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First-order languages

Definition

A first-order language L is a set of symbols which can be divided in the
following six (disjunctive) subsets:

logical symbols: {¬,∧,∨,→,∀,∃,=};
constant symbols: C ⊆ {ci |i ∈ N},

examples: c0 = 0, c1 = 1, c2 = π.

function symbols: F ⊆ {f ji |i ∈ N, j ∈ N, j > 0},
where f ji is the i-th function symbol of arity j ;

examples: f 2
0 = +, f 2

1 = ·, f 2
2 = −, f 1

0 = − (change of sign).

relation symbols R ⊆ {R j
i |i ∈ N, j ∈ N},

where R j
i is the i-th relation symbol of arity j ;

examples: R2
0 = <, R2

1 = >, R3
0 = · ≡ ·mod ·, R1

0 = Prim(·).

variables: {x , y , z ,w , . . . , x0, x1, x2, . . . };
auxiliary signs: {“(”, “)”, “ , ”, “ . ”}.

Hilbert Bernays Summer School 2015 Gödel’s Incompleteness Theorems 3 / 60

First-order languages

According to the definition, for a concrete first-order language we have
only to specify only the sets C, F , and R.

Examples

1 For the language LPA of the Peano arithmetic we have: C = {0},
F = {s,+, ·}, and R = ∅, where s is a unary function symbol for the
successor function.

2 The language of set theory (without urelements) can be given by
C = F = ∅ and R = {∈}.
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Terms

Definition

The terms of L are defined inductively as following:

1 Each variable is a term.

2 Each constant symbol is a term.

3 If t1, t2, . . . , tn are terms and f n is a n-ary function symbol (n > 0),
then the expression f n(t1, t2, . . . , tn) is also a term.

Hilbert Bernays Summer School 2015 Gödel’s Incompleteness Theorems 5 / 60

Formulae

Definition

The formulae of L are defined inductively as follows:

1 If t1 and t2 are terms, then the expression t1 = t2 is a formula.

2 If t1, t2, . . . , tn are terms and Rn is a n-ary relation symbol (n ≥ 0),
then the expression Rn(t1, t2, . . . , tn) is a formula.

3 If ϕ and ψ are formulae, then the following expressions are also
formulae:

(¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ).

4 If ϕ is a formula and x a variable, then the expressions (∀x .ϕ) and
(∃x .ϕ) are also formulae.

The formulas, constructed according 1 and 2 are also called atomic
formulae.
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Free variables; sentences

Definition

The set FV (ϕ) of the free variables of a formula ϕ is recursively defined as
follows:

1 If ϕ is an atomic formula, then FV (ϕ) is the set of variables which
occur in ϕ;

2 FV (¬ϕ) = FV (ϕ);

3 FV (ϕ ∧ ψ) = FV (ϕ ∨ ψ) = FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ);

4 FV (∃x .ϕ) = FV (∀x .ϕ) = FV (ϕ) \ {x}.
A (first-order) sentence of the language L is a formula ϕ without free
variables, i.e., FV (ϕ) = ∅.
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Semantics

So far, we only considered finite sequences of symbols which we call
terms or formulae; among the formulae we distinguished, in particular,
the sentences.

Up to this point, these sequences of symbols have to be considered as
“meaningless”.

In the following, we will describe how one can relates a meaning in
the usual mathematical sense to these sequences of symbols.
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Structure

Definition

An L-structure is a pair M = 〈M,F 〉, with M a non-empty set and F a
function whose domain consists of the constants symbols, function
symbols, and relation symbols of L such that:

1 If c ∈ C, then F (c) ∈ M.

2 If f j ∈ F , with j > 0, then F (f j) : M j −→ M, i.e., a j-ary function
from M j to M.

3 If R0 ∈ R, then F (R0) is one of the two truth values t (true) or f
(false).

4 If R j ∈ R, with j > 0, then F (R j) ⊆ M j .

In the following, we will write, in general, lM instead of F (l),
l ∈ R ∪ F ∪ C. We also give a structure for languages, for which we use
only finitely many constant symbols, function symbols, and relation
symbols, by the tuple 〈M, c1

M, . . . , cn
M, f1

M, . . . , fk
M,R1

M, . . . ,Rl
M〉.
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The structure of the natural numbers

Example

For the language of the Peano arithmetik LPA, we can define the structure
of the natural numbers by N = 〈N, 0, + 1,+, ·〉.
Notice that the functions are usual mathematical (set-theoretical) objects.
For example, + is the (infinite) set

{(0, 0, 0), (0, 1, 1), (0, 2, 2), (0, 3, 3), . . .

(1, 0, 1), (1, 1, 2), (1, 2, 3), (1, 3, 4), . . .

(2, 0, 2), (2, 1, 3), (2, 2, 4), (2, 3, 5), . . .

... }

In other words, + is the subset of N3 consisting of the triples (x , y , z) with
x + y = z .
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Assignment

Definition

An assignment in M is a function s, which has as domain the variables of
L and as range a subset of M.

Definition

Let L and M be given and let s be an assignment in M. We define
(t)M(s) recursively for every term t of L:

1 If t is a variable x then (x)M(s) = s(x).

2 If t is a constant symbol c, then (c)M(s) = (c)M.

3 If t is a term of the form f j(t1, . . . , tj), then

(t)M(s) = (f j)M((t1)M(s), . . . , (tj)
M(s)).
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Modified assignment

For the following definition we need the possibility to modify assignments
(i.e., a function from variables to elements of M).

Given an assignment s and an element a ∈ M, we designate by s(ax) the
assignment which coincides with s for all variables except x ; independently
of the value of s(x), we fix s(ax)(x) = a. More exactly:

s(ax)(y) =

{
s(y), if y is a variable different from x ,
a, if y is the variable x .
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Definition

Let M be a L structure. We define, for every assignment s and every
formula ϕ the relation M |= ϕ[s]:

1 M |= (t1 = t2)[s] if and only if t1
M(s) = t2

M(s),

2 M |= R0
i [s] if and only if (R0

i )M = t,

3 M |= R j
i (t1, . . . , tj)[s], j > 0, if and only if

(t1
M(s), . . . , tj

M(s)) ∈ (R j
i )M,

4 M |= (¬ϕ)[s] if and only if it is not the case that M |= ϕ[s],

5 M |= (ϕ ∧ ψ)[s] if and only if M |= ϕ[s] and M |= ψ[s],

6 M |= (ϕ ∨ ψ)[s] if and only if M |= ϕ[s] or M |= ψ[s],

7 M |= (ϕ→ ψ)[s] if and only if, it is not the case that M |= ϕ[s] or it
is the case that M |= ψ[s],

8 M |= (∃x .ϕ)[s] if and only if there exists an element a ∈ M, such
that M |= ϕ[s(ax)],

9 M |= (∀x .ϕ)[s] if and only if for all elements a ∈ M it holds that
M |= ϕ[s(ax)].
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Semantic consequence

The assignment s is necessary to assign elements of M to the free variables
of a formula. For sentences ϕ (i.e., formulas without free variables) s does
not matter and can be surpressed in the relation M |= ϕ[s]:

Definition

Let Φ be a set of L-sentences and M be a L structure. M is a model of
Φ, written as M |= Φ, if for every sentence ϕ ∈ Φ we have M |= ϕ.
Semantic consequence is now defined as follows:
For a sentence ψ we say that it follows (semantically) from Φ, written as
Φ |= ψ, if for every model M of Φ it holds that M |= ψ.

If M |= ϕ holds, we also say that ϕ is true in M.
If M |= ϕ holds for every structure M, we also write |= ϕ.
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Compactness Theorem

Theorem (Compactness Theorem)

Let Φ be a set of first-order sentences.

If every finite subset Φ0 of Φ has a model, then there exists also a model
of Φ.

Alternative formulation:

Theorem (Compactness Theorem)

Let Φ ∪ {ϕ} be a set of first-order sentences.

If Φ |= ϕ, then there exists already a finite subset Φ0 of Φ, such that
Φ0 |= ϕ.
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Hilbert-style calculus I

Definition

We define the Hilbert-style calculus H as a derivation system with the
following (logical) axioms and rules:

1 The following formulae are axioms:
I ` ϕ→ (ψ → ϕ)
I ` (ϕ→ (χ→ ψ))→ (ϕ→ χ)→ (ϕ→ ψ)
I ` (¬ϕ→ ¬ψ)→ ψ → ϕ
I ` ϕ→ (ϕ ∨ ψ)
I ` ψ → (ϕ ∨ ψ)
I ` (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
I ` (ϕ ∧ ψ)→ ϕ
I ` (ϕ ∧ ψ)→ ψ
I ` ϕ→ (ψ → (ϕ ∧ ψ))
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Hilbert-style calculus II

Definition
2 Equality axioms.

I (u = u),
I (u = w)→ (w = u),
I (u1 = u2 ∧ u2 = u3)→ (u1 = u3),
I (u1 = w1 ∧ · · · ∧ un = wn)→ (R(u1, . . . , un)→ R(w1, . . . ,wn)),
I (u1 = w1 ∧ · · · ∧ um = wm)→ (t[u1, . . . , um] = t[w1, . . . ,wm]),

where u,w , u1, . . . are variables and constant symbols, R a n-ary
relation symbol, and t a term, in which u1, . . . , um or w1, . . . ,wm may
occur.

3 Quantifier axioms:
I ` (∀x .ϕ(x))→ ϕ(t)
I ` ϕ(t)→ (∃x .ϕ(x))
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Hilbert-style calculus III

Definition

As rules we have:

4 Modus Ponens.
` ϕ→ ψ

` ϕ
` ψ

5 Generalisation; let x be a variable not free in ϕ.

` ϕ→ ψ(x)

` ϕ→ ∀y .ψ(y)

` ψ(x)→ ϕ

` (∃y .ψ(y))→ ϕ
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Proof in H

Definition

A proof of ϕ starting from a set of formulae Φ (in the Hilbert-style
calculus H), is a finite sequence of formulae ψ1, ψ2, . . . , ψn with ψn = ϕ,
and each of these formulae ψi is either

an axiom of H,

an element of Φ, or

is obtained from the previous formulae ψj , j < i , by an application of
a rule.

We say that ϕ is provable from Φ (in the Hilbert-style calculus H), and
write Φ ` ϕ, if there exists a proof of ϕ starting from Φ.
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Example

ϕ→ ϕ is not an axiom in our calculus.

Example

` (ϕ→ ((ϕ→ ϕ)→ ϕ))→ (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) Second axiom

` ϕ→ ((ϕ→ ϕ)→ ϕ) First axiom

` (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) Modus Ponens

` ϕ→ (ϕ→ ϕ) First axiom

` ϕ→ ϕ Modus Ponens
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Deduction theorem

Proposition (Deduction theorem)

Let Φ be a set of sentences, ϕ a sentence, and ψ a formula.

Φ ` ϕ→ ψ if, and only if Φ ∪ {ϕ} ` ψ.

Example

{ϕ} ` ϕ Definition of proof

` ϕ→ ϕ Deduction theorem
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Correctness

Lemma (Correctness lemma)

Let Φ be a set of sentences and M a model of Φ.

If ϕ(x1, x2, . . . , xn) is provable from Φ, then

M |= ∀x1.∀x2. . . . .∀xn.ϕ(x1, x2, . . . , xn).
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Completeness of predicate logic

Theorem (Gödel’s completeness theorem (for H))

Let Φ be a set of sentences of a first-order language L.

A sentence ϕ is provable from Φ if and only if ϕ is true in all structures
which are models of Φ. Formally:

Φ ` ϕ if and only if Φ |= ϕ.

This theorem speaks about semantic completeness.

It ensures that the logical symbols (¬,∧,∨,→,∀,∃,=) are treated by
our calculus exactly in the way we have attributed a meaning to them
(in the definition of the notion of structure).

Please note the implicit universal quantification on the right hand
side: Φ |= ϕ stands for:

For all models M of Φ it holds that M |= ϕ.

Hilbert Bernays Summer School 2015 Gödel’s Incompleteness Theorems 23 / 60

Completeness: duality

The equivalence proven in the completeness theorem:

Φ ` ϕ ⇔ Φ |= ϕ

results in an interesting duality:

On the left side we have a statement of the form:
It exists a proof . . .

while on the right hand side we a statement of the form:

For all models . . .

Thus, the completeness theorem allows to replace the universal
quantification over models (which, in general, is not easy to handle)
by an existential quantification over proofs.

To show the semantic consequence Φ |= ϕ we do not need to
“search” for ϕ in all models of Φ, but we can simply give one proof.
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Completeness: syntax vs. semantics

In this perspective, (syntactic) proofs seem to be superior to semantic
arguments.

But we may ask how can we show that a formula is not provable or,
equivalently, that it does not hold semantically, i.e.,

Φ 6` ϕ or Φ 6|= ϕ.

In this case, we obtain a negated existential quantification on the
syntactic side, which is equivalent to a universal quantification:

For all proofs it is the case, that ϕ is not the last formula.

Now, the semantic side has the “advantage”; its negated universal
quantifier turns into a existential quantifier:

It exists a model in which ϕ is false.

Such a model can be called counter model for ϕ.
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There is a known historical example for this case: for more than 2000
years mathematicians where looking for a proof of the parallel axiom
from the other euclidean axioms.

We know today, that it is not provable from these axioms.

This was shown “semantically”: by construction of a counter model.

The syntactic side may compensate its disadvantage to show
“negative” propositions, if it is possible to prove Φ ` ¬ϕ.

Assuming the consistency of Φ, this implies immediately Φ 6` ϕ.

However, in general, Φ 6` ϕ does not imply Φ ` ¬ϕ.

This follows, for instance, from the geometry example: Let the
absolute Geometry ΦGeo be the euclidean axioms without the parallel
axiom ϕPar.

Of course, ΦGeo does not imply the negation of the ϕPar.

In this sense, this axiom system ΦGeo is syntactically incomplete:
It exists a formula, namely ϕPar, such that:

ΦGeo 6` ϕPar and ΦGeo 6` ¬ϕPar.
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Peano arithmetic

We use the language of Peano arithmetic LPA = {0, s,+, ·}.

Definition (Peano arithmetic)

Peano arithmetic PA comprises the following six non-logical axioms and
the following axiom scheme:

(PA1) ∀x .¬(s(x) = 0),

(PA2) ∀x , y .s(x) = s(y)→ x = y ,

(PA3) ∀x .x + 0 = x ,

(PA4) ∀x , y .x + s(y) = s(x + y),

(PA5) ∀x .x · 0 = 0,

(PA6) ∀x , y .x · s(y) = (x · y) + x .

The axiom scheme of complete induction:

ϕ(0) ∧ (∀y .ϕ(y)→ ϕ(s(y)))→ ∀x .ϕ(x).
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Syntactic completeness

The standard model of Peano arithmetic is given by the structure of
the natural numbers:

N = 〈N, 0,+1,+, ·〉.
“By construction”, N is a model of PA, i.e. for every sentence ϕ it
holds

PA ` ϕ ⇒ N |= ϕ.

The obvious question is whether the other direction also holds:

N |= ϕ
?⇒ PA ` ϕ.

Gödel’s First Incompleteness theorem shows that this implication does
not hold.

It is easy to observe, that this implication is equivalent to the
syntactical completeness of PA, i.e., the question whether for every
formula ϕ it holds that:

PA ` ϕ or PA ` ¬ϕ ?
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