.evtgen.EVT.e7329
mc16_13TeV.450227.MadGraphHerwig7EvtGen_PDF23LO_X4000tohh_WWbb_1lep.evtgen.EVT.e7592
mc16_13TeV.450228.MadGraphHerwig7EvtGen_PDF23LO_X5000tohh_WWbb_1lep.evtgen.EVT.e7592

Table B.1.: Names of the samples that are used for the simulation of the signal for every
mass point.

B.2. Background samples
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B. Tables

dijet
mc15_13TeV.364712.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ12WithSW.evgen.EVNT.e7142
mc15_13TeV.364711.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ11WithSW.evgen.EVNT.e7142
mc15_13TeV.364710.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ10WithSW.evgen.EVNT.e7142
mc15_13TeV.364709.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ9WithSW.evgen.EVNT.e7142
mc15_13TeV.364708.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ8WithSW.evgen.EVNT.e7142
mc15_13TeV.364707.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ7WithSW.evgen.EVNT.e7142
mc15_13TeV.364706.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ6WithSW.evgen.EVNT.e7142
mc15_13TeV.364705.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ5WithSW.evgen.EVNT.e7142
mc15_13TeV.364704.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ4WithSW.evgen.EVNT.e7142
mc15_13TeV.364703.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ3WithSW.evgen.EVNT.e7142
mc15_13TeV.364702.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ2WithSW.evgen.EVNT.e7142
mc15_13TeV.364701.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ1WithSW.evgen.EVNT.e7142
mc15_13TeV.364700.Pythia8EvtGen_A14NNPDF23LO_jetjet_JZ0WithSW.evgen.EVNT.e7142

Table B.2.: Names of the samples that are used for the simulation of the dijet back-
ground.

ttbar
mc15_13TeV.410472.PhPy8EG_A14_ttbar_hdamp258p75_dil.evgen.EVNT.e6348

mc15_13TeV.410471.PhPy8EG_A14_ttbar_hdamp258p75_allhad.evgen.EVNT.e6337
mc15_13TeV.410470.PhPy8EG_A14_ttbar_hdamp258p75_nonallhad.evgen.EVNT.e6337

Table B.3.: Names of the samples that are used for the simulation of the ttbar back-
ground.
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B.2. Background samples

W+jets
mc15_13TeV.363483.Sherpa_NNPDF30NNLO_Wenu_Pt2000_E_CMS_BFilter.evgen.EVNT.e4715

mc15_13TeV.363482.Sherpa_NNPDF30NNLO_Wenu_Pt2000_E_CMS_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363481.Sherpa_NNPDF30NNLO_Wenu_Pt2000_E_CMS_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363480.Sherpa_NNPDF30NNLO_Wenu_Pt1000_2000_BFilter.evgen.EVNT.e4715
mc15_13TeV.363479.Sherpa_NNPDF30NNLO_Wenu_Pt1000_2000_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363478.Sherpa_NNPDF30NNLO_Wenu_Pt1000_2000_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363477.Sherpa_NNPDF30NNLO_Wenu_Pt700_1000_BFilter.evgen.EVNT.e4715
mc15_13TeV.363476.Sherpa_NNPDF30NNLO_Wenu_Pt700_1000_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363475.Sherpa_NNPDF30NNLO_Wenu_Pt700_1000_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363474.Sherpa_NNPDF30NNLO_Wenu_Pt500_700_BFilter.evgen.EVNT.e4771
mc15_13TeV.363473.Sherpa_NNPDF30NNLO_Wenu_Pt500_700_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363472.Sherpa_NNPDF30NNLO_Wenu_Pt500_700_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363471.Sherpa_NNPDF30NNLO_Wenu_Pt280_500_BFilter.evgen.EVNT.e4715
mc15_13TeV.363470.Sherpa_NNPDF30NNLO_Wenu_Pt280_500_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363469.Sherpa_NNPDF30NNLO_Wenu_Pt280_500_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363468.Sherpa_NNPDF30NNLO_Wenu_Pt140_280_BFilter.evgen.EVNT.e4715
mc15_13TeV.363467.Sherpa_NNPDF30NNLO_Wenu_Pt140_280_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363466.Sherpa_NNPDF30NNLO_Wenu_Pt140_280_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363465.Sherpa_NNPDF30NNLO_Wenu_Pt70_140_BFilter.evgen.EVNT.e4715
mc15_13TeV.363464.Sherpa_NNPDF30NNLO_Wenu_Pt70_140_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363463.Sherpa_NNPDF30NNLO_Wenu_Pt70_140_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363462.Sherpa_NNPDF30NNLO_Wenu_Pt0_70_BFilter.evgen.EVNT.e4715
mc15_13TeV.363461.Sherpa_NNPDF30NNLO_Wenu_Pt0_70_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363460.Sherpa_NNPDF30NNLO_Wenu_Pt0_70_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363459.Sherpa_NNPDF30NNLO_Wmunu_Pt2000_E_CMS_BFilter.evgen.EVNT.e4715
mc15_13TeV.363458.Sherpa_NNPDF30NNLO_Wmunu_Pt2000_E_CMS_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363457.Sherpa_NNPDF30NNLO_Wmunu_Pt2000_E_CMS_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363456.Sherpa_NNPDF30NNLO_Wmunu_Pt1000_2000_BFilter.evgen.EVNT.e4715
mc15_13TeV.363455.Sherpa_NNPDF30NNLO_Wmunu_Pt1000_2000_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363454.Sherpa_NNPDF30NNLO_Wmunu_Pt1000_2000_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363453.Sherpa_NNPDF30NNLO_Wmunu_Pt700_1000_BFilter.evgen.EVNT.e4715
mc15_13TeV.363452.Sherpa_NNPDF30NNLO_Wmunu_Pt700_1000_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363451.Sherpa_NNPDF30NNLO_Wmunu_Pt700_1000_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363450.Sherpa_NNPDF30NNLO_Wmunu_Pt500_700_BFilter.evgen.EVNT.e4715
mc15_13TeV.363449.Sherpa_NNPDF30NNLO_Wmunu_Pt500_700_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363448.Sherpa_NNPDF30NNLO_Wmunu_Pt500_700_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363447.Sherpa_NNPDF30NNLO_Wmunu_Pt280_500_BFilter.evgen.EVNT.e4715
mc15_13TeV.363446.Sherpa_NNPDF30NNLO_Wmunu_Pt280_500_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363445.Sherpa_NNPDF30NNLO_Wmunu_Pt280_500_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363444.Sherpa_NNPDF30NNLO_Wmunu_Pt140_280_BFilter.evgen.EVNT.e4715
mc15_13TeV.363443.Sherpa_NNPDF30NNLO_Wmunu_Pt140_280_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363442.Sherpa_NNPDF30NNLO_Wmunu_Pt140_280_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363441.Sherpa_NNPDF30NNLO_Wmunu_Pt70_140_BFilter.evgen.EVNT.e4771
mc15_13TeV.363440.Sherpa_NNPDF30NNLO_Wmunu_Pt70_140_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363439.Sherpa_NNPDF30NNLO_Wmunu_Pt70_140_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363438.Sherpa_NNPDF30NNLO_Wmunu_Pt0_70_BFilter.evgen.EVNT.e4715
mc15_13TeV.363437.Sherpa_NNPDF30NNLO_Wmunu_Pt0_70_CFilterBVeto.evgen.EVNT.e4715
mc15_13TeV.363436.Sherpa_NNPDF30NNLO_Wmunu_Pt0_70_CVetoBVeto.evgen.EVNT.e4715

mc15_13TeV.363354.Sherpa_NNPDF30NNLO_Wtaunu_Pt2000_E_CMS_BFilter.evgen.EVNT.e4709
mc15_13TeV.363353.Sherpa_NNPDF30NNLO_Wtaunu_Pt2000_E_CMS_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363352.Sherpa_NNPDF30NNLO_Wtaunu_Pt2000_E_CMS_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363351.Sherpa_NNPDF30NNLO_Wtaunu_Pt1000_2000_BFilter.evgen.EVNT.e4779
mc15_13TeV.363350.Sherpa_NNPDF30NNLO_Wtaunu_Pt1000_2000_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363349.Sherpa_NNPDF30NNLO_Wtaunu_Pt1000_2000_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363348.Sherpa_NNPDF30NNLO_Wtaunu_Pt700_1000_BFilter.evgen.EVNT.e4779
mc15_13TeV.363347.Sherpa_NNPDF30NNLO_Wtaunu_Pt700_1000_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363346.Sherpa_NNPDF30NNLO_Wtaunu_Pt700_1000_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363345.Sherpa_NNPDF30NNLO_Wtaunu_Pt500_700_BFilter.evgen.EVNT.e4779
mc15_13TeV.363344.Sherpa_NNPDF30NNLO_Wtaunu_Pt500_700_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363343.Sherpa_NNPDF30NNLO_Wtaunu_Pt500_700_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363342.Sherpa_NNPDF30NNLO_Wtaunu_Pt280_500_BFilter.evgen.EVNT.e4779
mc15_13TeV.363341.Sherpa_NNPDF30NNLO_Wtaunu_Pt280_500_CFilterBVeto.evgen.EVNT.e4779
mc15_13TeV.363340.Sherpa_NNPDF30NNLO_Wtaunu_Pt280_500_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363339.Sherpa_NNPDF30NNLO_Wtaunu_Pt140_280_BFilter.evgen.EVNT.e4709
mc15_13TeV.363338.Sherpa_NNPDF30NNLO_Wtaunu_Pt140_280_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363337.Sherpa_NNPDF30NNLO_Wtaunu_Pt140_280_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363336.Sherpa_NNPDF30NNLO_Wtaunu_Pt70_140_BFilter.evgen.EVNT.e4779
mc15_13TeV.363335.Sherpa_NNPDF30NNLO_Wtaunu_Pt70_140_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363334.Sherpa_NNPDF30NNLO_Wtaunu_Pt70_140_CVetoBVeto.evgen.EVNT.e4709

mc15_13TeV.363333.Sherpa_NNPDF30NNLO_Wtaunu_Pt0_70_BFilter.evgen.EVNT.e4709
mc15_13TeV.363332.Sherpa_NNPDF30NNLO_Wtaunu_Pt0_70_CFilterBVeto.evgen.EVNT.e4709
mc15_13TeV.363331.Sherpa_NNPDF30NNLO_Wtaunu_Pt0_70_CVetoBVeto.evgen.EVNT.e4709

Table B.4.: Names of the samples that are used for the simulation of the W+jets back-
ground.
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Z+jets
mc15_13TeV.364361.Sherpa_221_NNPDF30NNLO_Zee_Mll2Ml_MAXHTPTV140_280.evgen.EVNT.e6544
mc15_13TeV.364358.Sherpa_221_NNPDF30NNLO_Zee_Mll2Ml_MAXHTPTV70_140.evgen.EVNT.e6544

mc15_13TeV.364280.Sherpa_221_NNPDF30NNLO_Zee_Mll2Ml_MAXHTPTV280_E_CMS.evgen.EVNT.e6037
mc15_13TeV.364237.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV1000_E_CMS_Mll130.evgen.EVNT.e5750

mc15_13TeV.364236.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV500_1000_Mll130.evgen.EVNT.e5750
mc15_13TeV.364235.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV280_500_Mll130.evgen.EVNT.e5750

mc15_13TeV.364219.Sherpa_221_NNPDF30NNLO_Zee_PTV1000_E_CMS.evgen.EVNT.e5626
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mc15_13TeV.364119.Sherpa_221_NNPDF30NNLO_Zee_MAXHTPTV70_140_BFilter.evgen.EVNT.e5299
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mc15_13TeV.364497.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV500_1000_noHadMPI.evgen.EVNT.e6405
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mc15_13TeV.364104.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV70_140_CFilterBVeto.evgen.EVNT.e5271
mc15_13TeV.364103.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV70_140_CVetoBVeto.evgen.EVNT.e5271

mc15_13TeV.364102.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_BFilter.evgen.EVNT.e5271
mc15_13TeV.364101.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_CFilterBVeto.evgen.EVNT.e5271
mc15_13TeV.364100.Sherpa_221_NNPDF30NNLO_Zmumu_MAXHTPTV0_70_CVetoBVeto.evgen.EVNT.e5271
mc15_13TeV.364363.Sherpa_221_NNPDF30NNLO_Ztautau_Mll2Ml_MAXHTPTV140_280.evgen.EVNT.e6544
mc15_13TeV.364360.Sherpa_221_NNPDF30NNLO_Ztautau_Mll2Ml_MAXHTPTV70_140.evgen.EVNT.e6544

mc15_13TeV.364282.Sherpa_221_NNPDF30NNLO_Ztautau_Mll2Ml_MAXHTPTV280_E_CMS.evgen.EVNT.e6037
mc15_13TeV.364221.Sherpa_221_NNPDF30NNLO_Ztautau_PTV1000_E_CMS.evgen.EVNT.e5626

mc15_13TeV.364220.Sherpa_221_NNPDF30NNLO_Ztautau_PTV500_1000.evgen.EVNT.e5626
mc15_13TeV.364141.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV1000_E_CMS.evgen.EVNT.e5307

mc15_13TeV.364140.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV500_1000.evgen.EVNT.e5307
mc15_13TeV.364139.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_BFilter.evgen.EVNT.e5313

mc15_13TeV.364138.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_CFilterBVeto.evgen.EVNT.e5313
mc15_13TeV.364137.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV280_500_CVetoBVeto.evgen.EVNT.e5307

mc15_13TeV.364136.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_BFilter.evgen.EVNT.e5307
mc15_13TeV.364135.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_CFilterBVeto.evgen.EVNT.e5307
mc15_13TeV.364134.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV140_280_CVetoBVeto.evgen.EVNT.e5307

mc15_13TeV.364133.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_BFilter.evgen.EVNT.e5307
mc15_13TeV.364132.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_CFilterBVeto.evgen.EVNT.e5307
mc15_13TeV.364131.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV70_140_CVetoBVeto.evgen.EVNT.e5307

mc15_13TeV.364130.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_BFilter.evgen.EVNT.e5307
mc15_13TeV.364129.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_CFilterBVeto.evgen.EVNT.e5307
mc15_13TeV.364128.Sherpa_221_NNPDF30NNLO_Ztautau_MAXHTPTV0_70_CVetoBVeto.evgen.EVNT.e5307

Table B.5.: Names of the samples that are used for the simulation of the Z+jets back-
ground.
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