Clifford-Fourier transforms and wavelets

Jeff Hogan
University of Newcastle and CARMA

with David Franklin (U. Newcastle)
Andrew Morris (U. Newcastle)
Kieran Larkin (U. Newcastle and Nontrivialzeros Research)
Mark Craddock (University of Technology Sydney)
Universität Göttingen
15 November 2016

One-dimensional harmonic analysis

Single-channel signals

$$
f: I \subset \mathbb{R} \rightarrow \mathbb{R}
$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

- Fourier transform: $\hat{f}(\xi)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i t \xi} d t$

One-dimensional harmonic analysis

Single-channel signals

$$
f: I \subset \mathbb{R} \rightarrow \mathbb{R}
$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

- Fourier transform: $\hat{f}(\xi)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i t \xi} d t$
- Filtering/convolution: $f * g(t)=\int_{-\infty}^{\infty} f(s) g(t-s) d s$
- Convolution theorem: $\widehat{f * g}(\xi)=\hat{f}(\xi) \hat{g}(\xi)$

One-dimensional harmonic analysis

Single-channel signals

$$
f: I \subset \mathbb{R} \rightarrow \mathbb{R}
$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

- Fourier transform: $\hat{f}(\xi)=\int_{-\infty}^{\infty} f(t) e^{-2 \pi i t \xi} d t$
- Filtering/convolution: $f * g(t)=\int_{-\infty}^{\infty} f(s) g(t-s) d s$
- Convolution theorem: $\widehat{f * g}(\xi)=\hat{f}(\xi) \hat{g}(\xi)$
- Short-time Fourier transform, continuous and discrete wavelet transform, etc.

One-dimensional complex analysis

- Cauchy integrals: $f \in L^{2} \mapsto \mathcal{C} f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} d x$

One-dimensional complex analysis

- Cauchy integrals: $f \in L^{2} \mapsto \mathcal{C} f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} d x$
- Projections: $P^{ \pm} f(x)=\lim _{y \rightarrow 0^{+}} \mathcal{C} f(x \pm i y)$
- $\widehat{P^{+} f}(\xi)=\frac{1}{2}\left(1+\frac{\xi}{|\xi|}\right) \hat{f}(\xi)=\hat{f}(\xi) \mathbf{1}_{[0, \infty)}(\xi)$

One-dimensional complex analysis

- Cauchy integrals: $f \in L^{2} \mapsto \mathcal{C} f(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} d x$
- Projections: $P^{ \pm} f(x)=\lim _{y \rightarrow 0^{+}} \mathcal{C} f(x \pm i y)$
- $\widehat{P^{+} f}(\xi)=\frac{1}{2}\left(1+\frac{\xi}{|\xi|}\right) \hat{f}(\xi)=\hat{f}(\xi) \mathbf{1}_{[0, \infty)}(\xi)$
- $P^{ \pm}$bounded projections: $\left[\frac{1}{2}\left(1 \pm \frac{\xi}{|\xi|}\right)\right]^{2}=\frac{1}{2}\left(1 \pm \frac{\xi}{|\xi|}\right)$
- $P^{ \pm}$orthogonal projections: $\frac{1}{2}\left(1+\frac{\xi}{|\xi|}\right) \frac{1}{2}\left(1-\frac{\xi}{|\xi|}\right)=0$

Hardy spaces: $L^{2}=H_{+}^{2} \oplus H_{-}^{2}$ where $H_{ \pm}^{2}=P^{ \pm}\left(L^{2}\right)$

One-dimensional complex analysis

- Singular integrals: $P^{ \pm}=\frac{1}{2}(I+i \mathcal{H})$ where \mathcal{H} is the Hilbert transform

$$
\mathcal{H} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{f(t)}{x-t} d t
$$

One-dimensional complex analysis

- Singular integrals: $P^{ \pm}=\frac{1}{2}(I+i \mathcal{H})$ where \mathcal{H} is the Hilbert transform

$$
\mathcal{H} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{f(t)}{x-t} d t
$$

- Analytic signal:

$$
f_{a}(t)=f(t)+i \mathcal{H} f(t)=\left|f_{a}(t)\right| e^{i \theta(t)}=2 P^{+} f(t)
$$

Local amplitude $\left|f_{a}(t)\right|$; local phase $\theta(t)$
Example: $f(t)=e^{-\pi t^{2}} \cos t \longrightarrow f_{a}(t)=e^{-\pi t^{2}} e^{i t}$ Local amplitude $e^{-\pi t^{2}}$; Local phase $\theta(t)=t$.

Multichannel signals

Our treatment of signals $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is generally ad hoc.
Example: $n=2, m=1$: grayscale images
Tensor product constructions - Fourier analysis (convolution theorem etc) ok, but complex analysis not so good:

$$
\begin{aligned}
\hat{f}\left(\xi_{1}, \xi_{2}\right) & =\mathcal{F}_{2} \mathcal{F}_{1} f\left(\xi_{1}, \xi_{2}\right) \\
\mathcal{H} f\left(x_{1}, x_{2}\right) & =\mathcal{H}_{2} \mathcal{H}_{1} f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Multichannel signals

Our treatment of signals $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is generally ad hoc.
Example: $n=2, m=1$: grayscale images
Tensor product constructions - Fourier analysis (convolution theorem etc) ok, but complex analysis not so good:

$$
\begin{aligned}
\hat{f}\left(\xi_{1}, \xi_{2}\right) & =\mathcal{F}_{2} \mathcal{F}_{1} f\left(\xi_{1}, \xi_{2}\right) \\
\mathcal{H} f\left(x_{1}, x_{2}\right) & =\mathcal{H}_{2} \mathcal{H}_{1} f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Example: $n=2, m=3$: colour images

$$
f(\mathbf{x})=(R(\mathbf{x}), G(\mathbf{x}), B(\mathbf{x}))
$$

Even Fourier analysis breaks down here:

- $\hat{f}(\mathbf{y})=\int_{\mathbb{R}^{2}} e^{-2 \pi i(\mathbf{x}, \mathbf{y}\rangle} f(\mathbf{x}) d \mathbf{x}=(\hat{R}(\mathbf{y}), \hat{G}(\mathbf{y}), \hat{B}(\mathbf{y}))$
- $f * g(\mathbf{x})=\int_{\mathbf{R}^{2}} f(\mathbf{t}) g(\mathbf{x}-\mathbf{t}) d \mathbf{t}$ not defined

Wish list

We want to

- Inject multichannel signals into an algebra that allows products of functions;
- With this algebraic structure, define a Fourier-type transform which maintains the useful covariances of the classical Fourier transform
- Build signal analysis and processing tools (wavelets etc) around the Fourier transform
- Build signal analytic tools analogous to the analytic signal for extracting local amplitude and phase information

Clifford algebra

Clifford algebra

- $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ an orthonormal basis for \mathbb{R}^{d}. Imbed \mathbb{R}^{d} into a 2^{d}-dimensional associative Clifford algebra \mathbb{R}_{d}

Clifford algebra

- $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ an orthonormal basis for \mathbb{R}^{d}. Imbed \mathbb{R}^{d} into a 2^{d}-dimensional associative Clifford algebra \mathbb{R}_{d}
- Basis for \mathbb{R}_{d} is $\left\{e_{A} ; A \subset\{1,2, \ldots, d\}\right\}$

$$
\begin{gathered}
e_{\left\{j_{1}, j_{2}, \ldots, j_{\ell}\right\}}=e_{j_{1}} e_{j_{2}} \cdots e_{j_{\ell}} \\
\left.e_{\emptyset}=e_{0}=1 \quad \text { (identity }\right), \quad e_{j}^{2}=-1 \\
e_{j} e_{k}=-e_{k} e_{j} \quad(j \neq k, \quad j, k \in\{1,2, \ldots, d\})
\end{gathered}
$$

Clifford algebra

- $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ an orthonormal basis for \mathbb{R}^{d}. Imbed \mathbb{R}^{d} into a 2^{d}-dimensional associative Clifford algebra \mathbb{R}_{d}
- Basis for \mathbb{R}_{d} is $\left\{e_{A} ; A \subset\{1,2, \ldots, d\}\right\}$

$$
\begin{gathered}
e_{\left\{j_{1}, j_{2}, \ldots, j_{\ell}\right\}}=e_{j_{1}} e_{j_{2}} \cdots e_{j_{\ell}} \\
\left.e_{\emptyset}=e_{0}=1 \quad \text { (identity }\right), \quad e_{j}^{2}=-1 \\
e_{j} e_{k}=-e_{k} e_{j} \quad(j \neq k, \quad j, k \in\{1,2, \ldots, d\})
\end{gathered}
$$

- $\mathbb{R}_{d}=\left\{\sum_{A} x_{A} e_{A} ; x_{A} \in \mathbb{R}\right\}=\Lambda_{0} \oplus \Lambda_{1} \oplus \cdots \oplus \Lambda_{d}=\Lambda_{e} \oplus \Lambda_{o}$
- $\mathbb{C}_{d}=\left\{\sum_{A} z_{A} e_{A} ; z_{A} \in \mathbb{C}\right\}$

Clifford algebra

- $\left\{e_{1}, e_{2}, \ldots, e_{d}\right\}$ an orthonormal basis for \mathbb{R}^{d}. Imbed \mathbb{R}^{d} into a 2^{d}-dimensional associative Clifford algebra \mathbb{R}_{d}
- Basis for \mathbb{R}_{d} is $\left\{e_{A} ; A \subset\{1,2, \ldots, d\}\right\}$

$$
\begin{gathered}
e_{\left\{j_{1}, j_{2}, \ldots, j_{\ell}\right\}}=e_{j_{1}} e_{j_{2}} \cdots e_{j_{\ell}} \\
\left.e_{\emptyset}=e_{0}=1 \quad \text { (identity }\right), \quad e_{j}^{2}=-1 \\
e_{j} e_{k}=-e_{k} e_{j} \quad(j \neq k, \quad j, k \in\{1,2, \ldots, d\})
\end{gathered}
$$

- $\mathbb{R}_{d}=\left\{\sum_{A} x_{A} e_{A} ; x_{A} \in \mathbb{R}\right\}=\Lambda_{0} \oplus \Lambda_{1} \oplus \cdots \oplus \Lambda_{d}=\Lambda_{e} \oplus \Lambda_{o}$
- $\mathbb{C}_{d}=\left\{\sum_{A} z_{A} e_{A} ; z_{A} \in \mathbb{C}\right\}$
- If $x \sum_{j=1}^{d} x_{j} e_{j}, y=\sum_{j=1}^{d} y_{j} e_{j}$ are vectors, then

$$
x^{2}=-|x|^{2} \text { and } x y=-\langle x, y\rangle+x \wedge y \in \Lambda_{0} \oplus \Lambda_{2}
$$

Examples

- $m=1$, basis $\left\{e_{0}, e_{1}\right\}$, elements

$$
u=a_{0}+a_{1} e_{1}, \quad v=b_{0}+b_{1} e_{1}
$$

- multiplication: $u v=a_{0} b_{0}-a_{1} b_{1}+\left(a_{1} b_{0}+b_{0} a_{1}\right) e_{1}$, i.e., $\mathbb{R}_{1}=\mathbb{C}$

Examples

- $m=1$, basis $\left\{e_{0}, e_{1}\right\}$, elements
$u=a_{0}+a_{1} e_{1}, \quad v=b_{0}+b_{1} e_{1}$
- multiplication: $u v=a_{0} b_{0}-a_{1} b_{1}+\left(a_{1} b_{0}+b_{0} a_{1}\right) e_{1}$, i.e., $\mathbb{R}_{1}=\mathbb{C}$
- $m=2$, basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}=e_{12}=e_{1} e_{2}\right\}$, elements $q=a+b e_{1}+c e_{2}+d e_{3}$
- multiplication:

$$
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, e_{1} e_{2}=e_{3}, e_{3} e_{1}=e_{2}, e_{2} e_{3}=e_{1}
$$

i.e., $\mathbb{R}_{2}=\mathbb{H}$, the set of quaternions

Examples

- $m=1$, basis $\left\{e_{0}, e_{1}\right\}$, elements
$u=a_{0}+a_{1} e_{1}, \quad v=b_{0}+b_{1} e_{1}$
- multiplication: $u v=a_{0} b_{0}-a_{1} b_{1}+\left(a_{1} b_{0}+b_{0} a_{1}\right) e_{1}$, i.e., $\mathbb{R}_{1}=\mathbb{C}$
- $m=2$, basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}=e_{12}=e_{1} e_{2}\right\}$, elements $q=a+b e_{1}+c e_{2}+d e_{3}$
- multiplication:

$$
e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, e_{1} e_{2}=e_{3}, e_{3} e_{1}=e_{2}, e_{2} e_{3}=e_{1}
$$

i.e., $\mathbb{R}_{2}=\mathbb{H}$, the set of quaternions

- $d=3$, basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}, e_{12}, e_{23}, e_{31}, e_{123}\right\}$

Dirac operator

- We consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$, $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}$.

Dirac operator

- We consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$, $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}$.
- If $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, then $D f=\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$

Dirac operator

- We consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$, $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}$.
- If $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, then $D f=\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$
- If $f: \Omega \subset \mathbb{R}^{d+1} \rightarrow \mathbb{R}_{d}$, then $\partial f=\frac{\partial f}{\partial x_{0}}+\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$

Dirac operator

- We consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$, $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}$.
- If $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, then $D f=\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$
- If $f: \Omega \subset \mathbb{R}^{d+1} \rightarrow \mathbb{R}_{d}$, then $\partial f=\frac{\partial f}{\partial x_{0}}+\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$
- We say f is (left) monogenic on Ω if $D f=0($ or $\partial f=0)$

Dirac operator

- We consider functions $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, i.e., $f: \mathbb{R} \rightarrow \mathbb{C}$, $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, f: \mathbb{R}^{3} \rightarrow \mathbb{R}_{3}$.
- If $f: \Omega \subset \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, then $D f=\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$
- If $f: \Omega \subset \mathbb{R}^{d+1} \rightarrow \mathbb{R}_{d}$, then $\partial f=\frac{\partial f}{\partial x_{0}}+\sum_{j=1}^{d} e_{j} \frac{\partial f}{\partial x_{j}}$
- We say f is (left) monogenic on Ω if $D f=0($ or $\partial f=0)$
- $f: \mathbb{R}^{1+1} \rightarrow \mathbb{R}_{1}=\mathbb{C}, f(x, y)=u(x, y)+e_{1} v(x, y)$

$$
\partial f=\frac{\partial f}{\partial x}+e_{1} \frac{\partial f}{\partial y}=\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+e_{1}\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)
$$

So monogenicity \equiv complex analyticity

Why Dirac operators?

- $H, E: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ vectorfields

$$
\begin{gathered}
H=H_{1} e_{1}+H_{2} e_{2}+H_{3} e_{3} ; \quad E=E_{1} e_{23}+E_{2} e_{31}+E_{3} e_{12} \\
F=H+i E: \Omega \rightarrow \mathbb{C}_{3}
\end{gathered}
$$

Why Dirac operators?

- $H, E: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ vectorfields

$$
\begin{gathered}
H=H_{1} e_{1}+H_{2} e_{2}+H_{3} e_{3} ; \quad E=E_{1} e_{23}+E_{2} e_{31}+E_{3} e_{12} \\
F=H+i E: \Omega \rightarrow \mathbb{C}_{3}
\end{gathered}
$$

- Perturbed Dirac operator: $(D+\lambda) F=0$

$$
\operatorname{div} E=\operatorname{div} H=0, \text { curl } E-i \lambda H=0, \text { curl } H+i \lambda E=0
$$

Why Dirac operators?

- $H, E: \Omega \subset \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ vectorfields

$$
\begin{gathered}
H=H_{1} e_{1}+H_{2} e_{2}+H_{3} e_{3} ; \quad E=E_{1} e_{23}+E_{2} e_{31}+E_{3} e_{12} \\
F=H+i E: \Omega \rightarrow \mathbb{C}_{3}
\end{gathered}
$$

- Perturbed Dirac operator: $(D+\lambda) F=0 \Longleftrightarrow$

$$
\operatorname{div} E=\operatorname{div} H=0, \operatorname{curl} E-i \lambda H=0, \operatorname{curl} H+i \lambda E=0
$$

- Dirac operators factorize the Laplacian and the Helmholtz operator:

$$
D^{2}=-\Delta ; \quad(D+i k)(D-i k)=-\Delta^{2}+k^{2}
$$

- Monogenic functions and Dirac operators play a fundamental role in electromagnetic/acoustic scattering theory.

Hypercomplex function theory

- Ω a domain in \mathbb{R}^{n} with Lipschitz boundary, f left monogenic in $\Omega, n(x)$ the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x)=\frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\frac{1}{\omega_{n}} \int_{\partial \Omega} G(x-y) n(y) f(y) d \sigma(y)=f(x)
$$

Hypercomplex function theory

- Ω a domain in \mathbb{R}^{n} with Lipschitz boundary, f left monogenic in $\Omega, n(x)$ the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x)=\frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\frac{1}{\omega_{n}} \int_{\partial \Omega} G(x-y) n(y) f(y) d \sigma(y)=f(x)
$$

- Also have analogues of Liouville's theorem, mean-value theorem, Taylor theorem

Hypercomplex function theory

- Ω a domain in \mathbb{R}^{n} with Lipschitz boundary, f left monogenic in $\Omega, n(x)$ the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x)=\frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^{n} \backslash\{0\}$ and

$$
\frac{1}{\omega_{n}} \int_{\partial \Omega} G(x-y) n(y) f(y) d \sigma(y)=f(x)
$$

- Also have analogues of Liouville's theorem, mean-value theorem, Taylor theorem
- The product of monogenic functions is in general not monogenic!

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{i j}=x_{i} \partial_{j}-x_{j} \partial_{i} \quad(1 \leq i, j \leq d)$
Angular Dirac operator: $\Gamma=-\sum_{1 \leq i<j \leq d} e_{i} e_{j} \mathcal{L}_{i j}$

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{i j}=x_{i} \partial_{j}-x_{j} \partial_{i} \quad(1 \leq i, j \leq d)$
Angular Dirac operator: $\Gamma=-\sum_{1 \leq i<j \leq d} e_{i} e_{j} \mathcal{L}_{i j}$
Position operator: $Q f(x)=x f(x) \Rightarrow Q^{2} f(x)=-|x|^{2} f(x)$
Commutation Relation: $[D, Q]=2 \Gamma-d l$

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{i j}=x_{i} \partial_{j}-x_{j} \partial_{i} \quad(1 \leq i, j \leq d)$
Angular Dirac operator: $\Gamma=-\sum_{1 \leq i<j \leq d} e_{i} e_{j} \mathcal{L}_{i j}$
Position operator: $Q f(x)=x f(x) \Rightarrow Q^{2} f(x)=-|x|^{2} f(x)$
Commutation Relation: $[D, Q]=2 \Gamma-d l$
Clifford-Hermite operators:

$$
\begin{aligned}
& \mathcal{H}_{d}^{+}=(D+Q)(D-Q)=-\Delta+|x|^{2}+\Gamma-d I=\mathcal{H}_{d}+(\Gamma-(d / 2) I) \\
& \mathcal{H}_{d}^{-}=(D-Q)(D+Q)=-\Delta+|x|^{2}-\Gamma+d I=\mathcal{H}_{d}-(\Gamma-(d / 2) I)
\end{aligned}
$$

Quaternionic Fourier transform for colour images

Quaternionic FT's: (Ell, Sangwine,...)

$$
\begin{aligned}
& \mathcal{F}_{1} f(u)=\int_{\mathbb{R}^{2}} f(x) e^{-2 \pi e_{1} u_{1} x_{1}} e^{-2 \pi e_{2} u_{2} x_{2}} d x \\
& \mathcal{F}_{2} f(u)=\int_{\mathbb{R}^{2}} e^{-2 \pi e_{1} u_{1} x_{1}} f(x) e^{-2 \pi e_{2} u_{2} x_{2}} d x
\end{aligned}
$$

Quaternionic Fourier transform for colour images

Quaternionic FT's: (Ell, Sangwine,...)

$$
\begin{aligned}
& \mathcal{F}_{1} f(u)=\int_{\mathbb{R}^{2}} f(x) e^{-2 \pi e_{1} u_{1} x_{1}} e^{-2 \pi e_{2} u_{2} x_{2}} d x \\
& \mathcal{F}_{2} f(u)=\int_{\mathbb{R}^{2}} e^{-2 \pi e_{1} u_{1} x_{1}} f(x) e^{-2 \pi e_{2} u_{2} x_{2}} d x
\end{aligned}
$$

- no convolution theorem
- lacking covariances

Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$
\mathcal{F}_{t} f(y)=e^{i t \mathcal{H}_{d}} f(y)=\int_{\mathbb{R}^{d}} K_{t}(y, x) f(x) d x \quad(t \in \mathbb{R})
$$

with $\mathcal{F}_{\pi / 2}=\mathcal{F}$ and

$$
K_{t}(x, y)=\sqrt{\frac{-i e^{i t} \csc t}{2 \pi}} \exp \left(-i(\csc t) x y+i(\cot t)\left(|x|^{2}+|y|^{2}\right) / 2\right)
$$

Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$
\mathcal{F}_{t} f(y)=e^{i t \mathcal{H}_{d}} f(y)=\int_{\mathbb{R}^{d}} K_{t}(y, x) f(x) d x \quad(t \in \mathbb{R})
$$

with $\mathcal{F}_{\pi / 2}=\mathcal{F}$ and
$K_{t}(x, y)=\sqrt{\frac{-i e^{i t} \csc t}{2 \pi}} \exp \left(-i(\csc t) x y+i(\cot t)\left(|x|^{2}+|y|^{2}\right) / 2\right)$.
(CFT): [Brackx, De Schepper, Sommen: JFAA 2005]

$$
\mathcal{F}^{ \pm}=\exp \left(-i(\pi / 2) \mathcal{H}_{d}^{ \pm}\right)
$$

Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$
\mathcal{F}_{t} f(y)=e^{i t \mathcal{H}_{d}} f(y)=\int_{\mathbb{R}^{d}} K_{t}(y, x) f(x) d x \quad(t \in \mathbb{R})
$$

with $\mathcal{F}_{\pi / 2}=\mathcal{F}$ and
$K_{t}(x, y)=\sqrt{\frac{-i e^{i t} \csc t}{2 \pi}} \exp \left(-i(\csc t) x y+i(\cot t)\left(|x|^{2}+|y|^{2}\right) / 2\right)$.
(CFT): [Brackx, De Schepper, Sommen: JFAA 2005]

$$
\mathcal{F}^{ \pm}=\exp \left(-i(\pi / 2) \mathcal{H}_{d}^{ \pm}\right)
$$

More generally: $\mathcal{F}_{t}^{ \pm}=\exp \left(-i t \mathcal{H}_{d}^{ \pm}\right) \quad($ frCFT $)$

Fractional Clifford-Fourier transform

frCFT kernel:

$$
\begin{aligned}
\mathcal{F}_{t}^{ \pm} & =\exp \left(-i t\left(\mathcal{H}_{d} \pm(\Gamma-d / 2)\right)\right. \\
& =\exp (\mp i t(\Gamma-d / 2)) \exp \left(-i t \mathcal{H}_{d}\right) \\
& =\exp (\mp i t(\Gamma-d / 2)) \mathcal{F}_{t}
\end{aligned}
$$

$$
C_{t}^{ \pm}(x, y)=\exp (\pm i t d / 2) \exp \left(\mp i t \Gamma_{y}\right) K_{t}(x, y)
$$

Fractional Clifford-Fourier transform

frCFT kernel:

$$
\begin{aligned}
\mathcal{F}_{t}^{ \pm} & =\exp \left(-i t\left(\mathcal{H}_{d} \pm(\Gamma-d / 2)\right)\right. \\
& =\exp (\mp i t(\Gamma-d / 2)) \exp \left(-i t \mathcal{H}_{d}\right) \\
& =\exp (\mp i t(\Gamma-d / 2)) \mathcal{F}_{t} \\
& \\
C_{t}^{ \pm}(x, y) & =\exp (\pm i t d / 2) \exp \left(\mp i t \Gamma_{y}\right) K_{t}(x, y)
\end{aligned}
$$

Note: Terms in $\Gamma=-\sum_{1 \leq i<j \leq d} e_{i} e_{j} \mathcal{L}_{i j}$ not not commute.

Initial value problems

Theorem (Craddock, H. (JFAA 2013))
f is scalar-valued then $\exp (i t \Gamma) f(x)=u(x, t)+\Gamma w(x, t)$ with u, w scalar-valued satisfying the initial value problems

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}+i(d-2) \frac{\partial u}{\partial t}=|x|^{2} \Delta_{T} u \quad\left(x \in \mathbb{R}^{d}, t>0\right) \\
& u(x, 0)=f(x) \quad\left(x \in \mathbb{R}^{d}\right) \\
& \left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \quad\left(x \in \mathbb{R}^{d}\right)
\end{aligned}
$$

Mean-value solutions

Theorem (Gonzalez, Zhang (Contemp. Math. 2006)) d even:

$$
u(x, t)=c_{d}\left[\frac{d}{d t}\left(-\frac{d}{d(\cos t)}\right)^{(d-4) / 2}\left((\sin t)^{d-3} M^{t} f(x)\right)\right]
$$

d odd:

$$
u(x, t)=c_{d} \frac{d}{d t} \int_{0}^{t} \frac{\left[\left(-\frac{d}{d(\cos s)}\right)^{(d-3) / 2}(\sin s)^{d-3} M^{s} f(x)\right]}{\sqrt{\cos s-\cos t}} \sin s d s
$$

Mean-value solutions

Theorem (Gonzalez, Zhang (Contemp. Math. 2006)) d even:

$$
u(x, t)=c_{d}\left[\frac{d}{d t}\left(-\frac{d}{d(\cos t)}\right)^{(d-4) / 2}\left((\sin t)^{d-3} M^{t} f(x)\right)\right]
$$

d odd:

$$
u(x, t)=c_{d} \frac{d}{d t} \int_{0}^{t} \frac{\left[\left(-\frac{d}{d(\cos s)}\right)^{(d-3) / 2}(\sin s)^{d-3} M^{s} f(x)\right]}{\sqrt{\cos s-\cos t}} \sin s d s
$$

$d=3:$

$$
u(x, t)=c \frac{d}{d t} \int_{0}^{t} \frac{M^{s} f(x)}{\sqrt{\cos s-\cos t}} \sin s d s
$$

$d=2:$ frCFT kernel

When $d=2$, the IVP simplifies:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \theta^{2}} \quad\left(x=(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2}, t>0\right) \\
& u(x, 0)=f(x) \quad\left(x \in \mathbb{R}^{2}\right) \\
& \left.u_{t}\right|_{t=0}=0 \quad\left(x \in \mathbb{R}^{2}\right)
\end{aligned}
$$

has d'Alembert solution: $u=\frac{f(\theta+t)+f(\theta-t)}{2}$

$d=2:$ frCFT kernel

When $d=2$, the IVP simplifies:

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial \theta^{2}} \quad\left(x=(r \cos \theta, r \sin \theta) \in \mathbb{R}^{2}, t>0\right) \\
& u(x, 0)=f(x) \quad\left(x \in \mathbb{R}^{2}\right) \\
& \left.u_{t}\right|_{t=0}=0 \quad\left(x \in \mathbb{R}^{2}\right)
\end{aligned}
$$

has d'Alembert solution: $u=\frac{f(\theta+t)+f(\theta-t)}{2}$

$$
\begin{gathered}
C_{t}^{(2)}(x, y)=\frac{-i e^{i t}}{2 \pi \sin t} e^{(i / 2) \cot t|x-y|^{2}} e^{-x \wedge y} \\
\mathcal{F}^{+} f(y)=\int_{\mathbb{R}^{2}} e^{y \wedge x} f(x) d x=\int_{\mathbb{R}^{2}} e^{e_{1} e_{2}\left(x_{2} y_{1}-x_{1} y_{2}\right)} f(x) d x
\end{gathered}
$$

See also: Brackx, De Schepper, Sommen: J Math Imag Vis (2006)

$d>2$: Separation of variables

$$
\begin{aligned}
& u=u(x, y, t)=u(z, \omega, t) \text { with } z=|x||y|, \omega=\langle x, y\rangle / z . \\
& f(x)=F(\langle x, y\rangle)=F(|x| \| y \mid \omega) .
\end{aligned}
$$

$$
u=\sum_{\ell=0}^{\infty}\left(\frac{(\ell+d-2) e^{i \ell t}+\ell e^{i(2-d-\ell) t}}{2 \ell+d-2}\right)
$$

$$
\times\left(\int_{-1}^{1} F(s) P_{\ell}^{d}(s)\left(1-s^{2}\right)^{(d-3) / 2} d s\right) N(d, \ell) P_{\ell}^{d}(\omega)
$$

$d=4:$ solution of the IVP

d'Alembert-like solution:

$$
\begin{aligned}
z= & |x||y|, f(x)=F(\langle x, y\rangle)=F(z \cos \theta) \\
u= & u(z, \theta, t) \\
= & \frac{e^{-i t}}{2 \sin \theta}[\sin (\theta+t) F(z \cos (\theta+t))+\sin (\theta-t) F(z \cos (\theta-t)) \\
& \left.\quad+i \int_{\cos (\theta+t)}^{\cos (\theta-t)} F(z s) d s\right]
\end{aligned}
$$

$d=4:$ frCFT kernel

Theorem (Craddock, H. (JFAA 2013))

$$
C_{t}^{(4)}(x, y)=u+v, u \in \Lambda_{0}, v \in \Lambda_{2} \text { and }
$$

$$
\begin{array}{r}
u=-\frac{e^{3 i t}}{4 \pi^{2} \sin t} e^{(i / 2) \cot t|x-y|^{2}}[\cot t \cos |x \wedge y| \\
\left.\quad+i \frac{\langle x, y\rangle}{|x \wedge y|} \sin |x \wedge y|+i \frac{\sin |x \wedge y|}{|x \wedge y|}\right]
\end{array}
$$

$$
v=\cdots
$$

Method of ascent

Theorem (Craddock, H. (JFAA 2013))
Let $d>2, g \in C^{1}[-1,1]$ and G an antiderivative of g, then

$$
u_{d+2}^{e}(g)=\frac{e^{-i t}}{z} \frac{\partial u_{d}^{e}(G)}{\partial \omega} ; \quad u_{d+2}^{o}(g)=\frac{d}{d-2} \frac{e^{-i t}}{z} \frac{\partial u_{d}^{o}(G)}{\partial \omega}
$$

Unexpected connections

$$
e^{i t \Gamma_{x}}\left(\langle x, y\rangle^{m}\right)=\sum_{\ell=0}^{m} c_{\ell}^{(m)}(t)\langle x, y\rangle^{m-\ell}(x \wedge y)^{\ell}
$$

Unexpected connections

$$
\begin{aligned}
e^{i t \Gamma_{x}}\left(\langle x, y\rangle^{m}\right) & =\sum_{\ell=0}^{m} c_{\ell}^{(m)}(t)\langle x, y\rangle^{m-\ell}(x \wedge y)^{\ell} \\
\frac{d}{d t}\left(e^{i t \Gamma_{x}}\langle x, y\rangle^{m}\right) & =\sum_{\ell=0}^{m} \frac{d}{d t} c_{\ell}^{(m)}(t)\langle x, y\rangle^{m-\ell}(x \wedge y)^{\ell} \\
& =\sum_{\ell=0}^{m} c_{\ell}^{(m)}(t) \sum_{j=0}^{m} A_{\ell j}^{(m)}\langle x, y\rangle^{m-j}(x \wedge y)^{j}
\end{aligned}
$$

Unexpected connections

$$
\begin{gathered}
e^{i t \Gamma_{x}}\left(\langle x, y\rangle^{m}\right)=\sum_{\ell=0}^{m} c_{\ell}^{(m)}(t)\langle x, y\rangle^{m-\ell}(x \wedge y)^{\ell} \\
\frac{d}{d t}\left(e^{i t \Gamma_{x}}\langle x, y\rangle^{m}\right)=\sum_{\ell=0}^{m} \frac{d}{d t} c_{\ell}^{(m)}(t)\langle x, y\rangle^{m-\ell}(x \wedge y)^{\ell} \\
=\sum_{\ell=0}^{m} c_{\ell}^{(m)}(t) \sum_{j=0}^{m} A_{\ell j}^{(m)}\langle x, y\rangle^{m-j}(x \wedge y)^{j} \\
\frac{d}{d t} \mathbf{c}^{(m)}(t)=i A^{(m)} \mathbf{c}^{(m)} ; \quad \mathbf{c}^{(m)}(0)=e_{0} \Rightarrow \mathbf{c}^{(m)}(t)=e^{i t A^{(m)}} e_{0}
\end{gathered}
$$

Unexpected connections

$$
A^{(2 N)}=\left(\begin{array}{ccccccc}
0 & 2 N & 0 & 0 & \ldots & \ldots & \ldots \\
d-1 & 2-d & 2 N-1 & 0 & \ldots & \ldots & \ldots \\
0 & 2 & 0 & 2 N-2 & \cdots & \cdots & \cdots \\
0 & 0 & d+1 & 2-d & \ldots & \ldots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & 2-d & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & 2 N & 0
\end{array}\right)
$$

Unexpected connections

$$
A^{(2 N)}=\left(\begin{array}{ccccccc}
0 & 2 N & 0 & 0 & \ldots & \ldots & \ldots \\
d-1 & 2-d & 2 N-1 & 0 & \ldots & \ldots & \ldots \\
0 & 2 & 0 & 2 N-2 & \cdots & \ldots & \ldots \\
0 & 0 & d+1 & 2-d & \ldots & \cdots & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ldots & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & 2-d & 1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & 2 N & 0
\end{array}\right)
$$

$A^{(m)}$ associated with the recurrence relations for the dual -1 Hahn polynomials. Eigenvectors are values of these polynomials

- Orthogonality relations used to compute the exponentials
- Generating functions to compute the resulting sums in closed form

Properties of the CFT

- Eigenfunction property: $D_{x} C_{d}^{+}(x, y)=C_{d}^{-}(x, y) y$
- Mapping properties: $\mathcal{F}^{+}: L^{1} \rightarrow L^{\infty}, \mathcal{S} \rightarrow \mathcal{S}, L^{2} \rightarrow L^{2}$
- Plancherel: $\int_{\mathbb{R}^{2}} \overline{f(x)} g(x) d x=(f, g)=\left(\mathcal{F}_{d}^{+} f, \mathcal{F}_{d}^{+} g\right)$
- Inversion: $\left(\mathcal{F}_{d}^{+}\right)^{2}=1$
- Covariances:

$$
\mathcal{F}_{2}^{+} \tau_{h}=e^{y \wedge h} \mathcal{F}_{2}^{+} ; \quad \mathcal{F}_{2}^{+}\left(e^{x \wedge h} f\right)=\tau_{h} \mathcal{F}_{2}^{+} ; \quad \rho \mathcal{F}_{2}^{+}=\mathcal{F}_{2}^{+} \rho^{-1}
$$

Properties of the CFT

- Eigenfunction property: $D_{x} C_{d}^{+}(x, y)=C_{d}^{-}(x, y) y$
- Mapping properties: $\mathcal{F}^{+}: L^{1} \rightarrow L^{\infty}, \mathcal{S} \rightarrow \mathcal{S}, L^{2} \rightarrow L^{2}$
- Plancherel: $\int_{\mathbb{R}^{2}} \overline{f(x)} g(x) d x=(f, g)=\left(\mathcal{F}_{d}^{+} f, \mathcal{F}_{d}^{+} g\right)$
- Inversion: $\left(\mathcal{F}_{d}^{+}\right)^{2}=1$
- Covariances:

$$
\mathcal{F}_{2}^{+} \tau_{h}=e^{y \wedge h} \mathcal{F}_{2}^{+} ; \quad \mathcal{F}_{2}^{+}\left(e^{x \wedge h} f\right)=\tau_{h} \mathcal{F}_{2}^{+} ; \quad \rho \mathcal{F}_{2}^{+}=\mathcal{F}_{2}^{+} \rho^{-1}
$$

Theorem

Let $\sigma \in S O(d)$ and $z=z_{\sigma} \in \operatorname{Spin}(d)$ such that $\sigma(x)=z x \bar{z}$ for all $x \in \Lambda_{1}$. Let $S_{z} f(x)=\bar{z} f(z x \bar{z}) z$. Then

$$
\mathcal{F}_{d}^{+} S_{z}=S_{z} \mathcal{F}_{d}^{+}
$$

Properties of the CFT

- Eigenfunction property: $D_{x} C_{d}^{+}(x, y)=C_{d}^{-}(x, y) y$
- Mapping properties: $\mathcal{F}^{+}: L^{1} \rightarrow L^{\infty}, \mathcal{S} \rightarrow \mathcal{S}, L^{2} \rightarrow L^{2}$
- Plancherel: $\int_{\mathbb{R}^{2}} \overline{f(x)} g(x) d x=(f, g)=\left(\mathcal{F}_{d}^{+} f, \mathcal{F}_{d}^{+} g\right)$
- Inversion: $\left(\mathcal{F}_{d}^{+}\right)^{2}=1$
- Covariances:

$$
\mathcal{F}_{2}^{+} \tau_{h}=e^{y \wedge h} \mathcal{F}_{2}^{+} ; \quad \mathcal{F}_{2}^{+}\left(e^{x \wedge h} f\right)=\tau_{h} \mathcal{F}_{2}^{+} ; \quad \rho \mathcal{F}_{2}^{+}=\mathcal{F}_{2}^{+} \rho^{-1}
$$

Theorem

Let $\sigma \in S O(d)$ and $z=z_{\sigma} \in \operatorname{Spin}(d)$ such that $\sigma(x)=z x \bar{z}$ for all $x \in \Lambda_{1}$. Let $S_{z} f(x)=\bar{z} f(z x \bar{z}) z$. Then

$$
\mathcal{F}_{d}^{+} S_{z}=S_{z} \mathcal{F}_{d}^{+}
$$

cf. classical FT: $\mathcal{F} R_{\sigma}=R_{\sigma}^{-1} \mathcal{F}$

$d=2:$ Quaternionic signal processing

Definition
An parity matrix is one of the form $A(\xi)=\left(\begin{array}{cc}s(\xi) & v(\xi) \\ v(-\xi) & s(-\xi)\end{array}\right)$ with $s: \mathbb{R}^{d} \rightarrow \Lambda_{e}$ and $v: \mathbb{R}^{d} \rightarrow \Lambda_{o} . A(\xi)^{*}=\bar{A}(\xi)^{T}$.

$d=2$: Quaternionic signal processing

Definition
An parity matrix is one of the form $A(\xi)=\left(\begin{array}{cc}s(\xi) & v(\xi) \\ v(-\xi) & s(-\xi)\end{array}\right)$ with $s: \mathbb{R}^{d} \rightarrow \Lambda_{e}$ and $v: \mathbb{R}^{d} \rightarrow \Lambda_{o} . A(\xi)^{*}=\bar{A}(\xi)^{T}$.

Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}_{d}$, its associated parity matrix is

$$
[f(x)]=\left(\begin{array}{cc}
f_{e}(x) & f_{o}(x) \\
f_{o}(-x) & f_{e}(-x)
\end{array}\right)
$$

where $f(x)=f_{e}(x)+f_{o}(x)$ and $f_{e}: \mathbb{R}^{d} \rightarrow \Lambda_{e}, f_{o}: \mathbb{R}^{d} \rightarrow \Lambda_{o}$.

Convolution theorem $(d=2)$

Convolution-filtering: $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, \hat{f}=\mathcal{F}_{2}^{+} f$

$$
\widehat{f * g}(y)=\int e^{y \wedge x} \int f(x-t) g(t) d t d x
$$

Convolution theorem $(d=2)$

Convolution-filtering: $f: \mathbb{R}^{2} \rightarrow \mathbb{H}, \hat{f}=\mathcal{F}_{2}^{+} f$

$$
\widehat{f * g}(y)=\int e^{y \wedge x} \int f(x-t) g(t) d t d x
$$

Theorem (H, Morris (2013))

$$
\widehat{f * g}(y) \neq \hat{f}(y) \hat{g}(y) \text { but }[\widehat{f * g}(y)]=[\hat{f}(y)][\hat{g}(y)]
$$

Translation-invariance

Theorem (H, Morris (2013))
$T: L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is bounded, right \mathbb{H}-linear and translation-invariant if and only if there exists a bounded parity matrix $A(\xi)$ such that

$$
[\widehat{T}(\xi)]=A(\xi)[\hat{f}(\xi)] .
$$

Translation-invariance

Theorem (H, Morris (2013))
$T: L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is bounded, right \mathbb{H}-linear and translation-invariant if and only if there exists a bounded parity matrix $A(\xi)$ such that

$$
[\widehat{T f}(\xi)]=A(\xi)[\hat{f}(\xi)]
$$

Theorem (H, Morris (2013))
$X \subset L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ is a closed translation-invariant right \mathbb{H}-linear submodule of $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if and only if there exists an idempotent self-adjoint parity matrix $A(\xi)$ such that $[\hat{f}(\xi)]=A(\xi)[\hat{f}(\xi)]$ for all $f \in X$.

Examples:

- $E \subset \mathbb{R}^{2}$ measurable.

$$
X=X_{E}=\left\{f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; \hat{f}(\xi)=0 \text { off } E\right\}
$$

$$
A_{E}(\xi)=\left(\begin{array}{cc}
\chi_{E}(\xi) & 0 \\
0 & \chi_{-E}(\xi)
\end{array}\right), \quad m(\xi)=\chi_{E}(\xi)
$$

Examples:

- $E \subset \mathbb{R}^{2}$ measurable.

$$
X=X_{E}=\left\{f \in L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right) ; \hat{f}(\xi)=0 \text { off } E\right\}
$$

$$
A_{E}(\xi)=\left(\begin{array}{cc}
\chi_{E}(\xi) & 0 \\
0 & \chi_{-E}(\xi)
\end{array}\right), \quad m(\xi)=\chi_{E}(\xi)
$$

- $H_{ \pm}^{2}\left(\mathbb{R}^{d}\right)$ the Hardy spaces of functions with "monogenic extensions" to $\mathbb{R}_{ \pm}^{d}$.

$$
A_{ \pm}(\xi)=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm \xi /|\xi| \\
\mp \xi /|\xi| & 1
\end{array}\right) ; \quad m_{ \pm}(\xi)=\frac{1}{2}\left(1 \pm \frac{\xi}{|\xi|}\right)
$$

The Hilbert multiplier

Continuous wavelet transform

$\psi \in L^{2}\left(\mathbb{R}^{2}, \mathbb{R}_{2}\right), \psi_{t}(x)=t^{-2} \psi(x / t), \psi^{*}(x)=\overline{\psi(-x)}$.
Wavelet transform: $f \mapsto W_{\psi} f(x, t)=f * \psi_{t}^{*}(x)$
Calderón singular integral: $T_{\psi} f(x)=\int_{0}^{\infty} W_{\psi} f(\cdot, t) * \psi_{t}(x) \frac{d t}{t}$

Continuous wavelet transform

$\psi \in L^{2}\left(\mathbb{R}^{2}, \mathbb{R}_{2}\right), \psi_{t}(x)=t^{-2} \psi(x / t), \psi^{*}(x)=\overline{\psi(-x)}$.
Wavelet transform: $f \mapsto W_{\psi} f(x, t)=f * \psi_{t}^{*}(x)$
Calderón singular integral: $T_{\psi} f(x)=\int_{0}^{\infty} W_{\psi} f(\cdot, t) * \psi_{t}(x) \frac{d t}{t}$
Theorem (Morris, H. (2012))
T_{ψ} bounded and invertible if and only if there exist constants $0<A \leq B<\infty$ such that

$$
\text { A.I } \leq \int_{0}^{\infty}[\hat{\psi}(t \xi)]^{*}[\hat{\psi}(t \xi)] \frac{d t}{t} \leq B . I
$$

for a.e. ξ.

Quaternionic scaling functions in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$

$\left\{h_{k}\right\} \in \ell^{2}\left(\mathbb{Z}^{2}, \mathbb{H}\right)$ then $m_{0}(y)=\sum_{\ell \in \mathbb{Z}^{2}} e^{2 \pi \ell \wedge y} h_{k}$
Theorem (H, Morris (2012))
$\{\varphi(x-\ell)\}_{\ell \in \mathbb{Z}^{2}}$ orthonormal in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if and only if

$$
\begin{equation*}
\sum_{\ell \in \mathbb{Z}^{2}}[\hat{\varphi}(y+\ell)][\hat{\varphi}(y+\ell)]^{*}=I \tag{1}
\end{equation*}
$$

Quaternionic scaling functions in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$

$\left\{h_{k}\right\} \in \ell^{2}\left(\mathbb{Z}^{2}, \mathbb{H}\right)$ then $m_{0}(y)=\sum_{\ell \in \mathbb{Z}^{2}} e^{2 \pi \ell \wedge y} h_{k}$
Theorem (H, Morris (2012))
$\{\varphi(x-\ell)\}_{\ell \in \mathbb{Z}^{2}}$ orthonormal in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if and only if

$$
\begin{equation*}
\sum_{\ell \in \mathbb{Z}^{2}}[\hat{\varphi}(y+\ell)][\hat{\varphi}(y+\ell)]^{*}=I \tag{1}
\end{equation*}
$$

φ is self-similar if

$$
\begin{equation*}
\frac{1}{4} \varphi\left(\frac{x}{2}\right)=\sum_{\ell \in \mathbb{Z}^{2}} \varphi(x-\ell) h_{\ell} \Longleftrightarrow[\hat{\varphi}(2 y)]=[\hat{\varphi}(y)]\left[m_{0}(-y)\right] \tag{2}
\end{equation*}
$$

Quaternionic scaling functions in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$

$\left\{h_{k}\right\} \in \ell^{2}\left(\mathbb{Z}^{2}, \mathbb{H}\right)$ then $m_{0}(y)=\sum_{\ell \in \mathbb{Z}^{2}} e^{2 \pi \ell \wedge y} h_{k}$
Theorem (H, Morris (2012))
$\{\varphi(x-\ell)\}_{\ell \in \mathbb{Z}^{2}}$ orthonormal in $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if and only if

$$
\begin{equation*}
\sum_{\ell \in \mathbb{Z}^{2}}[\hat{\varphi}(y+\ell)][\hat{\varphi}(y+\ell)]^{*}=l \tag{1}
\end{equation*}
$$

φ is self-similar if

$$
\begin{align*}
& \frac{1}{4} \varphi\left(\frac{x}{2}\right)=\sum_{\ell \in \mathbb{Z}^{2}} \varphi(x-\ell) h_{\ell} \Longleftrightarrow[\hat{\varphi}(2 y)]=[\hat{\varphi}(y)]\left[m_{0}(-y)\right] \tag{2}\\
& (1)+(2) \Longrightarrow\left[m_{0}(0)\right]=I \text { and } \sum_{p \in P}\left[m_{0}(y+p)\right]^{*}\left[m_{0}(y+p)\right]=I
\end{align*}
$$

(QMF condition) with $P=\{0,(1 / 2,0),(0,1 / 2),(1 / 2,1 / 2)\}$.

Quaternionic wavelets

$$
\begin{aligned}
& {\left[\hat{\psi}_{j}(2 y)\right]=\left[m_{j}(y)\right][\hat{\varphi}(y)]} \\
& \quad(1 \leq j \leq 3) \\
& U(y)=\left(\begin{array}{cccc}
{\left[m_{0}(y)\right]} & {\left[m_{1}(y)\right]} & {\left[m_{2}(y)\right]} & {\left[m_{3}(y)\right]} \\
{\left[m_{0}\left(y+p_{1}\right)\right]} & {\left[m_{1}\left(y+p_{1}\right)\right]} & {\left[m_{2}\left(y+p_{1}\right)\right]} & {\left[m_{3}\left(y+p_{1}\right)\right]} \\
{\left[m_{0}\left(y+p_{2}\right)\right]} & {\left[m_{1}\left(y+p_{2}\right)\right]} & {\left[m_{2}\left(y+p_{2}\right)\right]} & {\left[m_{3}\left(y+p_{2}\right)\right]} \\
{\left[m_{0}\left(y+p_{3}\right)\right]} & {\left[m_{1}\left(y+p_{3}\right)\right]} & {\left[m_{2}\left(y+p_{3}\right)\right]} & {\left[m_{3}\left(y+p_{3}\right)\right]}
\end{array}\right)
\end{aligned}
$$

Quaternionic wavelets

$$
\begin{aligned}
& {\left[\hat{\psi}_{j}(2 y)\right]=\left[m_{j}(y)\right][\hat{\varphi}(y)] \quad(1 \leq j \leq 3)} \\
& U(y)=\left(\begin{array}{cccc}
{\left[m_{0}(y)\right]} & {\left[m_{1}(y)\right]} & {\left[m_{2}(y)\right]} & {\left[m_{3}(y)\right]} \\
{\left[m_{0}\left(y+p_{1}\right)\right]} & {\left[m_{1}\left(y+p_{1}\right)\right]} & {\left[m_{2}\left(y+p_{1}\right)\right]} & {\left[m_{3}\left(y+p_{1}\right)\right]} \\
{\left[m_{0}\left(y+p_{2}\right)\right]} & {\left[m_{1}\left(y+p_{2}\right)\right]} & {\left[m_{2}\left(y+p_{2}\right)\right]} & {\left[m_{3}\left(y+p_{2}\right)\right]} \\
{\left[m_{0}\left(y+p_{3}\right)\right]} & {\left[m_{1}\left(y+p_{3}\right)\right]} & {\left[m_{2}\left(y+p_{3}\right)\right]} & {\left[m_{3}\left(y+p_{3}\right)\right]}
\end{array}\right)
\end{aligned}
$$

Theorem (H, Morris (2012))
$\left\{2^{j} \psi_{j}\left(2^{j}-k\right) ; 1 \leq j \leq 3, j \in \mathbb{Z}, k \in \mathbb{Z}^{2}\right\}$ o.n.b. for $L^{2}\left(\mathbb{R}^{2}, \mathbb{H}\right)$ if and only if

$$
U(0)=I \text { and } U(y) U(y)^{*}=I \text { for a.e. } y
$$

Wavelet basis construction

Scalar case, $d=1$:

$$
\begin{gathered}
U(\xi)=\left(\begin{array}{cc}
m_{0}(\xi) & m_{1}(\xi) \\
m_{0}(\xi+1 / 2) & m_{1}(\xi+1 / 2)
\end{array}\right) \\
\varphi \longleftrightarrow m_{0}
\end{gathered}
$$

m_{0} a trig poly $\Longleftrightarrow\left\{h_{k}\right\}$ a finite sequence $\Longleftrightarrow \varphi$ compactly supported

Wavelet $\psi: \hat{\psi}(2 \xi)=m_{1}(\xi) \hat{\varphi}(\xi) .(\varphi, \psi)$ a mother-father wavelet pair if and only if

- $U(\xi)$ unitary for all ξ and
- $U(0)=I$

Wavelet basis construction

$$
\begin{align*}
& m_{0}, m_{1} \text { trig polys } \Rightarrow U(\xi)=\sum_{k=0}^{M-1} A_{k} e^{2 \pi i k \xi} \\
& I=U(\xi) U(\xi)^{*} \Longleftrightarrow \sum_{k=0}^{M-1-\ell} A_{k} A_{k+\ell}^{*}=\delta_{\ell} \tag{3}
\end{align*}
$$

Samples of $U(\xi): U_{\ell}=U(\ell / M)$

$$
\begin{equation*}
U_{\ell}=\sum_{k=0}^{M-1} A_{k} e^{2 \pi i k \ell / M} \Rightarrow A_{k}=\frac{1}{M} \sum_{\ell=0}^{M-1} U_{\ell} e^{-2 \pi i \ell k / M} \tag{4}
\end{equation*}
$$

Wavelet basis construction

Proposition
$U(\xi)$ unitary for all ξ if and only if

$$
\sum_{n=0}^{M-1} \sum_{j=0}^{M-1} b_{n j}^{(\ell)} U_{n}^{*} U_{j}=M^{2} \delta_{\ell} l \quad(0 \leq \ell \leq M-1)
$$

where $b_{n j}^{(\ell)}=e^{-2 \pi i \ell j / M} \sum_{k=0}^{M-1-\ell} e^{2 \pi i k(n-j) / M}$.

Wavelet basis construction

Proposition
$U(\xi)$ unitary for all ξ if and only if

$$
\sum_{n=0}^{M-1} \sum_{j=0}^{M-1} b_{n j}^{(\ell)} U_{n}^{*} U_{j}=M^{2} \delta_{\ell} I \quad(0 \leq \ell \leq M-1)
$$

where $b_{n j}^{(\ell)}=e^{-2 \pi i \ell j / M} \sum_{k=0}^{M-1-\ell} e^{2 \pi i k(n-j) / M}$.
Equivalently,

$$
\left\{U_{k}\right\}_{k=0}^{M-1} \text { unitary and } U_{k}^{*} V_{k}=V_{k}^{*} U_{k} \quad(0 \leq k \leq M-1)
$$

where

$$
V_{k}=\sum_{m \neq k} \frac{U_{m}}{e^{2 \pi i(k-m) / M}-1}
$$

Reformulation

We want to find three M-tuple of matrices

$$
\begin{aligned}
\mathbf{U} & =\left(U_{0}, U_{1}, \ldots, U_{M-1}\right) \\
\mathbf{V} & =\left(V_{0}, V_{1}, \ldots, V_{M-1}\right) \\
\mathbf{W} & =\left(W_{0}, W_{1}, \ldots, W_{M-1}\right)
\end{aligned}
$$

such that
(i) each U_{n} is unitary;
(ii) $V_{n}=\sum_{m \neq n} a_{m-n} U_{m} ; \quad\left(a_{m}=\frac{1}{1-e^{2 \pi i m / M}}\right)$
(iii) $W_{n}=V_{n}^{*} U_{n}$
(iv) each W_{n} is self-adjoint

Minimization

$$
F(\mathbf{U}, \mathbf{V}, \mathbf{W})=\frac{1}{2} \sum_{n=0}^{M-1}\left\|V_{n}-\sum_{m \neq n} a_{m n} U_{m}\right\|^{2}+\frac{1}{2} \sum_{n=0}^{M-1}\left\|W_{n}-V_{n}^{*} U_{n}\right\|^{2}
$$

Then compute

$$
\min _{\mathbf{U}, \mathbf{v}, \mathbf{W}} F(\mathbf{U}, \mathbf{V}, \mathbf{W})
$$

subject to the constraints
(i) U_{n} unitary;
(ii) W_{n} self-adjoint

Other constraints

Consistency:

$$
U(\xi+1 / 2)=\left(\begin{array}{cc}
m_{0}(\xi+1 / 2) & m_{1}(\xi+1 / 2) \tag{5}\\
m_{0}(\xi) & m_{1}(\xi)
\end{array}\right)=J U(\xi)
$$

where $J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Equivalently,

$$
U_{\ell+M / 2}=J U_{\ell} \quad(0 \leq \ell \leq M / 2-1)
$$

Other constraints

Consistency:

$$
U(\xi+1 / 2)=\left(\begin{array}{cc}
m_{0}(\xi+1 / 2) & m_{1}(\xi+1 / 2) \tag{5}\\
m_{0}(\xi) & m_{1}(\xi)
\end{array}\right)=J U(\xi)
$$

where $J=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
Equivalently,

$$
U_{\ell+M / 2}=J U_{\ell} \quad(0 \leq \ell \leq M / 2-1)
$$

Regularity: $m_{0}^{\prime}(1 / 2)=m_{0}^{\prime \prime}(1 / 2)=\cdots=m_{0}^{(j)}(1 / 2)=0$

$$
U^{(j)}(0)=\sum_{\ell=0}^{M-1} c_{\ell}^{(j)} U_{\ell}
$$

Thanks！

[^0]
[^0]:

