Clifford-Fourier transforms and wavelets

Jeff Hogan University of Newcastle and CARMA

with David Franklin (U. Newcastle) Andrew Morris (U. Newcastle) Kieran Larkin (U. Newcastle and Nontrivialzeros Research) Mark Craddock (University of Technology Sydney)

> Universität Göttingen 15 November 2016

> > ▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

One-dimensional harmonic analysis

Single-channel signals

$$f: I \subset \mathbb{R} \to \mathbb{R}$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Fourier transform:
$$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t \xi} dt$$

One-dimensional harmonic analysis

Single-channel signals

$$f: I \subset \mathbb{R} \to \mathbb{R}$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

- Fourier transform: $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t \xi} dt$
- Filtering/convolution: $f * g(t) = \int_{-\infty}^{\infty} f(s)g(t-s) ds$
- Convolution theorem: $\widehat{f * g}(\xi) = \hat{f}(\xi)\hat{g}(\xi)$

One-dimensional harmonic analysis

Single-channel signals

$$f: I \subset \mathbb{R} \to \mathbb{R}$$

(e.g., audio signals) have been successfully treated using the tools of harmonic and complex analysis:

- Fourier transform: $\hat{f}(\xi) = \int_{-\infty}^{\infty} f(t) e^{-2\pi i t \xi} dt$
- Filtering/convolution: $f * g(t) = \int_{-\infty}^{\infty} f(s)g(t-s) ds$
- Convolution theorem: $\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$
- Short-time Fourier transform, continuous and discrete wavelet transform, etc.

• Cauchy integrals:
$$f \in L^2 \mapsto Cf(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} dx$$

• Cauchy integrals:
$$f \in L^2 \mapsto Cf(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} dx$$

・ロト・日本・モート モー うへぐ

• Projections: $P^{\pm}f(x) = \lim_{y \to 0^+} Cf(x \pm iy)$

•
$$\widehat{P^+f}(\xi) = \frac{1}{2} \left(1 + \frac{\xi}{|\xi|} \right) \widehat{f}(\xi) = \widehat{f}(\xi) \mathbf{1}_{[0,\infty)}(\xi)$$

• Cauchy integrals:
$$f \in L^2 \mapsto Cf(z) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} \frac{f(x)}{x-z} dx$$

• Projections: $P^{\pm}f(x) = \lim_{y\to 0^+} Cf(x \pm iy)$
• $\widehat{P^+f}(\xi) = \frac{1}{2} \left(1 + \frac{\xi}{|\xi|} \right) \widehat{f}(\xi) = \widehat{f}(\xi) \mathbf{1}_{[0,\infty)}(\xi)$
• P^{\pm} bounded projections: $\left[\frac{1}{2} \left(1 \pm \frac{\xi}{|\xi|} \right) \right]^2 = \frac{1}{2} \left(1 \pm \frac{\xi}{|\xi|} \right)$
• P^{\pm} orthogonal projections: $\frac{1}{2} \left(1 + \frac{\xi}{|\xi|} \right) \frac{1}{2} \left(1 - \frac{\xi}{|\xi|} \right) = 0$
Hardy spaces: $L^2 = H^2_+ \oplus H^2_-$ where $H^2_{\pm} = P^{\pm}(L^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

• Singular integrals: $P^{\pm} = \frac{1}{2}(I + i\mathcal{H})$ where \mathcal{H} is the Hilbert transform $\mathcal{H}f(x) = \lim_{\epsilon \to 0} \int_{|x-y| > \epsilon} \frac{f(t)}{x-t} dt$

• Singular integrals: $P^{\pm} = \frac{1}{2}(I + i\mathcal{H})$ where \mathcal{H} is the Hilbert transform $\mathcal{H}f(x) = \lim_{t \to \infty} \int \frac{f(t)}{dt} dt$

$$\mathcal{H}f(x) = \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{f(t)}{x-t} dt$$

• Analytic signal:

$$f_a(t) = f(t) + i\mathcal{H}f(t) = |f_a(t)|e^{i\theta(t)} = 2P^+f(t)$$

Local amplitude $|f_a(t)|$; local phase $\theta(t)$

Example: $f(t) = e^{-\pi t^2} \cos t \longrightarrow f_a(t) = e^{-\pi t^2} e^{it}$ Local amplitude $e^{-\pi t^2}$; Local phase $\theta(t) = t$.

Multichannel signals

Our treatment of signals $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is generally ad hoc.

Example: n = 2, m = 1: grayscale images

Tensor product constructions – Fourier analysis (convolution theorem etc) ok, but complex analysis not so good:

$$\hat{f}(\xi_1,\xi_2) = \mathcal{F}_2 \mathcal{F}_1 f(\xi_1,\xi_2)$$
$$\mathcal{H}f(x_1,x_2) = \mathcal{H}_2 \mathcal{H}_1 f(x_1,x_2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multichannel signals

Our treatment of signals $f : \Omega \subset \mathbb{R}^n \to \mathbb{R}^m$ is generally ad hoc.

Example: n = 2, m = 1: grayscale images

Tensor product constructions – Fourier analysis (convolution theorem etc) ok, but complex analysis not so good:

$$\hat{f}(\xi_1,\xi_2) = \mathcal{F}_2 \mathcal{F}_1 f(\xi_1,\xi_2)$$
$$\mathcal{H}f(x_1,x_2) = \mathcal{H}_2 \mathcal{H}_1 f(x_1,x_2)$$

Example: n = 2, m = 3: colour images

$$f(\mathbf{x}) = (\mathbf{R}(\mathbf{x}), \mathbf{G}(\mathbf{x}), \mathbf{B}(\mathbf{x}))$$

Even Fourier analysis breaks down here:

•
$$\hat{f}(\mathbf{y}) = \int_{\mathbb{R}^2} e^{-2\pi i \langle \mathbf{x}, \mathbf{y} \rangle} f(\mathbf{x}) \, d\mathbf{x} = (\hat{R}(\mathbf{y}), \hat{G}(\mathbf{y}), \hat{B}(\mathbf{y}))$$

• $f * g(\mathbf{x}) = \int_{\mathbf{R}^2} f(\mathbf{t}) g(\mathbf{x} - \mathbf{t}) \, d\mathbf{t}$ not defined

Wish list

We want to

- Inject multichannel signals into an algebra that allows products of functions;
- With this algebraic structure, define a Fourier-type transform which maintains the useful covariances of the classical Fourier transform
- Build signal analysis and processing tools (wavelets etc) around the Fourier transform
- Build signal analytic tools analogous to the analytic signal for extracting local amplitude and phase information

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで

• $\{e_1, e_2, \ldots, e_d\}$ an orthonormal basis for \mathbb{R}^d . Imbed \mathbb{R}^d into a 2^d -dimensional associative Clifford algebra \mathbb{R}_d

- $\{e_1, e_2, \ldots, e_d\}$ an orthonormal basis for \mathbb{R}^d . Imbed \mathbb{R}^d into a 2^d -dimensional associative Clifford algebra \mathbb{R}_d
- Basis for \mathbb{R}_d is $\{e_A; A \subset \{1, 2, \dots, d\}\}$

$$e_{\{j_1, j_2, \dots, j_\ell\}} = e_{j_1} e_{j_2} \cdots e_{j_\ell}$$

 $e_{\emptyset} = e_0 = 1$ (identity), $e_j^2 = -1$
 $e_j e_k = -e_k e_j$ ($j \neq k$, $j, k \in \{1, 2, \dots, d\}$)

- $\{e_1, e_2, \ldots, e_d\}$ an orthonormal basis for \mathbb{R}^d . Imbed \mathbb{R}^d into a 2^d -dimensional associative Clifford algebra \mathbb{R}_d
- Basis for \mathbb{R}_d is $\{e_A; A \subset \{1, 2, \dots, d\}\}$

$$e_{\{j_1, j_2, \dots, j_\ell\}} = e_{j_1} e_{j_2} \cdots e_{j_\ell}$$

 $e_{\emptyset} = e_0 = 1 \quad (ext{identity}), \quad e_j^2 = -1$
 $e_j e_k = -e_k e_j \quad (j \neq k, \quad j, k \in \{1, 2, \dots, d\})$

• $\mathbb{R}_d = \{\sum_A x_A e_A; x_A \in \mathbb{R}\} = \Lambda_0 \oplus \Lambda_1 \oplus \cdots \oplus \Lambda_d = \Lambda_e \oplus \Lambda_o$ • $\mathbb{C}_d = \{\sum_A z_A e_A; z_A \in \mathbb{C}\}$

- $\{e_1, e_2, \ldots, e_d\}$ an orthonormal basis for \mathbb{R}^d . Imbed \mathbb{R}^d into a 2^d -dimensional associative Clifford algebra \mathbb{R}_d
- Basis for \mathbb{R}_d is $\{e_A; A \subset \{1, 2, \dots, d\}\}$

$$e_{\{j_1, j_2, \dots, j_\ell\}} = e_{j_1} e_{j_2} \cdots e_{j_\ell}$$

 $e_{\emptyset} = e_0 = 1 \quad (ext{identity}), \quad e_j^2 = -1$
 $e_j e_k = -e_k e_j \quad (j \neq k, \quad j, k \in \{1, 2, \dots, d\})$

•
$$\mathbb{R}_d = \{\sum_A x_A e_A; x_A \in \mathbb{R}\} = \Lambda_0 \oplus \Lambda_1 \oplus \cdots \oplus \Lambda_d = \Lambda_e \oplus \Lambda_o$$

• $\mathbb{C}_d = \{\sum_A z_A e_A; z_A \in \mathbb{C}\}$
• If $x \sum_{j=1}^d x_j e_j$, $y = \sum_{j=1}^d y_j e_j$ are vectors, then
 $x^2 = -|x|^2$ and $xy = -\langle x, y \rangle + x \wedge y \in \Lambda_0 \oplus \Lambda_2$

Examples

- m = 1, basis $\{e_0, e_1\}$, elements $u = a_0 + a_1e_1$, $v = b_0 + b_1e_1$
- multiplication: $uv = a_0b_0 a_1b_1 + (a_1b_0 + b_0a_1)e_1$, i.e., $\mathbb{R}_1 = \mathbb{C}$

Examples

- m = 1, basis $\{e_0, e_1\}$, elements $u = a_0 + a_1e_1$, $v = b_0 + b_1e_1$
- multiplication: $uv = a_0b_0 a_1b_1 + (a_1b_0 + b_0a_1)e_1$, i.e., $\mathbb{R}_1 = \mathbb{C}$
- m = 2, basis $\{e_0, e_1, e_2, e_3 = e_{12} = e_1e_2\}$, elements $q = a + be_1 + ce_2 + de_3$
- multiplication:

$$e_1^2=e_2^2=e_3^2=-1,\ e_1e_2=e_3,\ e_3e_1=e_2,\ e_2e_3=e_1$$

i.e., $\mathbb{R}_2 = \mathbb{H}$, the set of quaternions

Examples

- m = 1, basis $\{e_0, e_1\}$, elements $u = a_0 + a_1e_1$, $v = b_0 + b_1e_1$
- multiplication: $uv = a_0b_0 a_1b_1 + (a_1b_0 + b_0a_1)e_1$, i.e., $\mathbb{R}_1 = \mathbb{C}$
- m = 2, basis $\{e_0, e_1, e_2, e_3 = e_{12} = e_1e_2\}$, elements $q = a + be_1 + ce_2 + de_3$
- multiplication:

$$e_1^2=e_2^2=e_3^2=-1,\ e_1e_2=e_3,\ e_3e_1=e_2,\ e_2e_3=e_1$$

i.e., $\mathbb{R}_2 = \mathbb{H}$, the set of quaternions • d = 3, basis $\{e_0, e_1, e_2, e_3, e_{12}, e_{23}, e_{31}, e_{123}\}$

• We consider functions $f : \mathbb{R}^d \to \mathbb{R}_d$, i.e., $f : \mathbb{R} \to \mathbb{C}$, $f : \mathbb{R}^2 \to \mathbb{H}$, $f : \mathbb{R}^3 \to \mathbb{R}_3$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• We consider functions $f : \mathbb{R}^d \to \mathbb{R}_d$, i.e., $f : \mathbb{R} \to \mathbb{C}$, $f : \mathbb{R}^2 \to \mathbb{H}, f : \mathbb{R}^3 \to \mathbb{R}_3$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}_d$, then $Df = \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

• We consider functions $f : \mathbb{R}^d \to \mathbb{R}_d$, i.e., $f : \mathbb{R} \to \mathbb{C}$, $f : \mathbb{R}^2 \to \mathbb{H}, f : \mathbb{R}^3 \to \mathbb{R}_3$.

• If $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}_d$, then $Df = \sum_{j=1}^d e_j \frac{\partial f}{\partial x_i}$

• If
$$f: \Omega \subset \mathbb{R}^{d+1} \to \mathbb{R}_d$$
, then $\partial f = \frac{\partial f}{\partial x_0} + \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• We consider functions $f : \mathbb{R}^d \to \mathbb{R}_d$, i.e., $f : \mathbb{R} \to \mathbb{C}$, $f : \mathbb{R}^2 \to \mathbb{H}$, $f : \mathbb{R}^3 \to \mathbb{R}_3$.

• If $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}_d$, then $Df = \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

• If $f: \Omega \subset \mathbb{R}^{d+1} \to \mathbb{R}_d$, then $\partial f = \frac{\partial f}{\partial x_0} + \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

• We say f is (left) monogenic on Ω if Df = 0 (or $\partial f = 0$)

• We consider functions $f : \mathbb{R}^d \to \mathbb{R}_d$, i.e., $f : \mathbb{R} \to \mathbb{C}$, $f : \mathbb{R}^2 \to \mathbb{H}, f : \mathbb{R}^3 \to \mathbb{R}_3$.

• If $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}_d$, then $Df = \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

• If
$$f: \Omega \subset \mathbb{R}^{d+1} \to \mathbb{R}_d$$
, then $\partial f = \frac{\partial f}{\partial x_0} + \sum_{j=1}^d e_j \frac{\partial f}{\partial x_j}$

- We say f is (left) monogenic on Ω if Df = 0 (or $\partial f = 0$)
- $f: \mathbb{R}^{1+1} \rightarrow \mathbb{R}_1 = \mathbb{C}, f(x,y) = u(x,y) + e_1v(x,y)$

$$\partial f = \frac{\partial f}{\partial x} + e_1 \frac{\partial f}{\partial y} = \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right) + e_1 \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$$

So monogenicity \equiv complex analyticity

Why Dirac operators?

•
$$H, E : \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$$
 vectorfields
 $H = H_1e_1 + H_2e_2 + H_3e_3; \quad E = E_1e_{23} + E_2e_{31} + E_3e_{12}$
 $F = H + iE : \Omega \to \mathbb{C}_3$

Why Dirac operators?

•
$$H, E : \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$$
 vectorfields
 $H = H_1 e_1 + H_2 e_2 + H_3 e_3; \quad E = E_1 e_{23} + E_2 e_{31} + E_3 e_{12}$
 $F = H + iE : \Omega \to \mathbb{C}_3$
• Perturbed Dirac operator: $(D + \lambda)F = 0 \iff$

div
$$E = \operatorname{div} H = 0$$
, curl $E - i\lambda H = 0$, curl $H + i\lambda E = 0$

Why Dirac operators?

•
$$H, E : \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3$$
 vectorfields
 $H = H_1e_1 + H_2e_2 + H_3e_3; \quad E = E_1e_{23} + E_2e_{31} + E_3e_{12}$
 $F = H + iE : \Omega \to \mathbb{C}_3$
• Perturbed Dirac operator: $(D + \lambda)F = 0 \iff$

 $\operatorname{div} E = \operatorname{div} H = 0, \ \operatorname{curl} E - i\lambda H = 0, \ \operatorname{curl} H + i\lambda E = 0$

 Dirac operators factorize the Laplacian and the Helmholtz operator:

$$D^2 = -\Delta;$$
 $(D + ik)(D - ik) = -\Delta^2 + k^2$

• Monogenic functions and Dirac operators play a fundamental role in electromagnetic/acoustic scattering theory.

Hypercomplex function theory

• Ω a domain in \mathbb{R}^n with Lipschitz boundary, f left monogenic in Ω , n(x) the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x) = \frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^n \setminus \{0\}$ and

$$\frac{1}{\omega_n}\int_{\partial\Omega}G(x-y)n(y)f(y)\,d\sigma(y)=f(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hypercomplex function theory

• Ω a domain in \mathbb{R}^n with Lipschitz boundary, f left monogenic in Ω , n(x) the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x) = \frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^n \setminus \{0\}$ and

$$\frac{1}{\omega_n}\int_{\partial\Omega}G(x-y)n(y)f(y)\,d\sigma(y)=f(x)$$

• Also have analogues of Liouville's theorem, mean-value theorem, Taylor theorem

Hypercomplex function theory

• Ω a domain in \mathbb{R}^n with Lipschitz boundary, f left monogenic in Ω , n(x) the outward pointing normal to Ω at $x \in \partial \Omega$ and $G(x) = \frac{x}{|x|^{n+1}}$. Then G is left and right monogenic on $\mathbb{R}^n \setminus \{0\}$ and

$$\frac{1}{\omega_n}\int_{\partial\Omega}G(x-y)n(y)f(y)\,d\sigma(y)=f(x)$$

- Also have analogues of Liouville's theorem, mean-value theorem, Taylor theorem
- The product of monogenic functions is in general not monogenic!

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{ij} = x_i \partial_j - x_j \partial_i$ $(1 \le i, j \le d)$

Angular Dirac operator: $\Gamma = -\sum_{1 \le i < j \le d} e_i e_j \mathcal{L}_{ij}$

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{ij} = x_i \partial_j - x_j \partial_i$ $(1 \le i, j \le d)$

Angular Dirac operator: $\Gamma = -\sum_{1 \le i < j \le d} e_i e_j \mathcal{L}_{ij}$

Position operator: $Qf(x) = xf(x) \Rightarrow Q^2f(x) = -|x|^2f(x)$

Commutation Relation: $[D, Q] = 2\Gamma - dI$

Basic Operators of Clifford Analysis

Angular momentum operators: $\mathcal{L}_{ij} = x_i \partial_j - x_j \partial_i$ $(1 \le i, j \le d)$

Angular Dirac operator: $\Gamma = -\sum_{1 \le i < j \le d} e_i e_j \mathcal{L}_{ij}$

Position operator: $Qf(x) = xf(x) \Rightarrow Q^2f(x) = -|x|^2f(x)$

Commutation Relation: $[D, Q] = 2\Gamma - dI$

Clifford-Hermite operators:

$$\begin{aligned} \mathcal{H}_{d}^{+} &= (D+Q)(D-Q) = -\Delta + |x|^{2} + \Gamma - dI = \mathcal{H}_{d} + (\Gamma - (d/2)I) \\ \mathcal{H}_{d}^{-} &= (D-Q)(D+Q) = -\Delta + |x|^{2} - \Gamma + dI = \mathcal{H}_{d} - (\Gamma - (d/2)I) \end{aligned}$$

Quaternionic Fourier transform for colour images

Quaternionic FT's: (Ell, Sangwine,...)

$$\mathcal{F}_1 f(u) = \int_{\mathbb{R}^2} f(x) e^{-2\pi e_1 u_1 x_1} e^{-2\pi e_2 u_2 x_2} dx$$
$$\mathcal{F}_2 f(u) = \int_{\mathbb{R}^2} e^{-2\pi e_1 u_1 x_1} f(x) e^{-2\pi e_2 u_2 x_2} dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Quaternionic Fourier transform for colour images

Quaternionic FT's: (Ell, Sangwine,...)

$$\mathcal{F}_{1}f(u) = \int_{\mathbb{R}^{2}} f(x)e^{-2\pi e_{1}u_{1}x_{1}}e^{-2\pi e_{2}u_{2}x_{2}} dx$$
$$\mathcal{F}_{2}f(u) = \int_{\mathbb{R}^{2}} e^{-2\pi e_{1}u_{1}x_{1}}f(x)e^{-2\pi e_{2}u_{2}x_{2}} dx$$

- no convolution theorem
- lacking covariances
Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$\mathcal{F}_t f(y) = e^{it\mathcal{H}_d}f(y) = \int_{\mathbb{R}^d} K_t(y,x)f(x) \, dx \qquad (t \in \mathbb{R})$$

with $\mathcal{F}_{\pi/2} = \mathcal{F}$ and

$$K_t(x,y) = \sqrt{\frac{-ie^{it} \csc t}{2\pi}} \exp(-i(\csc t)xy + i(\cot t)(|x|^2 + |y|^2)/2).$$

Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$\mathcal{F}_t f(y) = e^{it\mathcal{H}_d}f(y) = \int_{\mathbb{R}^d} K_t(y,x)f(x) \, dx \qquad (t \in \mathbb{R})$$

with $\mathcal{F}_{\pi/2}=\mathcal{F}$ and

$$K_t(x,y) = \sqrt{\frac{-ie^{it}\csc t}{2\pi}} \exp(-i(\csc t)xy + i(\cot t)(|x|^2 + |y|^2)/2).$$

(CFT): [Brackx, De Schepper, Sommen: JFAA 2005]

$$\mathcal{F}^{\pm} = \exp(-i(\pi/2)\mathcal{H}_d^{\pm})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Fractional Clifford-Fourier transform (frCFT)

Classical fractional Fourier transform (frFT)

$$\mathcal{F}_t f(y) = e^{it\mathcal{H}_d}f(y) = \int_{\mathbb{R}^d} K_t(y,x)f(x) \, dx \qquad (t \in \mathbb{R})$$

with $\mathcal{F}_{\pi/2}=\mathcal{F}$ and

$$K_t(x,y) = \sqrt{\frac{-ie^{it}\csc t}{2\pi}} \exp(-i(\csc t)xy + i(\cot t)(|x|^2 + |y|^2)/2).$$

(CFT): [Brackx, De Schepper, Sommen: JFAA 2005]

$$\mathcal{F}^{\pm} = \exp(-i(\pi/2)\mathcal{H}_d^{\pm})$$

More generally: $\mathcal{F}_t^{\pm} = \exp(-it\mathcal{H}_d^{\pm})$ (frCFT)

Fractional Clifford-Fourier transform

frCFT kernel:

$$\begin{aligned} \mathcal{F}_t^{\pm} &= \exp(-it(\mathcal{H}_d \pm (\Gamma - d/2)) \\ &= \exp(\mp it(\Gamma - d/2))\exp(-it\mathcal{H}_d) \\ &= \exp(\mp it(\Gamma - d/2))\mathcal{F}_t. \end{aligned}$$

$$C_t^{\pm}(x,y) = \exp(\pm itd/2)\exp(\mp it\Gamma_y)K_t(x,y)$$

Fractional Clifford-Fourier transform

frCFT kernel:

$$\begin{aligned} \mathcal{F}_t^{\pm} &= \exp(-it(\mathcal{H}_d \pm (\Gamma - d/2)) \\ &= \exp(\mp it(\Gamma - d/2))\exp(-it\mathcal{H}_d) \\ &= \exp(\mp it(\Gamma - d/2))\mathcal{F}_t. \end{aligned}$$

$$C_t^{\pm}(x,y) = \exp(\pm itd/2)\exp(\mp it\Gamma_y)K_t(x,y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Note: Terms in $\Gamma = -\sum_{1 \le i < j \le d} e_i e_j \mathcal{L}_{ij}$ not not commute.

Initial value problems

Theorem (Craddock, H. (JFAA 2013))

f is scalar-valued then $\exp(it\Gamma)f(x) = u(x, t) + \Gamma w(x, t)$ with u, w scalar-valued satisfying the initial value problems

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} + i(d-2)\frac{\partial u}{\partial t} &= |x|^2 \Delta_T u \quad (x \in \mathbb{R}^d, \ t > 0) \\ u(x,0) &= f(x) \quad (x \in \mathbb{R}^d) \\ \frac{\partial u}{\partial t}\Big|_{t=0} &= 0 \quad (x \in \mathbb{R}^d) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mean-value solutions

Theorem (Gonzalez, Zhang (Contemp. Math. 2006)) *d even:*

$$u(x,t) = c_d \left[\frac{d}{dt} \left(-\frac{d}{d(\cos t)} \right)^{(d-4)/2} ((\sin t)^{d-3} M^t f(x)) \right]$$

d odd:

$$u(x,t) = c_d \frac{d}{dt} \int_0^t \frac{\left[\left(-\frac{d}{d(\cos s)} \right)^{(d-3)/2} (\sin s)^{d-3} M^s f(x) \right]}{\sqrt{\cos s - \cos t}} \sin s \, ds$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mean-value solutions

Theorem (Gonzalez, Zhang (Contemp. Math. 2006)) *d even:*

$$u(x,t) = c_d \left[\frac{d}{dt} \left(-\frac{d}{d(\cos t)} \right)^{(d-4)/2} ((\sin t)^{d-3} M^t f(x)) \right]$$

d odd:

$$u(x,t) = c_d \frac{d}{dt} \int_0^t \frac{\left[\left(-\frac{d}{d(\cos s)} \right)^{(d-3)/2} (\sin s)^{d-3} M^s f(x) \right]}{\sqrt{\cos s - \cos t}} \sin s \, ds$$

$$u(x,t) = c \frac{d}{dt} \int_0^t \frac{M^s f(x)}{\sqrt{\cos s - \cos t}} \sin s \, ds$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

d = 2: frCFT kernel

When d = 2, the IVP simplifies:

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial \theta^2} \quad (x = (r \cos \theta, r \sin \theta) \in \mathbb{R}^2, \ t > 0) \\ u(x, 0) &= f(x) \quad (x \in \mathbb{R}^2) \\ u_t|_{t=0} &= 0 \quad (x \in \mathbb{R}^2) \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

has d'Alembert solution: $u = \frac{f(\theta + t) + f(\theta - t)}{2}$

d = 2: frCFT kernel

When d = 2, the IVP simplifies:

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial \theta^2} \quad (x = (r \cos \theta, r \sin \theta) \in \mathbb{R}^2, \ t > 0) \\ u(x, 0) &= f(x) \quad (x \in \mathbb{R}^2) \\ u_t|_{t=0} &= 0 \quad (x \in \mathbb{R}^2) \end{aligned}$$

has d'Alembert solution: $u = \frac{f(\theta + t) + f(\theta - t)}{2}$

$$C_t^{(2)}(x,y) = \frac{-ie^{it}}{2\pi \sin t} e^{(i/2)\cot t |x-y|^2} e^{-x \wedge y}$$

$$\mathcal{F}^+f(y) = \int_{\mathbb{R}^2} e^{y \wedge x} f(x) \, dx = \int_{\mathbb{R}^2} e^{e_1 e_2(x_2 y_1 - x_1 y_2)} f(x) \, dx$$

See also: Brackx, De Schepper, Sommen: J Math Imag Vis (2006)

d > 2: Separation of variables

$$u = u(x, y, t) = u(z, \omega, t)$$
 with $z = |x||y|$, $\omega = \langle x, y \rangle/z$.

 $f(x) = F(\langle x, y \rangle) = F(|x||y|\omega).$

$$u = \sum_{\ell=0}^{\infty} \left(\frac{(\ell+d-2)e^{i\ell t} + \ell e^{i(2-d-\ell)t}}{2\ell+d-2} \right) \\ \times \left(\int_{-1}^{1} F(s) P_{\ell}^{d}(s) (1-s^{2})^{(d-3)/2} \, ds \right) N(d,\ell) P_{\ell}^{d}(\omega)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

d = 4: solution of the IVP

d'Alembert-like solution:

$$z = |x||y|, f(x) = F(\langle x, y \rangle) = F(z \cos \theta)$$

$$u = u(z, \theta, t)$$

$$= \frac{e^{-it}}{2\sin \theta} \left[\sin(\theta + t)F(z \cos(\theta + t)) + \sin(\theta - t)F(z \cos(\theta - t)) + i \int_{\cos(\theta + t)}^{\cos(\theta - t)} F(zs) ds \right]$$

d = 4: frCFT kernel

Theorem (Craddock, H. (JFAA 2013)) $C_t^{(4)}(x, y) = u + v, \ u \in \Lambda_0, \ v \in \Lambda_2 \ and$ $u = -\frac{e^{3it}}{4\pi^2 \sin t} e^{(i/2)\cot t|x-y|^2} \left[\cot t \cos|x \wedge y| + i\frac{\langle x, y \rangle}{|x \wedge y|}\sin|x \wedge y| + i\frac{\sin|x \wedge y|}{|x \wedge y|}\right]$

 $v = \cdots$

Theorem (Craddock, H. (JFAA 2013)) Let d > 2, $g \in C^1[-1, 1]$ and G an antiderivative of g, then

$$u_{d+2}^{e}(g) = \frac{e^{-it}}{z} \frac{\partial u_{d}^{e}(G)}{\partial \omega}; \quad u_{d+2}^{o}(g) = \frac{d}{d-2} \frac{e^{-it}}{z} \frac{\partial u_{d}^{o}(G)}{\partial \omega}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$e^{it\Gamma_x}(\langle x,y
angle^m)=\sum_{\ell=0}^m c_\ell^{(m)}(t)\langle x,y
angle^{m-\ell}(x\wedge y)^\ell$$

$$e^{it\Gamma_x}(\langle x,y\rangle^m) = \sum_{\ell=0}^m c_\ell^{(m)}(t)\langle x,y\rangle^{m-\ell}(x\wedge y)^\ell$$

$$egin{aligned} &rac{d}{dt}(e^{it\Gamma_{ imes}}\langle x,y
angle^m) &= \sum_{\ell=0}^m rac{d}{dt}c_\ell^{(m)}(t)\langle x,y
angle^{m-\ell}(x\wedge y)^\ell \ &= \sum_{\ell=0}^m c_\ell^{(m)}(t)\sum_{j=0}^m A_{\ell j}^{(m)}\langle x,y
angle^{m-j}(x\wedge y)^j \end{aligned}$$

$$e^{it\Gamma_x}(\langle x,y\rangle^m)=\sum_{\ell=0}^m c_\ell^{(m)}(t)\langle x,y\rangle^{m-\ell}(x\wedge y)^\ell$$

$$\begin{split} \frac{d}{dt}(e^{it\Gamma_x}\langle x,y\rangle^m) &= \sum_{\ell=0}^m \frac{d}{dt}c_\ell^{(m)}(t)\langle x,y\rangle^{m-\ell}(x\wedge y)^\ell\\ &= \sum_{\ell=0}^m c_\ell^{(m)}(t)\sum_{j=0}^m A_{\ell j}^{(m)}\langle x,y\rangle^{m-j}(x\wedge y)^j \end{split}$$

$$rac{d}{dt} \mathbf{c}^{(m)}(t) = i \mathcal{A}^{(m)} \mathbf{c}^{(m)}; \quad \mathbf{c}^{(m)}(0) = e_0 \Rightarrow \mathbf{c}^{(m)}(t) = e^{i t \mathcal{A}^{(m)}} e_0.$$

$$A^{(2N)} = \begin{pmatrix} 0 & 2N & 0 & 0 & \dots & \dots & \dots \\ d-1 & 2-d & 2N-1 & 0 & \dots & \dots & \dots \\ 0 & 2 & 0 & 2N-2 & \dots & \dots & \dots \\ 0 & 0 & d+1 & 2-d & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & 2-d & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & 2N & 0 \end{pmatrix}$$

$$A^{(2N)} = \begin{pmatrix} 0 & 2N & 0 & 0 & \dots & \dots & \dots \\ d-1 & 2-d & 2N-1 & 0 & \dots & \dots & \dots \\ 0 & 2 & 0 & 2N-2 & \dots & \dots & \dots \\ 0 & 0 & d+1 & 2-d & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & 2-d & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & 2N & 0 \end{pmatrix}$$

 $A^{(m)}$ associated with the recurrence relations for the dual -1 Hahn polynomials. Eigenvectors are values of these polynomials

- Orthogonality relations used to compute the exponentials
- Generating functions to compute the resulting sums in closed form

Properties of the CFT

- Eigenfunction property: $D_x C_d^+(x, y) = C_d^-(x, y)y$
- Mapping properties: $\mathcal{F}^+: L^1 \to L^\infty, \ \mathcal{S} \to \mathcal{S}, \ L^2 \to L^2$
- Plancherel: $\int_{\mathbb{R}^2} \overline{f(x)}g(x) dx = (f,g) = (\mathcal{F}_d^+ f, \mathcal{F}_d^+ g)$
- Inversion: $(\mathcal{F}_d^+)^2 = I$
- Covariances:

$$\mathcal{F}_2^+\tau_h = e^{y \wedge h} \mathcal{F}_2^+; \qquad \mathcal{F}_2^+(e^{x \wedge h}f) = \tau_h \mathcal{F}_2^+; \qquad \rho \mathcal{F}_2^+ = \mathcal{F}_2^+ \rho^{-1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of the CFT

- Eigenfunction property: $D_x C_d^+(x, y) = C_d^-(x, y)y$
- Mapping properties: $\mathcal{F}^+ : L^1 \to L^\infty, \ \mathcal{S} \to \mathcal{S}, \ L^2 \to L^2$
- Plancherel: $\int_{\mathbb{R}^2} \overline{f(x)}g(x) dx = (f,g) = (\mathcal{F}_d^+ f, \mathcal{F}_d^+ g)$
- Inversion: $(\mathcal{F}_d^+)^2 = I$
- Covariances:

$$\mathcal{F}_2^+\tau_h = e^{y \wedge h} \mathcal{F}_2^+; \qquad \mathcal{F}_2^+(e^{x \wedge h}f) = \tau_h \mathcal{F}_2^+; \qquad \rho \mathcal{F}_2^+ = \mathcal{F}_2^+ \rho^{-1}$$

Theorem

Let $\sigma \in SO(d)$ and $z = z_{\sigma} \in Spin(d)$ such that $\sigma(x) = zx\overline{z}$ for all $x \in \Lambda_1$. Let $S_z f(x) = \overline{z}f(zx\overline{z})z$. Then

$$\mathcal{F}_d^+ S_z = S_z \mathcal{F}_d^+$$

Properties of the CFT

- Eigenfunction property: $D_x C_d^+(x, y) = C_d^-(x, y)y$
- Mapping properties: $\mathcal{F}^+: L^1 \to L^\infty, \ \mathcal{S} \to \mathcal{S}, \ L^2 \to L^2$
- Plancherel: $\int_{\mathbb{R}^2} \overline{f(x)}g(x) dx = (f,g) = (\mathcal{F}_d^+ f, \mathcal{F}_d^+ g)$
- Inversion: $(\mathcal{F}_d^+)^2 = I$
- Covariances:

$$\mathcal{F}_2^+\tau_h = e^{y \wedge h} \mathcal{F}_2^+; \qquad \mathcal{F}_2^+(e^{x \wedge h}f) = \tau_h \mathcal{F}_2^+; \qquad \rho \mathcal{F}_2^+ = \mathcal{F}_2^+ \rho^{-1}$$

Theorem

Let $\sigma \in SO(d)$ and $z = z_{\sigma} \in Spin(d)$ such that $\sigma(x) = zx\overline{z}$ for all $x \in \Lambda_1$. Let $S_z f(x) = \overline{z}f(zx\overline{z})z$. Then

$$\mathcal{F}_d^+ S_z = S_z \mathcal{F}_d^+$$

cf. classical FT: $\mathcal{F}R_{\sigma} = R_{\sigma}^{-1}\mathcal{F}$

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

d = 2: Quaternionic signal processing

Definition

An parity matrix is one of the form $A(\xi) = \begin{pmatrix} s(\xi) & v(\xi) \\ v(-\xi) & s(-\xi) \end{pmatrix}$ with $s : \mathbb{R}^d \to \Lambda_e$ and $v : \mathbb{R}^d \to \Lambda_o$. $A(\xi)^* = \overline{A}(\xi)^T$.

d = 2: Quaternionic signal processing

Definition

An parity matrix is one of the form $A(\xi) = \begin{pmatrix} s(\xi) & v(\xi) \\ v(-\xi) & s(-\xi) \end{pmatrix}$ with $s : \mathbb{R}^d \to \Lambda_e$ and $v : \mathbb{R}^d \to \Lambda_o$. $A(\xi)^* = \overline{A}(\xi)^T$.

Given $f : \mathbb{R}^d \to \mathbb{R}_d$, its associated parity matrix is

$$[f(x)] = \begin{pmatrix} f_e(x) & f_o(x) \\ f_o(-x) & f_e(-x) \end{pmatrix}$$

where $f(x) = f_e(x) + f_o(x)$ and $f_e : \mathbb{R}^d \to \Lambda_e$, $f_o : \mathbb{R}^d \to \Lambda_o$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convolution theorem (d = 2)

Convolution-filtering: $f : \mathbb{R}^2 \to \mathbb{H}, \ \hat{f} = \mathcal{F}_2^+ f$

$$\widehat{f * g}(y) = \int e^{y \wedge x} \int f(x - t)g(t) \, dt \, dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Convolution theorem (d = 2)

Convolution-filtering: $f : \mathbb{R}^2 \to \mathbb{H}, \ \hat{f} = \mathcal{F}_2^+ f$

$$\widehat{f * g}(y) = \int e^{y \wedge x} \int f(x-t)g(t) \, dt \, dx$$

Theorem (H, Morris (2013))

$$\widehat{f * g}(y) \neq \widehat{f}(y)\widehat{g}(y)$$
 but $[\widehat{f * g}(y)] = [\widehat{f}(y)][\widehat{g}(y)]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Translation-invariance

Theorem (H, Morris (2013))

 $T: L^2(\mathbb{R}^2, \mathbb{H}) \to L^2(\mathbb{R}^2, \mathbb{H})$ is bounded, right \mathbb{H} -linear and translation-invariant if and only if there exists a bounded parity matrix $A(\xi)$ such that

 $[\widehat{Tf}(\xi)] = A(\xi)[\widehat{f}(\xi)].$

Translation-invariance

Theorem (H, Morris (2013))

 $T: L^2(\mathbb{R}^2, \mathbb{H}) \to L^2(\mathbb{R}^2, \mathbb{H})$ is bounded, right \mathbb{H} -linear and translation-invariant if and only if there exists a bounded parity matrix $A(\xi)$ such that

 $[\widehat{Tf}(\xi)] = A(\xi)[\widehat{f}(\xi)].$

Theorem (H, Morris (2013)) $X \subset L^2(\mathbb{R}^2, \mathbb{H})$ is a closed translation-invariant right \mathbb{H} -linear submodule of $L^2(\mathbb{R}^2, \mathbb{H})$ if and only if there exists an idempotent self-adjoint parity matrix $A(\xi)$ such that $[\hat{f}(\xi)] = A(\xi)[\hat{f}(\xi)]$ for all $f \in X$.

・ロト・4週ト・モート・モー・シュル

Examples:

•
$$E \subset \mathbb{R}^2$$
 measurable.
 $X = X_E = \{f \in L^2(\mathbb{R}^2, \mathbb{H}); \hat{f}(\xi) = 0 \text{ off } E\}.$
 $A_E(\xi) = \begin{pmatrix} \chi_E(\xi) & 0\\ 0 & \chi_{-E}(\xi) \end{pmatrix}, \quad m(\xi) = \chi_E(\xi)$

Examples:

•
$$E \subset \mathbb{R}^2$$
 measurable.
 $X = X_E = \{f \in L^2(\mathbb{R}^2, \mathbb{H}); \hat{f}(\xi) = 0 \text{ off } E\}.$
 $A_E(\xi) = \begin{pmatrix} \chi_E(\xi) & 0\\ 0 & \chi_{-E}(\xi) \end{pmatrix}, \quad m(\xi) = \chi_E(\xi)$

*H*²_±(ℝ^d) the Hardy spaces of functions with "monogenic extensions" to ℝ^d_±.

$$egin{aligned} \mathcal{A}_{\pm}(\xi) &= rac{1}{2} egin{pmatrix} 1 & \pm \xi/|\xi| \ \mp \xi/|\xi| & 1 \ \end{pmatrix}; \quad m_{\pm}(\xi) &= rac{1}{2} igg(1\pmrac{\xi}{|\xi|}igg) \end{aligned}$$

・ロト・日本・モト・モート ヨー うへで

The Hilbert multiplier

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Continuous wavelet transform

$$\psi \in L^2(\mathbb{R}^2,\mathbb{R}_2), \ \psi_t(x) = t^{-2}\psi(x/t), \ \psi^*(x) = \overline{\psi(-x)}.$$

Wavelet transform: $f \mapsto W_{\psi}f(x,t) = f * \psi_t^*(x)$

Calderón singular integral:
$$T_\psi f(x) = \int_0^\infty W_\psi f(\cdot,t) * \psi_t(x) \, rac{dt}{t}$$

Continuous wavelet transform

$$\psi \in L^2(\mathbb{R}^2, \mathbb{R}_2), \ \psi_t(x) = t^{-2}\psi(x/t), \ \psi^*(x) = \overline{\psi(-x)}.$$

Wavelet transform: $f \mapsto W_{\psi}f(x,t) = f * \psi_t^*(x)$

Calderón singular integral:
$$T_{\psi}f(x) = \int_0^\infty W_{\psi}f(\cdot, t) * \psi_t(x) \frac{dt}{t}$$

Theorem (Morris, H. (2012))

 T_{ψ} bounded and invertible if and only if there exist constants $0 < A \le B < \infty$ such that

$$A.I \leq \int_0^\infty [\hat{\psi}(t\xi)]^* [\hat{\psi}(t\xi)] \frac{dt}{t} \leq B.I$$

for a.e. ξ .

Quaternionic scaling functions in $L^2(\mathbb{R}^2,\mathbb{H})$

 $\{h_k\} \in \ell^2(\mathbb{Z}^2, \mathbb{H}) \text{ then } m_0(y) = \sum_{\ell \in \mathbb{Z}^2} e^{2\pi\ell \wedge y} h_k$ Theorem (H, Morris (2012)) $\{\varphi(x-\ell)\}_{\ell \in \mathbb{Z}^2} \text{ orthonormal in } L^2(\mathbb{R}^2, \mathbb{H}) \text{ if and only if }$

$$\sum_{\ell \in \mathbb{Z}^2} [\hat{\varphi}(y+\ell)] [\hat{\varphi}(y+\ell)]^* = I$$
(1)

Quaternionic scaling functions in $L^2(\mathbb{R}^2,\mathbb{H})$

 $\{h_k\} \in \ell^2(\mathbb{Z}^2, \mathbb{H}) \text{ then } m_0(y) = \sum_{\ell \in \mathbb{Z}^2} e^{2\pi \ell \wedge y} h_k$ Theorem (H, Morris (2012)) $\{\varphi(x - \ell)\}_{\ell \in \mathbb{Z}^2} \text{ orthonormal in } L^2(\mathbb{R}^2, \mathbb{H}) \text{ if and only if }$

$$\sum_{\ell \in \mathbb{Z}^2} [\hat{\varphi}(y+\ell)] [\hat{\varphi}(y+\ell)]^* = I$$
(1)

 φ is self-similar if

$$\frac{1}{4}\varphi\left(\frac{x}{2}\right) = \sum_{\ell \in \mathbb{Z}^2} \varphi(x-\ell)h_\ell \iff [\hat{\varphi}(2y)] = [\hat{\varphi}(y)][m_0(-y)] \quad (2)$$

Quaternionic scaling functions in $L^2(\mathbb{R}^2,\mathbb{H})$

 $\{h_k\} \in \ell^2(\mathbb{Z}^2, \mathbb{H}) \text{ then } m_0(y) = \sum_{\ell \in \mathbb{Z}^2} e^{2\pi \ell \wedge y} h_k$ Theorem (H, Morris (2012)) $\{\varphi(x-\ell)\}_{\ell \in \mathbb{Z}^2} \text{ orthonormal in } L^2(\mathbb{R}^2, \mathbb{H}) \text{ if and only if }$

$$\sum_{\ell \in \mathbb{Z}^2} [\hat{\varphi}(y+\ell)] [\hat{\varphi}(y+\ell)]^* = I$$
(1)

 φ is self-similar if

$$\frac{1}{4}\varphi\left(\frac{x}{2}\right) = \sum_{\ell \in \mathbb{Z}^2} \varphi(x-\ell)h_\ell \iff [\hat{\varphi}(2y)] = [\hat{\varphi}(y)][m_0(-y)] \quad (2)$$

$$(1)+(2) \Longrightarrow [m_0(0)] = I \text{ and } \sum_{p \in P} [m_0(y+p)]^*[m_0(y+p)] = I$$

(QMF condition) with $P = \{0, (1/2, 0), (0, 1/2), (1/2, 1/2)\}.$
Quaternionic wavelets

$$[\hat{\psi}_j(2y)] = [m_j(y)][\hat{\varphi}(y)] \quad (1 \le j \le 3)$$

$$U(y) = \begin{pmatrix} [m_0(y)] & [m_1(y)] & [m_2(y)] & [m_3(y)] \\ [m_0(y+p_1)] & [m_1(y+p_1)] & [m_2(y+p_1)] & [m_3(y+p_1)] \\ [m_0(y+p_2)] & [m_1(y+p_2)] & [m_2(y+p_2)] & [m_3(y+p_2)] \\ [m_0(y+p_3)] & [m_1(y+p_3)] & [m_2(y+p_3)] & [m_3(y+p_3)] \end{pmatrix}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Quaternionic wavelets

$$[\hat{\psi}_j(2y)] = [m_j(y)][\hat{\varphi}(y)] \quad (1 \le j \le 3)$$

$$U(y) = \begin{pmatrix} [m_0(y)] & [m_1(y)] & [m_2(y)] & [m_3(y)] \\ [m_0(y+p_1)] & [m_1(y+p_1)] & [m_2(y+p_1)] & [m_3(y+p_1)] \\ [m_0(y+p_2)] & [m_1(y+p_2)] & [m_2(y+p_2)] & [m_3(y+p_2)] \\ [m_0(y+p_3)] & [m_1(y+p_3)] & [m_2(y+p_3)] & [m_3(y+p_3)] \end{pmatrix}$$

Theorem (H, Morris (2012)) $\{2^{j}\psi_{j}(2^{j}-k); 1 \leq j \leq 3, j \in \mathbb{Z}, k \in \mathbb{Z}^{2}\}$ o.n.b. for $L^{2}(\mathbb{R}^{2},\mathbb{H})$ if and only if

$$U(0)=I$$
 and $U(y)U(y)^*=I$ for a.e. y

Scalar case, d = 1:

$$U(\xi) = \begin{pmatrix} m_0(\xi) & m_1(\xi) \\ m_0(\xi + 1/2) & m_1(\xi + 1/2) \end{pmatrix}$$
$$\varphi \longleftrightarrow m_0$$

$$m_0$$
 a trig poly $\iff \{h_k\}$ a finite sequence $\iff \varphi$ compactly supported

Wavelet ψ : $\hat{\psi}(2\xi) = m_1(\xi)\hat{\varphi}(\xi)$. (φ, ψ) a mother-father wavelet pair if and only if

• $U(\xi)$ unitary for all ξ and

•
$$U(0) = I$$

$$m_0, \,\, m_1 ext{ trig polys } \Rightarrow U(\xi) = \sum_{k=0}^{M-1} A_k e^{2\pi i k \xi}$$

$$I = U(\xi)U(\xi)^* \iff \sum_{k=0}^{M-1-\ell} A_k A_{k+\ell}^* = \delta_\ell$$
(3)

Samples of $U(\xi)$: $U_{\ell} = U(\ell/M)$

$$U_{\ell} = \sum_{k=0}^{M-1} A_k e^{2\pi i k \ell/M} \Rightarrow A_k = \frac{1}{M} \sum_{\ell=0}^{M-1} U_{\ell} e^{-2\pi i \ell k/M}$$
(4)

Proposition $U(\xi)$ unitary for all ξ if and only if

$$\sum_{n=0}^{M-1} \sum_{j=0}^{M-1} b_{nj}^{(\ell)} U_n^* U_j = M^2 \delta_\ell I \quad (0 \le \ell \le M-1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where
$$b_{nj}^{(\ell)} = e^{-2\pi i \ell j / M} \sum_{k=0}^{M-1-\ell} e^{2\pi i k (n-j) / M}$$

Proposition $U(\xi)$ unitary for all ξ if and only if

$$\sum_{n=0}^{M-1} \sum_{j=0}^{M-1} b_{nj}^{(\ell)} U_n^* U_j = M^2 \delta_\ell I \quad (0 \le \ell \le M-1)$$

where
$$b_{nj}^{(\ell)} = e^{-2\pi i \ell j/M} \sum_{k=0}^{M-1-\ell} e^{2\pi i k (n-j)/M}$$
 .

Equivalently,

$$\{U_k\}_{k=0}^{M-1}$$
 unitary and $U_k^*V_k = V_k^*U_k$ $(0 \le k \le M-1)$

where

$$V_k = \sum_{m \neq k} \frac{U_m}{e^{2\pi i (k-m)/M} - 1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Reformulation

We want to find three *M*-tuple of matrices

$$\mathbf{U} = (U_0, U_1, \dots, U_{M-1})$$
$$\mathbf{V} = (V_0, V_1, \dots, V_{M-1})$$
$$\mathbf{W} = (W_0, W_1, \dots, W_{M-1})$$

such that

(i) each U_n is unitary; (ii) $V_n = \sum_{m \neq n} a_{m-n} U_m$; $\left(a_m = \frac{1}{1 - e^{2\pi i m/M}}\right)$ (iii) $W_n = V_n^* U_n$ (iv) each W_n is self-adjoint

Minimization

$$F(\mathbf{U},\mathbf{V},\mathbf{W}) = \frac{1}{2} \sum_{n=0}^{M-1} \|V_n - \sum_{m \neq n} a_{mn} U_m\|^2 + \frac{1}{2} \sum_{n=0}^{M-1} \|W_n - V_n^* U_n\|^2$$

Then compute

 $\min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{W}}F(\boldsymbol{U},\boldsymbol{V},\boldsymbol{W})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

subject to the constraints

(i) U_n unitary;

(ii) W_n self-adjoint

Other constraints

Consistency:

$$U(\xi + 1/2) = \begin{pmatrix} m_0(\xi + 1/2) & m_1(\xi + 1/2) \\ m_0(\xi) & m_1(\xi) \end{pmatrix} = JU(\xi) \quad (5)$$

where $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Equivalently,

$$U_{\ell+M/2} = JU_\ell \quad (0 \leq \ell \leq M/2 - 1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other constraints

Consistency:

$$U(\xi + 1/2) = \begin{pmatrix} m_0(\xi + 1/2) & m_1(\xi + 1/2) \\ m_0(\xi) & m_1(\xi) \end{pmatrix} = JU(\xi) \quad (5)$$

where $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Equivalently,

$$U_{\ell+M/2} = JU_\ell \quad (0 \leq \ell \leq M/2 - 1)$$

Regularity: $m'_0(1/2) = m''_0(1/2) = \cdots = m_0^{(j)}(1/2) = 0$

$$U^{(j)}(0) = \sum_{\ell=0}^{M-1} c_\ell^{(j)} U_\ell$$

Thanks!

