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Abstract

In this article we discuss estimation of generalized threshold regression models in

settings when the threshold parameter lacks identifiability. In particular, if esti-

mation of the regression coefficients is associated with high uncertainty and/or the

difference between regimes is small, estimators of the threshold and, hence, of the

whole model can be strongly affected. A new regularized Bayesian estimator for

generalized threshold regression models is proposed. We derive conditions for su-

periority of the new estimator over the standard likelihood one in terms of mean

squared error. Simulations confirm excellent finite sample properties of the sug-

gested estimator, especially in the critical settings. The practical relevance of our

approach is illustrated by two real-data examples already analyzed in the literature.

Key words and phrases: empirical Bayes, regularization, threshold identification.

1 Introduction

Modeling a response variable as a linear combination of some covariates with regression1

coefficients that vary between (possibly several) regimes is known as threshold regression.2

The choice of regime is determined by a transition function, which depends on a transition3

variable as well as a threshold parameter. Transition functions can be either smooth4

(Van Dijk et al., 2002, provide a comprehensive overview) or step functions. In the5
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following, we restrict attention to the latter. In principle, the response variable can6

follow any distribution from the exponential family. However, such generalized threshold7

regression models have only recently been formally introduced by Samia and Chan (2011),8

and most of the literature on threshold regression deals with models with a piecewise9

linear mean. In this article we concentrate on generalized regression models with regimes10

controlled by a step transition function and refer to such models as generalized threshold11

regression models.12

Generalized threshold regression models are employed in a wide range of different fields13

of application. Hansen (2011) provides an overview of the extensive use of generalized14

threshold regression models in economic applications including e.g. models of output15

growth, forecasting, and the term structure of interest rates or stock returns. Samia et al.16

(2007) employ a generalized threshold regression model to analyze plague outbreaks, and17

Lee et al. (2011) complement these applications with examples in finance, sociology, and18

biostatistics among others.19

Obviously, a good threshold estimator is crucial for the entire threshold regression model20

estimation. In this paper we discuss settings in which threshold identification becomes21

difficult. Typically, threshold parameters are estimated by the maximization of the cor-22

responding profile likelihood using a grid search, as the likelihood function is not differ-23

entiable with respect to the threshold parameter. This estimation procedure itself has an24

intrinsic problem: the profile likelihood is not defined for thresholds that leave fewer ob-25

servations in one of the regimes than are necessary to estimate the regression coefficients.26

Hence, in practice it is unavoidable to restrict the domain of the threshold parameters27

depending on the dimension of the regression coefficients. The literature offers arbitrary28

constraints including one observation per dimension of the regression coefficient (Samia29

and Chan, 2011) or 15% of the observations (Andrews, 1993) to give just two examples.30

This restriction can be problematic in small samples, especially if the true threshold is31
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close to the boundary of its domain.32

Another problem occurs, if the threshold parameter itself lacks identifiability. In particu-33

lar, if differences between regimes are small and/or the regression coefficients’ estimators34

are highly variable, the uncertainty of the threshold estimator increases. Note that the35

large variance of the regression coefficients’ estimator is likely to be found in small sam-36

ples, for the true threshold at the boundary of its domain and also if the signal-to-noise37

ratio is low. We are not aware of any work that points out these deficiencies of the38

common threshold estimator even though the problematic settings frequently occur in39

empirical applications. Macro-economic data are often only available for a small sam-40

ple, e.g. if observations correspond to different countries. Spatial arbitrage modeling is41

another example (Greb et al., 2013).42

Bayesian methods are also popular to estimate threshold regression models. In the litera-43

ture Bayesian estimation is typically based on non-informative priors, leading to what we44

refer to as the non-informative Bayesian estimator. For the threshold estimator in case of45

a threshold regression model with piecewise linear mean, Yu (2012) shows that, regardless46

of the choice of priors, Bayesian threshold estimators are asymptotically efficient among47

all estimators in the locally asymptotically minimax sense. However, in the critical small48

sample settings described above, the non-informative Bayesian estimator shares all the49

drawbacks of the standard likelihood estimator and can completely fail in certain cases,50

as we discuss in Section 3.2.51

In this article, we suggest an alternative estimator, which we call the regularized Bayesian52

estimator. Contrary to previous work on estimation in threshold regression (Samia and53

Chan, 2011; Yu, 2012), we focus on the estimator’s performance in critical small sample54

situations. Simulations confirm that it yields good results even in settings in which likeli-55

hood and non-informative Bayesian estimator are highly susceptible to faults. Given the56

threshold parameter’s crucial function within the model, our idea is to improve estimation57
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of the whole model by improving estimation of this essential parameter.58

To summarize the intuition for the new threshold estimator: If regression coefficients59

were known, none of the problems in threshold estimation outlined above would exist.60

This suggests that stabilizing their estimates might help to prevent them from distorting61

the threshold estimates. In addition, regularization of regression coefficient estimates62

allows us to obtain a posterior density that is well-defined on the entire domain of the63

threshold parameters. We achieve regularization by a particular specification of priors.64

While it proves to be beneficial in the critical small sample situations, the choice of priors65

does not have an impact asymptotically (as Yu, 2012, shows for a threshold regression66

model with piecewise linear mean and independent observations). We further derive67

an explicit (approximate) expression of the posterior density, which allows us to utilize68

existing functions for mixed models in standard software to easily compute the threshold69

estimator and simultaneously obtain estimates for the remaining model parameters.70

The rest of this article is organized as follows. We specify the generalized threshold71

regression model in the second section. In the third section, we review existing estimators72

for threshold regression models and point out their deficiencies. Here, we concentrate73

on estimators for the crucial threshold parameter. The regularized Bayesian estimator is74

introduced in the fourth section. In the fifth section, we derive conditions under which the75

regularized Bayesian estimates fare better than their likelihood counterparts. Simulation76

results are presented in the sixth section. We use the last section to discuss two empirical77

applications. The appendix contains some technical details.78

2 Model79

Observations
(
yi,X

T
i , qi

)
∈ R × Rp × R, i = 1, . . . , n, are assumed to be realizations80

of random variables that follow a generalized threshold regression model with threshold81

parameter ψ ∈ R, regression coefficients β1,β2 ∈ Rp and scale (or dispersion) parameter82
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φ ∈ R+, that is83

µi = E
(
yi|XT

i , qi
)

= h(ηi) (1)

where h is a known one-to-one function, the inverse of the link function g = h−1, and84

ηi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2, (2)

with I(·) as the indicator function. Moreover, conditional on the design vector XT
i and85

the transition variable qi, the response variables yi are independently drawn from an86

exponential family distribution with density87

f(yi|ψ, φ,β1,β2) = exp

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
, (3)

characterized by known functions b and c together with the natural parameter θi = θ(µi).88

Above and in the following, the same symbol denotes both a random variable and its89

realization; the context should eliminate ambiguities. To use matrix notation, we define90

vectors µ, η, y, q, I(q ≤ ψ) and I(q > ψ) by stacking µi, ηi, yi, qi, I(qi ≤ ψ) and91

I(qi > ψ), respectively, and create an n× p matrix X with rows XT
i , i = 1, . . . , n. With92

diag {I(·)} the diagonal matrix with entries I(·) along the diagonal and β = (βT1 ,β
T
2 )T ,93

we can write94

η = diag {I(q ≤ ψ)}Xβ1 + diag {I(q > ψ)}Xβ2 = X1β1 +X2β2 = Xψβ.

We consider generalized threshold regression models with one threshold to keep the expo-95

sition simple; extension to generalized threshold regression models with more thresholds96

is straightforward (see e.g. Greb et al., 2013).97

Naturally, our model covers yi = I (qi ≤ ψ)XT
i β1 + I (qi > ψ)XT

i β2 + εi, εi ∼ N (0, σ2)98

and i = 1, . . . , n. This is by far the most frequently encountered generalized threshold99

regression model in the literature. It is broad enough to comprise the popular threshold100

autoregressive model in which the transition variable qi is an element of X i (Tong and101

Lim, 1980; Tong, 2011, for a review of the development of the model).102
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Depending on the assumptions on the data generating process, inferences (or estimators)103

for model (1) – (3) can take on different asymptotic behavior. A first differentiation re-104

gards the transition variable qi. Change point models are characterized by deterministic105

qi = i, while for threshold models qi is a random variable which follows any continu-106

ous distribution. This is reflected in distinct limit likelihood ratio processes and, hence,107

asymptotic behavior of the maximum likelihood estimators for ψ in the two models. The108

limiting likelihood ratio process involves a functional of random walks for change point109

models and of compound Poisson processes for threshold models. Check Bai (1997) for110

more details on the asymptotic properties in the former, and Samia and Chan (2011) for111

the limiting behavior of the profile log-likelihood and the asymptotic distribution of the112

profile likelihood threshold estimator in the latter case.113

If the transition variable coincides with one of the covariates and the regression function is114

continuous at the threshold, least squares estimates are known to be normally distributed115

(for threshold models, see Chan and Tsay, 1998; Feder, 1975, treats change-point models),116

which simplifies inference. Clearly, once the data is sampled, the estimation procedure in117

both change point and threshold models is the same. Referring to a threshold regression118

model with piecewise linear mean, Hansen (2000) points out that “if the observed values119

of qi are distinct, the parameters can be estimated by sorting the data based on qi, and120

then applying known methods for change point problems”.121

As the focus of this article is on estimation problems that arise in small samples, we do122

not further differentiate between models. In the real-data examples, we concentrate on123

discontinuous threshold models since they are frequently encountered in applications and124

have not been studied as extensively as change point models due to their more intricate125

limiting behavior.126
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3 Estimation of threshold regression models127

3.1 The likelihood estimator128

As noted in the introduction, the prevalent estimator of threshold regression models is129

the likelihood estimator, see e.g. Samia and Chan (2011) or Hansen (2000). Thereby, the130

threshold parameter is estimated from the corresponding profile likelihood Lp, which is131

constructed from the likelihood function L, by replacing nuisance parameters βT ∈ R2p
132

and φ ∈ R with their maximum likelihood estimates at given values of ψ (which are133

just standard (weighted) least squares estimators). More specifically, we work with the134

conditional profile likelihood function given X and q,135

Lp(ψ) =
n∏
i=1

f(yi|ψ, φ̂ψ, β̂ψ) = exp

[
n∑
i=1

{
yiθ̂i − b(θ̂i)

φ̂ψ
+ c(yi, φ̂ψ)

}]
,

where θ̂i = θ ◦ h(η̂i) = θ ◦ h
{
I(qi ≤ ψ)XT

i β̂1ψ
+ I(qi > ψ)XT

i β̂2ψ

}
and β̂ψ and φ̂ψ are136

maximum likelihood estimators at a fixed ψ. In the following, we assume a canonical link,137

that is, θi = ηi. All developments still hold approximately if this assumption does not138

hold. We denote the profile log-likelihood with `p(ψ) = logLp(ψ).139

In generalized threshold regression models, the domain of the threshold parameter ψ140

is restricted to a random set Ψ =
{
ψ ∈ R|q(1) ≤ ψ ≤ q(n)

}
⊆ R, where q(i) denotes the141

ith order statistic. To measure the proximity of a threshold ψ to the boundary of its142

domain Ψ, we introduce d(ψ) = min(j, n− j)/p with j such that q(j) ≤ ψ < q(j+1). The143

quantity d(ψ) is the distance between ψ and Ψ’s boundary in terms of the number of144

observations between them relative to the dimension of the regression coefficients, p =145

dim (βk), k = 1, 2. When d(ψ) = 1, ψ assigns at least p observations to each of the146

regimes. The allocation of 5% of the observations into one of the regimes can be expressed147

as d(ψ) = 0.05 n/p.148

Clearly, Lp(ψ) is not defined for d(ψ) < 1, since in this case ψ does not leave enough149

observations for the estimation of βk in one of the regimes. Hence, in practice it is150
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Figure 1: For a sample run corresponding to setting 1C of Section 6, `p(ψ) is shown on
the left, log pnB(ψ|y,X, q) in the middle and log prB(ψ|y,X, q) on the right.

inevitable to restrict Ψ to Ψ∗(c) = {Ψ| d(ψ) > c} for some c ≥ 1. In the literature different151

heuristic suggestions for the choice of c have been proposed. For example, Hansen and152

Seo (2002) propose c = 0.05 n/p, we find c = 0.15 n/p in Andrews (1993) and Samia and153

Chan (2011) even use c = 0.25 n/p for their application.154

The profile likelihood threshold estimator is then given by155

ψ̂pL = argmax
ψ∈Ψ∗(c)

Lp(ψ).

This definition based on the restricted domain Ψ∗(c) immediately suggests that in settings156

in which d (ψ0) < c for a true threshold ψ0, ψ̂pL is inconsistent. The left panel of Fig. 1157

illustrates this showing the profile log-likelihood for a sample run of a generalized threshold158

regression model corresponding to the simulation setting 1C detailed in Section 6. If159

Ψ∗(1) = [0.3, 0.7] would be restricted any further, e.g. to be [0.31, 0.69], then the true160

threshold ψ0 = 0.3 would be excluded from the threshold domain and ψ̂pL would move to161

the next extremum. For small n, large p and ψ0 close to the boundary of Ψ, d (ψ0) < c162

is likely to be the case. Altogether, subjective restriction of the threshold domain is an163

undesirable property of threshold estimation based on the profile likelihood.164

The same plot in Fig. 1 also exemplifies that in certain small-sample settings the pro-165

file (log-)likelihood can be jagged and have multiple extrema, leading to an estimated166
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Figure 2: Sample (log) profile likelihood functions `p(ψ) for different settings.

threshold that is very sensitive to the initialization of the search. Large variance of β̂ψ167

and/or small differences between regimes compared to the noise level can have a strong168

distorting effect on the profile (log-)likelihood and are associated with settings charac-169

terized by small n relative to p, but can also be due to low signal-to-noise ratio, model170

misspecifications (e.g. overdispersion), or a threshold that is close to the boundary of171

its domain. This is exposed in the left as compared with the middle plot of Fig. 2; the172

log-likelihoods depicted in these plots belong to models which only differ in one aspect: in173

the plot on the left-hand side, the residual standard deviation is 0.75, while in the middle174

plot it is 1.5, increasing the signal-to-noise ratio and var(β̂ψ). Clearly, the log-likelihood175

in the middle plot is highly distorted over the whole range of Ψ, triggering multiple ex-176

trema and a highly variable estimator for ψ. Moving the true threshold closer to the177

boundary, as shown in the right plot of Fig. 2, leads to an even stronger deformation of178

the log-likelihood.179

In summary, in small samples and particular settings exemplified above, the profile like-180

lihood threshold estimator can perform poorly, being very sensitive to inappropriate esti-181

mates of the nuisance parameters and relying on a subjective restriction of its domain.182
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3.2 The Bayesian estimator183

For threshold regression models with piecewise linear mean, there is a long tradition of184

using Bayesian techniques in applied work beginning with Bacon and Watts (1971) and185

including Geweke and Terui (1993) among many others. This popularity can be at least186

partially attributed to practical advantages, since the Bayesian approach offers a natural187

framework for inference and accounts for the uncertainty of the nuisance parameters. The188

Bayesian regression coefficients estimators coincide with the maximum likelihood ones for189

non-informative priors. The theoretical properties of Bayesian threshold estimators in190

certain generalized threshold regression models have been investigated by Yu (2012). He191

shows that for independently and identically distributed observations Bayesian threshold192

estimators are asymptotically efficient among all estimators in the locally asymptotically193

minimax sense and strictly more efficient than the maximum likelihood estimator. In a194

related paper, Chan and Kutoyants (2012) examine asymptotic properties of Bayesian195

estimators in threshold autoregression models. They note that in the limit, the variance196

of the Bayesian estimator is smaller than that of the maximum likelihood estimator.197

Without any prior knowledge of possible parameter values, it is natural to assume a198

uniform prior for the threshold parameter and non-informative priors for the regression199

coefficients; these choices are (almost) omnipresent in the Bayesian literature on gener-200

alized threshold regression models with piecewise linear mean. While the priors do not201

have an impact asymptotically, it turns out that they do affect the performance of the202

Bayesian threshold estimator in finite samples. We show that non-informative priors can203

distort estimates, especially in small samples.204

It is straightforward to obtain an approximation of a generalized threshold regression205

model’s posterior density pnB(ψ|φ,y,X, q) associated with non-informative (improper)206

priors p(β) ∝ 1 and p(ψ|q) ∝ I(ψ ∈ Ψ) based on a Laplace approximation (Shun and207
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McCullagh, 1995; Severini, 2000) of the integral for fixed p� n208 ∫
R2p

p(y|ψ, φ,β,X, q)dβ = Lp(ψ)(2π)p
∣∣∣∣− ∂2`

∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣∣−1/2

+O
(
n−1
)
,

with `(ψ, φ,β) = logL(ψ, φ,β). As
∣∣∣−∂2`

/
∂β∂βT

(
ψ, φ, β̂ψ

)∣∣∣ =
∣∣XT

ψWXψ

∣∣, we get209

pnB(ψ|φ,y,X, q) = Lp(ψ)(2π)p
∣∣XT

ψWXψ

∣∣−1/2
I(ψ ∈ Ψ)/p(y) +O

(
n−1
)
.

With this, the prevalent Bayesian threshold estimator in the literature is the posterior210

mean ψ̂nB =
∫

Ψ∗
ψpnB(ψ|φ,y,X, q)dψ. Comparing pnB(ψ|φ,y,X, q) with Lp(ψ), we note211

that they differ by a term proportional to
∣∣XT

ψWXψ

∣∣−1/2
. In the case of Gaussian212

observations, W = In/σ
2. Since

∣∣XT
ψWXψ

∣∣ =
∣∣XT

1WX1

∣∣ · ∣∣XT
2WX2

∣∣→ 0 for d(ψ)→213

0, pnB(ψ|φ,y,X, q) becomes very large for ψ close to the boundary of Ψ. Moreover, as the214

profile likelihood function requires d(ψ) ≥ 1 to be well-defined, so does the calculation of215

the posterior density. Again, the only solution in the literature is to restrict the parameter216

space Ψ (which in our Bayesian framework is equivalent to working with a uniform prior217

ψ ∼ U [Ψ∗] instead of ψ ∼ U [Ψ]). In this case, however, pnB(ψ|φ,y,X, q) becomes largest218

exactly for values of ψ which are arbitrarily included or excluded from Ψ∗ by varying c.219

Consequently, expanding or reducing Ψ∗ critically affects the Bayesian threshold estimate,220

whether it is calculated as the posterior mode, mean or median. The middle plot in Fig. 1221

illustrates this problem.222

4 The regularized Bayesian estimator223

When rethinking the threshold regression estimation, there are good arguments for con-224

tinuing to pursue Bayesian options. In general, Bayesian estimators naturally incorporate225

the uncertainty of nuisance parameters and there are reasons to expect the threshold226

estimators to be (at least asymptotically) the most efficient estimators, as discussed in227

Section 3.2.228
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Our idea now is to exploit understanding of when reliable estimation becomes particularly229

difficult in order to regularize the posterior density. First, we define230

η = X1β1 +X2β2 = (X1 +X2)β1 +X2(β2 − β1) = Xβ1 +X2δ. (4)

Here, X is independent of ψ, while X2 = X2(ψ) = diag {I(q > ψ)}X. Hence, if δ is231

small and/or its estimators are highly variable, it becomes hard to identify the threshold232

ψ. We, therefore, suggest to regularize the estimator for δ. In a Bayesian framework the233

natural approach is to assume δ ∼ N (0, σ2
δIp). When σ2

δ tends towards infinity, this prior234

becomes non-informative. However, for small values σ2
δ , we introduce prior knowledge235

suggesting that δ takes values close to zero, that is there is no threshold in the model.236

The most important characteristic of this new choice of priors is that it regularizes the237

posterior density for ψ close to the boundary of Ψ. Putting priors on σ2
δ (e.g. an inverse238

Gamma distribution) and ψ specifies a fully Bayesian model and allows for estimation239

with Markov chain Monte Carlo techniques.240

Alternatively, we suggest to use a Laplace approximation to get the approximate pos-241

terior p(ψ|φ, σ2
δ ,y,X, q). This accelerates estimation and enables us to illustrate the242

regularizing effect. To evaluate the posterior density243

p(ψ|φ, σ2
δ ,y,X, q) =

p(ψ|q)

p(y|φ, σ2
δ ,X, q)

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

we use a Laplace approximation and follow a line of reasoning closely resembling Breslow244

and Clayton (1993) to obtain245 ∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)p/2 exp

{
−1

2
(z̃ −Xβ̂1)TV −1(z̃ −Xβ̂1) +

n∑
i=1

c(yi, φ)

}
(5)

·
∣∣σ2
δX

T
2WX2 + Ip

∣∣−1/2 ∣∣XTV −1X
∣∣−1/2

+O
(
n−1
)
,

with the working variable z̃ defined as z̃ = Xβ̂1 +X2δ̂ +G(y − µ),246

G = diag {g′(µi)}, and V = W−1 + σ2
δX2X

T
2 for W−1 = diag {φb′′(θi)g′(µi)2}.247
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Here, µ, G, W and V are evaluated at the (approximate) pos-248

terior mode (β̂1, δ̂) = arg max
(β1,δ)∈R2p p(β1, δ|ψ, φ, σ2

δ ,y,X, q), that is,249

β̂1 = (XTV −1X)−1XTV −1z̃ and δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1). Note that these re-250

gression parameter estimators are regularized and are different from usual likelihood251

estimators. Details on the derivation of (5) are provided in the appendix.252

In contrast to the posterior based on non-informative priors, the term |XT
ψWXψ|253

disappears, and with it the deteriorations near the boundary of Ψ observed for254

pnB(ψ|φ,y,X, q). Moreover, p(ψ|φ, σ2
δ ,y,X, q) is well-defined for all ψ ∈ Ψ, independent255

of d(ψ). It is easy to see that δ̂ → 0 and β̂1 → (XTWX)−1XTWz̃ at the boundary of256

Ψ, for X2 = 0 or X2 = X. We do not encounter the ill-posed problem of estimating p257

nuisance parameters from m < p observations, or calculating β̂ψ when d(ψ) < 1, as in258

profile likelihood or non-informative Bayesian estimation. Consequently, there is no need259

to subjectively restrict the parameter space.260

Considering261

δ̂ = σ2
δX

T
2V

−1(z̃ −Xβ̂1) = arg min
δ∈Rp

(z̃ −Xβ̂1 −X2δ)TW (z̃ −Xβ̂1 −X2δ) +
1

σ2
δ

δTδ,

(6)

it becomes evident that the proposed prior leads to the strategy of turning an ill-posed262

into a well-posed problem tracing back to Tikhonov et al. (1977). For small values of the263

regularization parameter 1/σ2
δ , the first term of the functional to be minimized in (6) will264

drive the resulting δ̂, for large values it is the latter. For the nuisance parameter estimates265

β̂1 and β̂2 = β̂1 + δ̂, basic matrix algebra reveals that β̂1 → (XT
1WX1)−1XT

1Wz̃ and266

β̂2 → (XT
2WX2)−1XT

2Wz̃ for σ2
δ →∞, while for σ2

δ → 0, both β̂1 and β̂2 converge to267

(XTWX)−1XTWz̃.268

Clearly, the choice of the regularization parameter σ2
δ is essential to any estimate based on269

p(ψ|φ, σ2
δ ,y,X, q). It can naturally be estimated in the fully Bayesian framework. How-270

ever, pursuing our approximate approach further we prefer to make use of the empirical271
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Bayes paradigm. In general, the empirical Bayes approach to modeling observations y272

differs from the usual Bayesian setup in that the hyperparameters for the highest level in273

the model’s hierarchy are replaced by their maximum likelihood estimates. In our case,274

we obtain σ̂2
δ for fixed X, q and ψ by maximizing275

p(y|ψ, φ, σ2
δ ,X, q) =

∫
Rp

∫
Rp

p(y|β1, δ, ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1,

so as to base threshold estimation on276

prB(ψ|y,X, q) = p(ψ|y,X,q, φ̂ψ, σ̂
2
δ ) ∝

∣∣∣σ̂2
δX

T
2WX2 + Ip

∣∣∣−1/2∣∣∣XT V̂
−1
X
∣∣∣−1/2

· exp

{
−1

2
(z̃ −Xβ̂1)T V̂

−1
(z̃ −Xβ̂1) +

n∑
i=1

c
(
yi, φ̂ψ

)}
I(ψ ∈ Ψ),

with V̂ evaluated at σ̂2
δ . The right plot in Fig. 1 shows the log of this posterior density for277

a sample run corresponding to simulation setting 1 C of Section 6. It is clearly well-defined278

over the whole domain of the threshold and its values are regularized at the boundary279

regions, making the extremum more pronounced.280

Once the posterior density is obtained, one can calculate ψ̂rB. We observed that in critical281

small-sample settings the posterior density is often characterized by multiple modes. Thus,282

obtaining an estimate based on numerical maximization (the posterior mode) is likely to be283

challenging. The posterior mean presents a more robust alternative. However, when the284

true threshold is located close to the boundary of Ψ, the posterior distribution is skewed285

towards this boundary. As a result, the posterior mean tends to be drawn towards the286

middle of Ψ (Doodson, 1917; Kendall, 1943, page 35). Hence, we opt for the posterior287

median as a compromise between the latter two. Accordingly, we suggest calculating a288

regularized Bayesian threshold estimator ψ̂rB as289

ψ̂rB∫
q(1)

prB(ψ|y,X, q, φ)dψ = 0.5

assuming a prior p(ψ|q) ∝ I(ψ ∈ Ψ) for ψ.290
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By definition, the restricted (or residual) likelihood function (Harville, 1977) of a gener-291

alized linear mixed model is the approximate posterior (5). Hence, the function glmmPQL292

in the R-package MASS readily provides us with the desired estimate σ̂2
δ . Moreover, the293

function simultaneously produces an estimate φ̂ψ. For the Gaussian case, we can employ294

the function lme directly (with its parameter method left at the default value REML). It295

is part of the R-package nlme. This possibility to take advantage of existing functions296

implemented for mixed models greatly facilitates computation of our proposed estimator,297

which can be performed in seconds.298

Inference about all of the model parameters naturally follows in this Bayesian framework.299

In particular, confidence regions for ψ are formed as credible sets; an equi-tailed credible300

set C of level 1− 2α is defined as301

C =

qp (1−α)∫
qp (α)

p(ψ|y,X, q, φ)dψ, qp(α) = inf
x∈Ψ

x∣∣∣
∫
ψ≤x

p(ψ|y,X, q, φ)dψ ≥ α

 .

These credible sets are valid for change-point and threshold models, both continuous and302

discontinuous. By contrast, in the frequentist framework it is straightforward to obtain303

confidence intervals for continuous models. For discontinuous models the asymptotic304

distribution does not readily provide a feasible way to construct confidence intervals as it305

depends on (a possibly large number of) nuisance parameters.306

5 Comparison of regularized Bayesian and maximum307

likelihood estimation308

Our new estimation procedure results in new regularized regression coefficients estima-309

tors, whose properties have not been investigated so far. In the following, we compare310

regularized Bayesian and maximum likelihood approaches to estimation of threshold re-311

gression models in terms of mean squared error under the frequentist model. Thereby, we312

treat the threshold as fixed and known, but allow for any, not necessarily true threshold313

ψ.314
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A natural measure for comparing coefficient estimates is the mean squared error315

M(Xψβ̂) = E
(
Xψβ̂ −Xψβ

)T (
Xψβ̂ −Xψβ

)
, where E denotes the conditional expec-316

tation without averaging over the prior assumptions, i.e. expectation with respect to317

the distribution of Y given δ, which corresponds to the usual frequentist framework.318

In the context of ridge regression, this approach has been critized for indiscriminately319

putting together the mean squared errors of the components (Nelder, 1972; Theobald,320

1974). As an alternative, Theobald (1974) suggested to consider a weighted sum321

MA(Xψβ̂) = E
(
Xψβ̂ −Xψβ

)T
A
(
Xψβ̂ −Xψβ

)
for a non-negative definite matrix A.322

Here, ψ is an arbitrary, fixed threshold. Of course, a comparison between M(Xψβ̂) (or323

MA(Xψβ̂)) for different β̂ is both interesting for such general ψ as well as the true324

threshold ψ0. With this in mind, we state the following result.325

Theorem 1 For maximum likelihood estimates β̂ML = (XT
ψWXψ)−1XψWz and regu-326

larized Bayesian estimates β̂rB = (XT
ψWXψ +H)−1XψWz of β based on a threshold327

ψ ≤ ψ0, ψ0 the true threshold,328

(i) MA

(
Xψβ̂ML

)
−MA

(
Xψβ̂rB

)
≥ 0 for all non-negative definite matrices A

⇔ D
{

(I +C)H − (B +H)ββT
(
BT +H

)
+CBββTBTCT

}
DT

is non-negative definite.

(ii) M
(
Xψβ̂ML

)
−M

(
Xψβ̂rB

)
≥ 0

⇔ tr
{
HDTD (I +C)

}
− βT

{(
BT +H

)
DTD (B +H) +BTDT

0D0B
}
β ≥ 0.

Here, W−1 = diag {φb′′(θi)g′(µi)2}, G = diag {g′(µi)}, and z = Xψβ + G(y − µ)329

as before, H = 1/σ2
δ

(
Ip −Ip
−Ip Ip

)
, B =

(
0 0

−XT
[ψ,ψ0]WX [ψ,ψ0] XT

[ψ,ψ0]WX [ψ,ψ0]

)
330

with X [ψ,ψ0] = diag{I(ψ < q ≤ ψ0)}X, C = I + H
(
XT

ψWXψ

)−1
,331

D = Xψ

(
XT

ψWXψ +H
)−1

, and D0 = Xψ

(
XT

ψWXψ

)−1
.332

Remark 1 For the Gaussian model with W = 1/σ2In and at the true threshold ψ = ψ0,
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equivalence (i) reduces to

MA

(
Xψβ̂ML

)
−MA

(
Xψβ̂rB

)
≥ 0 for all non-negative definite matrices A

⇔ δT (2σ2
δ/σ

2I +Z)−1δ ≤ σ2, (7)

where Z = (XT
1X1)−1 + (XT

2X2)−1, while equivalence (ii) reduces to

M
(
Xψβ̂ML

)
−M

(
Xψβ̂rB

)
≥ 0

⇔ δTZ
(
σ2/σ2

δIp +Z
)−2

δ ≤ σ2
{
p− tr

(
Ip + σ2/σ2

δZ
)−2
}

(8)

Remark 2 Using a singular value decomposition Z = U diag (η1, . . . , ηp)U
T and writing

UTδ = α, inequality (8) is equivalent to

p∑
i=1

ηi (2σ
2
δ/σ

2 + ηi − α2
i /σ

2)

(σ2
δ/σ

2 + ηi)
2 ≥ 0,

which holds in particular if

α2
max − ηminσ2

2
≤ σ2

δ (9)

with αmax = max
1≤i≤p

αi and ηmin = min
1≤i≤p

ηi. Analogously, we obtain

pα2
max − ηminσ2

2
≤ σ2

δ (10)

as a condition for inequality (7) to be satisfied.333

Remark 3 The left-hand side of inequalities (7) – (10) decreases when δ1, . . . , δp dimin-334

ish in magnitude, while the right-hand side increases with growing variance σ2, that is,335

when the signal-to-noise ratio becomes smaller. Hence, it is reasonable to expect regular-336

ized Bayesian regression coefficient estimates to be particularly superior to their profile337

likelihood counterparts in settings previously identified as problematic.338

Remark 4 The regularized Bayesian estimator for the regression coefficients339

β̂rB = (XT
ψWXψ +H)−1XψWz closely resembles the ridge estimator. However, the340

special form of the penalty matrix H = σ−2
δ

(
Ip −Ip
−Ip Ip

)
(instead of just σ−2

δ I2p in the341

ridge regression) has considerable implications for the estimator.342
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6 Simulations343

To assess the performance of the suggested approach and the estimator ψ̂rB in particular344

we performed a simulation study. We report results for eight different settings covering345

both situations in which common estimators produce reliable results and others in which346

they are prone to be distorted.347

The difference between setting 1 and setting 2 is in the conditional distribution of yi: in348

the first case, yi|XT
i , qi is normally distributed, in the second case it follows a Poisson349

distribution. The design matrix X is random, each entry xij ∼ U [0, 1] for setting 1,350

xij ∼ U [0, 0.01] for setting 2. The transition variable follows a uniform distribution351

qi ∼ U [0, 1]. As this implies P (d (ψ0) < 1) ≈ 0.46 for setting C, we base our simulations352

on a fixed sample of transition variables qi = i/n, i = 1, . . . , n. This way, we ensure that353

d (ψ0) = 1, hence, that Lp (ψ0) is always well-defined. While settings A and B differ from354

setting C in the threshold (ψ0 = 0.5 for A and B; ψ0 = 0.3 for C), setting A is distinct355

from settings B and C in the signal-to-noise ratio, which we control by the choice of356

Normal response (1)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [−0.5, 0.5] U [−0.5, 0.5] U [−0.5, 0.5] U [−0.25, 0.25]

var(yi) 0.752 1.52 1.52 0.252

xij U [0, 1] U [0, 1] U [0, 1] U [0, 1]

p 30 30 30 10

Poisson response (2)

A B C D

ψ0 0.5 0.5 0.3 0.3

δ U [10, 20] U [0, 10] U [0, 10] U [10, 20]

xij U [0, 0.01] U [0, 0.01] U [0, 0.01] U [0, 0.01]

p 30 30 30 10

Table 1: Differences between simulation settings.
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MSE(ψ̂) MSE(X ψ̂β̂)

pL nB rB pL rB

1 A 0.006 0.035 0.002 0.00002 0.00001

1 B 0.040 0.093 0.024 0.00009 0.00005

1 C 0.272 0.264 0.089 0.00009 0.00005

1 D 0.401 0.738 0.191 0.00001 0.00001

2 A 0.000 0.003 0.000 0.05953 0.01947

2 B 0.013 0.115 0.004 0.07625 0.02916

2 C 0.083 0.116 0.014 0.57250 0.02266

2 D 0.146 0.358 0.036 0.72387 0.18669

Table 2: Simulation results.

δ = β2−β1 relative to the variance of the observations. For setting 1 A – C, the difference357

δ ∼ U [−0.5, 0.5] and random variables are simulated with variances var(yi) = 0.752
358

(setting A) and var(yi) = 1.52 (settings B and C). The effects of increasing the signal-to-359

noise ratio and shifting ψ0 on `p(ψ) are illustrated in Fig. 2. The mode of `p(ψ) is less360

pronounced in setting 1B than in 1A. Further, the number of local maxima rises and they361

become more distinctive as we move to setting 1B and then to 1C. For setting 2 A the362

difference δ ∼ U [10, 20], whereas δ ∼ U [0, 10] for settings 2 B and C. Setting D features363

less nuisance parameters than A – C; p = dim(β1) = dim(β2) = 10 for D, p = 30 for A –364

C. The sample size is n = 100.365

Table 1 sums up differences between settings. Regression coefficients β1 are drawn from366

a Poisson distribution with mean 10. To be unambiguous, parameters δ and β1 are fixed;367

we randomly generate them once at the beginning of the simulation according to the368

distributions specified. Our Monte Carlo sample contains R = 1000 replications.369

With regard to the threshold parameter, we summarize simulation results in Fig. 3, where370

the boxplots of the threshold estimators are shown and in the left half of Table 2, where371

MSE
(
ψ̂
)

=
1

R

R∑
r=1

(
ψ̂(r)

/
ψ − 1

)2

are reported. All three estimators ψ̂pL, ψ̂nB and ψ̂rB372

perform well given a high signal-to-noise ratio and ψ0 in the middle of Ψ (setting A).373
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Figure 3: Boxplots for different threshold estimators and selected simulations. Dashed
lines indicate the true threshold ψ0, black lines in the boxes are sample means.

Lowering the signal-to-noise ratio (setting B) alters the results: we observe nearly unbiased374

estimates ψ̂pL, ψ̂nB and ψ̂rB, but due to its very small variance the latter stands out by its375

small mean squared error. When we shift the true threshold towards the boundary of Ψ376

(setting C), ψ̂rB clearly outperforms both ψ̂pL and ψ̂nB. The differences in mean squared377

error are more pronounced with a greater number of nuisance parameters p, but are still378

visible in simulations with smaller ratio p/n (setting D).379

To complement findings for the threshold estimators with results concerning estimation of380

the model as a whole, in particular including the regression coefficients’ estimator, we con-381

sider the mean squared error for the entire model. The regularized Bayesian approach fares382

better in general. While the mean squared error is much lower for simulations with normal383

than with Poisson response, differences between the likelihood and regularized Bayesian384

framework are more marked for the latter. The right half of Table 2 contains details. We385

denote MSE
(
X ψ̂β̂

)
=

1

R

R∑
r=1

1

n

(
X

(r)

ψ̂(r)
β̂

(r)
/
X

(r)
ψ β − 1

)T (
X

(r)

ψ̂(r)
β̂

(r)
/
X

(r)
ψ β − 1

)
with386

the division X
(r)

ψ̂(r)
β̂

(r)
/
X

(r)
ψ β defined elementwise and 1 = (1, . . . , 1)T ∈ Rn. Note that387
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in settings 2 the Fisher scoring algorithm for the estimation of generalized regression388

models can be unstable for small sample sizes, sometimes leading to a false convergence.389

Therefore, we excluded such outliers (5% of the Monte Carlo sample) from the calculation390

of MSE(X ψ̂β̂) for settings 2 A – D.391

7 Applications392

This work is originally motivated by the application of threshold vector error correction393

models in price transmission analysis. Such models are rather involved, but one important394

characteristic in this context is that they contain a large number of parameters besides the395

threshold and available data series are typically short in relation to the complexity of the396

model. Greb et al. (2013) investigates the merits of the regularized Bayesian approach for397

this particular model; simulations demonstrate the superiority of the regularized Bayesian398

threshold estimator (see figure 1, figure 2, and table 1 in Greb et al., 2013) and two real399

data examples confirm its relevance in practice.400

7.1 Cross-country growth behavior401

As another application of the regularized Bayesian threshold estimator, we consider the402

case of economic growth modeling. Durlauf and Johnson (1995) estimate a standard403

growth model using cross-sectional data on a sample of 96 countries and investigate404

whether the coefficients of this model differ across sub-sets of countries depending on their405

initial conditions. Their analysis is based on the so-called regression tree methodology406

(Breiman et al., 1984), which suggests three thresholds based on two different transition407

variables for this application.408
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Hansen (2000) revisits their paper. Using the Durlauf and Johnson data he estimates a409

regression410

log (GDP )i,1985 − log (GDP )i,1960

= ζ + β log (GDP )i,1960 + π1 log (INV )i + π2 log(ni + g + δ) + π3 log (SCHOOL)i + εi

which explains real GDP growth between 1960 and 1985 in country i,411

log (GDP )i,1985 − log (GDP )i,1960, using real GDP in 1960 GDPi,1960, the invest-412

ment to GDP ratio INVi, the growth rate of the working-age population ni, the rate of413

technological change g, the rate of depreciation of physical and human capital stocks δ,414

and the fraction of working-age population enrolled in secondary school (SCHOOL)i.415

With reference to Durlauf and Johnson (1995), he sets g + δ = 0.05. He tests for a416

threshold effect based on either one of transition variables they propose. He only finds417

evidence based on the transition variable log (GDP )i,1960 and calculates the profile418

likelihood (or, equivalently, least squares) estimate as ψ̂pL = 6.76 together with an419

asymptotic 95% confidence interval [6.39, 7.49].420

This corresponds to an estimate of $863 per capita GDP in 1960 with an associated421

confidence interval of [$594, $1794]. Hansen (2000) acknowledges that while the confidence422

interval seems rather tight (given observations for GDPi,1960 ranging from $383 to $12362),423

it effectively contains 40 of the 96 countries in the sample. This is in line with the number424

of local maxima in the profile likelihood function which hints at the uncertainty inherent425

in this method (Fig. 4). In addition, the fact that ψ̂pL leaves only 18 observations in426

the first regime gives rise to concern that the threshold might be located close to the427

boundary of Ψ. We know that the profile likelihood is typically distorted if this is the428

case.429

Hence, we reestimate the model with the regularized Bayesian estimator. The latter430

depends on the parameterization of the transition variable. As log (GDP )i,1960 is an431

explanatory variable, we choose the parameterization qi = log (GDP )i,1960. Figure 4432
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Figure 4: Profile likelihood and regularized posterior density for a threshold based on the
transition variable qi = log (GDP )i,1960.

shows that the resulting posterior density differs considerably from the profile likelihood433

function and that the location of the maximum shifts. This is not surprising given the434

deformations often observed for the profile likelihood function close to the boundary of435

the threshold parameter space. The posterior median is located at ψ̂rB = 7.37 compared436

with Hansen’s (2000) ψ̂pL = 6.76. It implies that, for the 43 poorest countries, coefficients437

for the growth model are distinct from the rest, whereas the profile likelihood estimate438

implicates that this is only the case for the poorest 18 countries.439

While it is not possible to state conclusively that the regularized Bayesian estimate is more440

appropriate from an economic perspective, the shapes of the likelihoods in Fig. 4 and the441

fact that the profile likelihood estimate is near the boundary of its domain suggests that442

the latter may be distorted by the weaknesses of the profile likelihood method discussed443

above.444

Comparing profile likelihood estimates for the regression coefficients with their regular-445

ized Bayesian counterparts, we note that there is much less difference between regimes446

(see table 7.1). Moreover, the difference between the two regimes as estimated within447
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the regularized Bayesian framework is negligible. This is in line with Hansen’s (2000)448

finding that the null hypothesis of no threshold is not rejected at the 5%-level (Hansen,449

2000, page 587). The example demonstrates the effect of using the suggested regularized450

Bayesian estimator instead of the profile likelihood estimator in small samples with a451

multi-modal profile likelihood and high uncertainty attached to the estimate ψ̂pL obtained452

by maximizing it.453

1st regime 2nd regime

ζ̂ β̂ π̂1 π̂2 π̂3 ζ̂ β̂ π̂1 π̂2 π̂3

pL
4.31 -0.66 0.23 -0.29 0.02 3.66 -0.32 0.50 -0.49 0.36

(3.21) (0.33) (0.14) (0.92) (0.11) (0.85) (0.07) (0.11) (0.30) (0.07)

rB
3.36 -0.41 0.47 -0.60 0.22 3.37 -0.38 0.47 -0.62 0.20

(0.85) (0.08) (0.09) (0.28) (0.06) (0.85) (0.07) (0.09) (0.28) (0.07)

Table 3: Regressions coefficient estimates. ”pL” refers to the profile likelihood, ”rB” to
the regularized Bayesian framework. Standard errors in parentheses below the estimates.

7.2 Effects of climate on snowshoe hare survival454

In our final example, we study a famous dataset of snowshoe hare abundance in the455

main drainage of Hudson Bay in Canada. It consists of annual observations starting in456

the 19th century. A preeminent feature of the data is cyclical fluctuations in the hare457

population, see Fig. 5. These have been ascribed to the predator-prey relationship between458

lynx and snowshoe hares. Samia and Chan (2011) highlight selected references and further459

investigate one strand of the discussion focusing on the effect of snow conditions on460

hunting efficiency in different phases of the cycle. To this end, they estimate a generalized461

threshold regression model with the hare count yt as a Poisson distributed response whose462

mean is related to the explanatory variables via a log-link,463

log(µt) = β0 + β1Dt +


3∑
i=1

β1,i log(yt−i + 1) + β1,4wt−1 yt−d ≤ ψ,

3∑
i=1

β2,i log(yt−i + 1) + β2,4wt−1 yt−d > ψ
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Figure 5: Annual hare abundance. Observations estimated to belong to the lower regime
are plotted as dots, observations estimated to belong to the upper regime as triangles.
The horizontal grey line indicates the location of the estimated threshold, ψ̂rB = 22.

for the years t = 1844, . . . , 1904. Apart from the regression coefficients and the threshold,464

the delay of the transition variable d is included as an additional parameter, d ∈ {1, 2, 3}.465

As the count for the year t = 1863 is considered an outlier, the model contains a dummy466

variable Dt = I(t = 1863). The covariate wt denotes the detrended annual winter climate467

index of the North Atlantic Oscillation, published at www.cru.uea.ac.uk/cru/data/nao.468

We follow Samia and Chan (2011) in estimating this model. Our analysis is based on the469

series of hare abundance initially presented graphically by MacLulich (1937) which we470

calibrate with data available online; it is included in the supplementary material to this471

paper.472

The series of 61 observations is rather short and maximizing out regression coefficients473

leaves us with a profile likelihood function for (d, ψ) which is characterized by various474

local maxima; it is displayed in the upper row of Fig. 6 for d = 1, 2, 3 and ψ ∈ Ψ∗(1). In475

addition, we cannot rule out overdispersion. Hence, we are confronted with a setting in476

which the regularized Bayesian estimate can be more reliable than the profile likelihood477

estimate. This becomes evident in the second row of Fig. 6, which shows the posterior478

densities for ψ corresponding to d = 1, 2, 3. While we obtain a profile likelihood estimate479

(d̂pL, ψ̂pL) = (3, 55), the regularized Bayesian estimator yields (d̂rB, ψ̂rB) = (2, 22) with d̂rB480
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Figure 6: Log-likelihood functions (upper row) and log-posterior densities (lower row) for
different delays of the transition variable.

calculated as the posterior median based on a flat prior on {1, 2, 3}.481

When referring to Samia and Chan (2011) we have to keep in mind that their results482

diverge slightly from ours and are not directly comparable as we were not able to obtain the483

data they used. Yet, their profile likelihood estimate is still very close, (d̂pL, ψ̂pL) = (3, 69).484

However, they discard this estimate in favor of (d̂, ψ̂) = (2, 25), giving heuristic arguments485

based on residual analysis. The latter also allows for a very plausible interpretation.486

Apparently, our regularized Bayesian estimate (d̂rB, ψ̂rB) = (2, 22) is close to the preferred487

estimate in Samia and Chan (2011). In fact, the difference in estimated thresholds only488

has implications for a single observation (t = 1869). Except for this, thresholds induce489

identical allocations of observations to regimes (in the respective datasets), as is clearly490

visible when comparing our Fig. 5 with Fig. 1 in Samia and Chan (2011). Hence,491

the regularized Bayesian estimator enables us to attain a meaningful estimate directly492

26



avoiding any arbitrary modification of the suggested estimation method as done by Samia493

and Chan (2011). Coefficient estimates are similar in both modeling frameworks.494

8 Conclusions495

In this work we describe settings in which estimation of generalized threshold regression496

models can be problematic. We suggest a new regularized Bayesian estimator which out-497

performs standard estimators. In particular, the suggested threshold estimator is defined498

on the whole parameter space and thus circumvents the subjective and often misleading499

restriction of the threshold domain which standard estimators require. Moreover, regu-500

larizing the posterior density at the boundary of its domain helps to improve estimation,501

especially if the true threshold is close to this boundary. Employing the empirical Bayes502

approach, we can use built-in functions for generalized linear mixed models in statistics503

software and obtain estimates with little additional numerical effort and without the use504

of Markov chain Monte Carlo or other sampling techniques. Inference about the estimated505

parameter can be carried out in the standard Bayesian manner. Simulation studies and506

a real-data example confirm the effectiveness and relevance of our method.507
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Appendix515

Derivation of equation (5)516

We obtain the approximate posterior (5) as follows. Laplace approximation produces517 ∫
Rp

∫
Rp

p(y|β1, δ,ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

= (2π)−p/2|σ2
δIp|−1/2

∫
Rp

∫
Rp

exp {−κ (δ,β1)} dδdβ1

= (2π)p/2|σ2
δIp|−1/2 exp

{
−κ
(
δ̂, β̂1

)} ∣∣∣∣ ∂2κ

∂(δ,β1)∂(δ,β1)T
(δ̂, β̂1)

∣∣∣∣−1/2

+O
(
n−1
)

for κ (δ,β1) = −
n∑
i=1

yiθi − b(θi)
φ

−c(yi, φ)+
1

2σ2
δ

δTδ and
(
δ̂, β̂1

)
= argmax

(δ,β1)∈R2p

− κ (δ,β1).518

Given the derivatives519

∂κ

∂δ
(δ) = −

n∑
i=1

(yi − µi)(X2)i
φb′′(θi)g′(µi)

+
1

σ2
δ

δ = −XT
2WG(y − µ) +

1

σ2
δ

δ,

520

∂κ

∂β1

(β1) = −
n∑
i=1

(yi − µi)(X)i
φb′′(θi)g′(µi)

= −XTWG(y − µ),

and521

∂2κ
/
∂(δ,β1)∂(δ,β1)T =

(
XT

2WX2 + (1/σ2
δ ) Ip XT

2WX
XTWX2 XTWX

)
(11)

for W−1 = diag {φb′′(θi)g′(µi)2} and G = diag {g′(µi)}, we obtain522

∣∣∣∂2κ
/
∂(δ,β1)∂(δ,β1)T

∣∣∣ =
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣∣∣∣XTV −1X
∣∣∣

using basic matrix algebra.523

To find δ̂ and β̂1, we iteratively solve524

XT
2WG(y − µ) =

1

σ2
δ

δ and XTWG(y − µ) = 0

via Fisher-scoring: Starting at δ̂ = δ0 and β̂1 = (β1)0, we solve525

I(δm,βm)

(
δm+1

(β1)m+1

)
= I(δm,βm)

(
δm

(β1)m

)
+ s(δm, (β1)m),
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I = ∂2κ
/
∂(δ,β1)∂(δ,β1)T and s = −∂κ

/
∂(δ,β1), or, more explicitely,526

{
XT

2WmX2 +
1

σ2
δ

Ip

}
δm+1 +XT

2WmX(β1)m+1 = XTWmzm

and527

XTWmX2δm+1 +XTWmX(β1)m+1 = XTWmzm,

where zm = X2δm +X(β1)m +Gm(y − µm). This yields528

β̂1 =
(
XTV −1X

)−1
XTV −1z̃ and δ̂ = σ2

δX
T
2V

−1(z̃ −Xβ̂1),

where V = W−1 + σ2
δX2X

T
2 and z̃ = XT

2 δ̂ + Xβ̂1 + G(y − µ), with W , G and µ529

evaluated at δ = δ̂ and β1 = β̂1 (Harville, 1977).530

With this, we can now further simplify the posterior. Following Breslow and Clayton531

(1993) in replacing532

−2
n∑
i=1

{yiθi − b(θi)} by the chi-squared statistic
n∑
i=1

(yi − µi)2

b′′(θi)

we can exploit the identity533

V −1
(
z̃ − β̂1

)
= W

(
z̃ −Xβ̂1 −X2δ̂

)
,

which results in534

(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
=
(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
− 1

σ2
δ

δ̂
T
δ̂,

and, hence,535

exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

≈ exp

{
−1

2

(
z̃ −Xβ̂1 −X2δ̂

)T
W
(
z̃ −Xβ̂1 −X2δ̂

)
+

n∑
i=1

c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}

= exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}
.
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Alltogether, this leaves us with536 ∫
Rp

∫
Rp

p(y|β1, δ,ψ, φ, σ
2
δ ,X, q)p(δ|σ2

δ )dδdβ1

=(2π)p/2|σ2
δIp|−1/2 exp

{
n∑
i=1

yiθi − b(θi)
φ

+ c(yi, φ)− 1

2σ2
δ

δ̂
T
δ̂

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣XT

2WX2 +
(
1/σ2

δ

)
Ip

∣∣∣−1/2

+O
(
n−1
)

≈(2π)p/2 exp

{
−1

2

(
z̃ − β̂1

)T
V −1

(
z̃ − β̂1

)
+

n∑
i=1

c(yi, φ)

}∣∣∣XTV −1X
∣∣∣−1/2

·
∣∣∣σ2
δX

T
2WX2 + Ip

∣∣∣−1/2

+O
(
n−1
)
.

Details for Theorem 1537

Basic matrix algebra yields a representation of the regularized Bayesian estima-538

tors β̂1 =
(
XTV X

)−1
XTV −1z and β̂2 = β̂1 + δ̂ = β̂1 + σ2

δX
T
2V

−1
(
z −Xβ̂1

)
, where539

V = W−1 + σ2
δX2X

T
2 , as β̂rB =

(
XT

ψWXψ +H
)−1

XT
ψWz. To obtain equivalence (i),540

we employ a theorem by Theobald (1974, theorem 1) stating that for two estimators β̂
?

541

and β̂
??

542

MA(β̂
?
)−MA(β̂

??
) ≥ 0 for all non-negative definite matrices A

⇔ E
(
β̂
?
− β

)(
β̂
?
− β

)T − E
(
β̂
??
− β

)(
β̂
??
− β

)T
is non-negative definite.

The equivalence then follows from543

E
(
Xψβ̂rB −Xψβ

)(
Xψβ̂rB −Xψβ

)T
= Xψ

(
XT

ψWXψ +H
)−1

XT
ψWXψ

(
XT

ψWXψ +H
)−1

XT
ψ

+Xψ

(
XT

ψWXψ +H
)−1

(B +H)ββT
(
BT +H

) (
XT

ψWXψ +H
)−1

XT
ψ .

Using E
(
β̂rB−β

)T (
β̂rB−β

)
= tr

{
E
(
β̂rB − β

)(
β̂rB − β

)T}
then yields equivalence (ii).544

For remark 1, ψ = ψ0 implies B = 0. Consequently,545

D
{

(I +C)H − (B +H)ββT
(
BT +H

)
+CBββTBTCT

}
DT ≥ 0

reduces to546

D
{

(I +C)H −HββTH
}
DT ≥ 0.
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Assuming that rank(X) = p, this is equivalent to547

(
XT

ψWXψ +H
)−1 {

(I +C)H −HββTH
} (
XT

ψWXψ +H
)−1 ≥ 0

⇔ (I +C)H −HββTH = 2H +H
(
XT

ψWXψ

)−1
H −HββTH ≥ 0

since XT
ψWXψ +H is positive definite and symmetric. Taking advantage of a result by548

Gruber (1990, theorem 2.5.3), this amounts to549

βTH
(

2σ2
δH + σ2

δH
(
XT

ψWXψ

)−1
H
)+

Hβ ≤ 1/σ2
δ

⇔ δT
{

2σ2
δI + (XT

1WX1)−1 + (XT
2WX2)−1

}−1
δ ≤ 1.

For W = 1/σ2
δI this is equilvalent to

δT
{

2σ2
δ/σ

2I + (XT
1X1)−1 + (XT

2X2)−1
}−1

δ ≤ σ2.

Basic matrix calculations suffice to obtain the rest of this as well as the following remarks.550
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