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First-order languages

Definition
A first-order language L is a set of symbols which can be divided in the
following six (disjunctive) subsets:

@ logical symbols: {—, A, V,—,V, 3, =},
@ constant symbols: C C {¢;|i € N},
examples: ¢c =0, ¢t =1, ¢, = 7.
e function symbols: F C {f/\/ e N, jeNj> 0},
where fij is the i-th function symbol of arity J;
examples: 7 = +, 2 =, £ = —, f = — (change of sign).
@ relation symbols R C {R{|/ e N,j e N},
where Rf is the i-th relation symbol of arity J;

examples: R =<, RZ = >, R} =-=-mod -, Ry = Prim(-).
@ variables: {x,y,z,w,..., x0,X1,%2,...};
@ auxiliary signs: {“(", )", “,”, "."}.
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First-order languages

According to the definition, for a concrete first-order language we have
only to specify only the sets C, F, and 'R.

Examples

© For the language Lpp of the Peano arithmetic we have: C = {0},
F ={s,+,-}, and R = (), where s is a unary function symbol for the
successor function.

@ The language of set theory (without urelements) can be given by
C=F=0and R ={e}.
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Terms

Definition

The terms of L are defined inductively as following:
© Each variable is a term.
© Each constant symbol is a term.

@ If t1,t,...,t, are terms and " is a n-ary function symbol (n > 0),
then the expression "(t1, tr, ..., t,) is also a term.
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Formulae

Definition
The formulae of L are defined inductively as follows:
©Q If t; and t, are terms, then the expression t; = t» is a formula.
@ If t1,t,...,t, are terms and R" is a n-ary relation symbol (n > 0),
then the expression R"(t1, to, ..., t,) is a formula.

© If © and v are formulae, then the following expressions are also
formulae:

(m), (e AY), (0VY), (¢ — ).

Q If ¢ is a formula and x a variable, then the expressions (Vx.p) and
(dx.¢) are also formulae.

The formulas, constructed according 1 and 2 are also called atomic
formulae.
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Free variables: sentences

Definition
The set FV(p) of the free variables of a formula ¢ is recursively defined as
follows:

@ If p is an atomic formula, then FV/(y) is the set of variables which
occur in ;

Q@ FV(—-p) = FV(y);
@ FV(pAY)=FV(pVi)=FV(p— )= FV(p)UFV(¥),
Q@ FV(3x.0) = FV(Vx.0) = FV(p) \ {x}.

A (first-order) sentence of the language L is a formula ¢ without free
variables, i.e., FV(p) = 0.
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Semantics

@ So far, we only considered finite sequences of symbols which we call
terms or formulae; among the formulae we distinguished, in particular,
the sentences.

@ Up to this point, these sequences of symbols have to be considered as
“meaningless”.

@ In the following, we will describe how one can relates a meaning in
the usual mathematical sense to these sequences of symbols.
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Structure

Definition
An L-structure is a pair M = (M, F), with M a non-empty set and F a

function whose domain consists of the constants symbols, function
symbols, and relation symbols of £ such that:

@ If ceC, then F(c) € M.
@ If f/ € F, with j > 0, then F(ff) : M/ — M, i.e., a j-ary function

from M/ to M.
@ If R € R, then F(RY) is one of the two truth values t (true) or f
(false).

Q@ If R/ € R, with j > 0, then F(R/) C M.

In the following, we will write, in general, /” instead of F(/),
[ € RUFUC. We also give a structure for languages, for which we use
only finitely many constant symbols, function symbols, and relation

symbols, by the tuple (M, c;™, ... ¢, A™ .. {7 R R™.

9 . 9 e o oy
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The structure of the natural numbers

Example

For the language of the Peano arithmetik Lpa, we can define the structure
of the natural numbers by N' = (N, 0, _+ 1, +,-).

Notice that the functions are usual mathematical (set-theoretical) objects.
For example, + is the (infinite) set

{(0,0,0), (0,1,1),(0,2,2),(0,3,3),....
(1,0,1),(1,1,2),(1,2,3),(1,3,4),...
(2,0,2),(2,1,3),(2,2,4),(2,3,5),...

}

In other words, + is the subset of N3 consisting of the triples (x, y, z) with
X+y=z
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Assignment

Definition
An assignment in 9] is a function s, which has as domain the variables of
L and as range a subset of M.

Definition
Let £ and 9t be given and let s be an assignment in 9)I. We define
(t)™(s) recursively for every term t of L:

@ If t is a variable x then (x)™(s) = s(x).
@ If t is a constant symbol ¢, then (c)™(s) = (c)™.
© If t is a term of the form /(t1,...,t;), then

(1) (s) = (F)" ()™ (s), - -, () (5)).
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Modified assignment

For the following definition we need the possibility to modify assignments
(i.e., a function from variables to elements of M).

Given an assignment s and an element a € M, we designate by s(2) the
assignment which coincides with s for all variables except x; independently
of the value of s(x), we fix s(2)(x) = a. More exactly:

3 [ s(y), if yisa variable different from x,
sCIy) = { a, if v is the variable x.
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Definition
Let 901 be a L structure. We define, for every assignment s and every
formula ¢ the relation 9t = ¢[s]:
@ M = (t1 = t)[s] if and only if t,7(s) = £7(s),
@ M = R[s] if and only if (R?)™ =+,
@ M Ri(t1,...,t)[s], j > 0, if and only if
(627" (s), -, £57(s)) € (R)™,
Q@ M = (—p)[s] if and only if it is not the case that 91 | ¢[s],
@ M = (pA)[s] if and only if 9 = ¢[s] and M = [s],
Q@ M = (pVy)[s] if and only if M = [s] or M = [s],
@ M = (p — v)[s] if and only if, it is not the case that 901 = ¢[s] or it
is the case that M = ¢[s],
Q@ M = (Ix.p)[s] if and only if there exists an element a € M, such
that M = ¢[s(3)],
Q@ M = (Vx.p)[s] if and only if for all elements a € M it holds that
M = ols(Z)]-
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Semantic consequence

The assignment s is necessary to assign elements of M to the free variables
of a formula. For sentences ¢ (i.e., formulas without free variables) s does
not matter and can be surpressed in the relation 901 = ¢[s]:

Definition

Let ® be a set of L-sentences and 9t be a L structure. 9 is a model of
®, written as M = P, if for every sentence p € ® we have M = .
Semantic consequence is now defined as follows:

For a sentence 1) we say that it follows (semantically) from ®, written as
O = 1), if for every model 91 of ® it holds that 91 = ).

If 91 = ¢ holds, we also say that ¢ is true in 9.
If 9T = ¢ holds for every structure 91, we also write = .
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Compactness Theorem

Theorem (Compactness Theorem)
Let ® be a set of first-order sentences.

If every finite subset ®g of ® has a model, then there exists also a model
of O.

Alternative formulation:

Theorem (Compactness Theorem)
Let ® U {p} be a set of first-order sentences.

If ® = ¢, then there exists already a finite subset ®y of ®, such that
CDO ): L.
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Hilbert-style calculus |

Definition
We define the Hilbert-style calculus H as a derivation system with the
following (logical) axioms and rules:

© The following formulae are axioms:

o= (Y= )
F(p—=(x—=9) = (p—x) = (=)
E(mp =) == @

=9 — (pVY)

=Y — (@ V)
Fle—=x) = (¥ = x) = (VY = X))
F(pAY) =

(e AY) =

Fo = (Y= (pAY))
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© Equality axioms.

- (u=u),

s (u=w) = (w = u),

s (i =wm A w = u3) = (U1 = u3),

(i =wa A Aup=wy) = (R(un, -y up) = R(wa, ..o, wy)),

(= A AU = wy) = (o, Um] =t W),
where u, w, ui, ... are variables and constant symbols, R a n-ary
relation symbol, and t a term, in which uq, ..., uy, or we, ..., W, may
occur.

© Quantifier axioms:

- E(Yxp(x) = (1)
- Fop(t) = (Bxp(x))

As rules we have:
©@ Modus Ponens.

© Generalisation; let x be a variable not free in ¢.
- = (x)
= = Vy(y)
Y(x) =2 @
=y (y)) = e




A proof of ¢ starting from a set of formulae ® (in the Hilbert-style
calculus H), is a finite sequence of formulae 11,2, ..., 1, with ¢, = ¢,
and each of these formulae 1); is either

@ an axiom of H,
@ an element of ®, or

@ is obtained from the previous formulae ¢);, j </, by an application of
a rule.

We say that ¢ is provable from ® (in the Hilbert-style calculus H), and
write ® = o, if there exists a proof of ¢ starting from ©.

@ —  is not an axiom in our calculus.

(e = (=) = ) = (0= (¢ = ¢)) = (¢ — ) Second axiom

= = (e = @) = 9) First axiom
F (e = (= 9) = (0— o) Modus Ponens
=@ — (@ = ) First axiom

Fop— @ Modus Ponens




Let ® be a set of sentences,  a sentence, and ¢ a formula.

O U{p}F .

dFp—1 if and only if

Definition of proof

Deduction theorem

Let ® be a set of sentences and 9t a model of ¢.

If o(x1,X2,...,X,) is provable from @, then

M = Vx1.Vx. .. .. Vxn-0(X1, X2, - -« 5 Xn)-




Completeness of predicate logic

Theorem (Godel's completeness theorem (for H))
Let ® be a set of sentences of a first-order language L.

A sentence ¢ is provable from @ if and only if ¢ is true in all structures
which are models of ®. Formally:

e ifandonlyif &= .

@ This theorem speaks about semantic completeness.

@ It ensures that the logical symbols (—, A, V,—,V, J,=) are treated by
our calculus exactly in the way we have attributed a meaning to them
(in the definition of the notion of structure).

@ Please note the implicit universal quantification on the right hand
side: ® = ¢ stands for:

For all models 9t of ® it holds that 9t |= .
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Completeness: duality

@ The equivalence proven in the completeness theorem:
Py & DPE

results in an interesting duality:

@ On the left side we have a statement of the form:
It exists a proof ...

while on the right hand side we a statement of the form:
For all models . ..

@ Thus, the completeness theorem allows to replace the universal
quantification over models (which, in general, is not easy to handle)
by an existential quantification over proofs.

@ To show the semantic consequence ® = ¢ we do not need to
“search” for ¢ in all models of ®, but we can simply give one proof.
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Completeness: syntax vs. semantics

In this perspective, (syntactic) proofs seem to be superior to semantic
arguments.

But we may ask how can we show that a formula is not provable or,
equivalently, that it does not hold semantically, i.e.,

S or b

In this case, we obtain a negated existential quantification on the
syntactic side, which is equivalent to a universal quantification:

For all proofs it is the case, that ¢ is not the last formula.

Now, the semantic side has the “advantage”; its negated universal
quantifier turns into a existential quantifier:

It exists a model in which o is false.

Such a model can be called counter model for .
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There is a known historical example for this case: for more than 2000
years mathematicians where looking for a proof of the parallel axiom
from the other euclidean axioms.

We know today, that it is not provable from these axioms.
This was shown “semantically”: by construction of a counter model.

The syntactic side may compensate its disadvantage to show
“negative” propositions, if it is possible to prove ® - —p.

Assuming the consistency of ®, this implies immediately ® t/ .
However, in general, ® I/ » does not imply ® - —.

This follows, for instance, from the geometry example: Let the
absolute Geometry ®c., be the euclidean axioms without the parallel
axiom ©p,;.

Of course, o, does not imply the negation of the pp.,,.

In this sense, this axiom system @, Is syntactically incomplete:
It exists a formula, namely ¢p,,, such that:

cl)Geo |7[ PPar and cDGeo |7[ “PPar-
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Peano arithmetic

We use the language of Peano arithmetic Lpa = {0,s,+,}.

Definition (Peano arithmetic)

Peano arithmetic PA comprises the following six non-logical axioms and
the following axiom scheme:

(PA1) Vx.=(s(x) = 0),

(PA2) Vx,y.s(x) =s(y) = x =y,

(PA3) Vx.x + 0 = x,

(PA4) Vx,y.x+s(y) =s(x+y),

(PA5) Vx.x-0=0,

(PA6) Vx,y.x-s(y) =(x-y)+ x.

The axiom scheme of complete induction:

©(0) A (Vy-o(y) — »(s(y))) = Vx.0(x).
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Syntactic completeness

@ The standard model of Peano arithmetic is given by the structure of
the natural numbers:

N =(N,0,+1,+,-).

@ "By construction”, N is a model of PA, i.e. for every sentence ¢ it
holds

PAFp = NEo.

@ The obvious question is whether the other direction also holds:
?

NEy = PAFo
@ Godel's First Incompleteness theorem shows that this implication does
not hold.
@ It is easy to observe, that this implication is equivalent to the
syntactical completeness of PA, i.e., the question whether for every
formula ¢ it holds that:

PAFo or PAF —p?
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