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Abstract—Even though technological advances changed and
improved our daily life in various ways, the risks and dangers of
extreme sport activities (ESAs) still persist and the progress of
technology had little impact on them. Existing emergency rescue
devices for ESAs still require manual activation and do not detect
emergency situations autonomously. However, fusing the data
feeds of simple sensors can easily enhance the functionalities of
those devices and allow for the detection of emergency situations
and subsequent rescue in the case of injuries. We identify the
difficulties and challenges posed by ESAs, the role and potential
value of information technology in such activities and example
use cases and scenarios. We further present a prototype device
for climbers that can detect potentially dangerous fall events.

Index Terms—Sensor-fusion, extreme sports, rescue system, fall
detector, barometer

I. INTRODUCTION

The recent death of rock climber, alpinist and mountaineer
Ueli Steck [7] near Mount Everest is one of the latest
reminders of the dangers and risks of remote and extreme
sports pursued by athletes around the world. Cohen [2] de-
fines extreme sport as “a competitive (comparison or self-
evaluative) activity within which the participant is subjected
to natural or unusual physical and mental challenges such
as speed, height, depth or natural forces and where fast and
accurate cognitive perceptual processing may be required for
a successful outcome.” Further definitions focus on potential
dangers and risks of extreme sports and define them as follows:
“Any sport or recreational activity that is dangerous and, if
performed optimally, even by the highly skilled, risks loss
of life or limb.” [12] Skydiving, BASE jumping (jumping
with a parachute from Buildings, Antennas, Spans (bridges)
and Earth (e.g. cliffs)), wingsuit flying, high-altitude moun-
taineering, free solo climbing (climbing without a rope), cave
diving and whitewater kayaking are only a few examples of
such activities. Despite the risks and dangers of extreme sport
activities (ESAs), as well as the high mortality rate, the number
of athletes participating in these kind of activities is increasing
over the years–for example, in spite of the high number of
deaths on Mount Everest in recent years, the number of ascents
of earth’s highest mountain (8848m) has increased almost
every year [9]. In 2017, a record number of permits were
issued to mountaineers that aim to scale Mount Everest [8].

Limiting and controlling risks as well as providing support
in case of emergencies are among the key concerns for
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conducting extreme sports. Even though the technological
advances of the last decades changed and improved our daily
lives in various ways, the risks and dangers of extreme sports
still persist and pose challenges to even advanced technologies
[11], [22]. The harsh conditions and remote locations of ex-
treme sports result in high requirements for the hardware. The
lack of easy access to power, as well as extreme temperatures,
humidity, altitude and socio-technical limitations impede the
design of hardware devices for extreme sports. Despite those
difficulties, some devices do provide different types of support
to athletes, e.g, satellite phones, avalanche transceiver or
satellite emergency notification devices (SENDs) such as the
SPOT Gen3 [24], but compared to today’s high-tech devices
in our daily lives, their capabilities are very limited.

Using sensors and sensor-fusion to monitor the activities
of athletes can help to detect (potential) emergency situations
and/or accidents, as well as sending automated emergency
calls in case the athlete is unable to do so. In the context
of ESAs, building such devices is still considered an open
issue. Our work addresses the issue of supporting extreme
sports athletes during climbing activities. In the course of
investigating this issue, we identify the necessary technical
requirements and finally develop and evaluate a practical proof
of concept solution for detecting potentially dangerous falls of
climbers.

The remainder of this work is structured as follows: Sec-
tion II introduces related works. Following that, Section III
focuses on the difficulties and challenges posed by ESAs, the
role and potential value of information technology in such
activities as well as example use cases and scenarios that are
then used to derive technical requirements and functionalities
of emergency devices for ESAs. Section IV describes the
technical requirements and introduces our prototype imple-
mentation of an emergency fall detection device for climbers.
Afterwards, an evaluation of the prototype is presented in
Section V. In the same section, we also discuss potential en-
hancements of the prototype for broader applications. Finally,
Section VI concludes this work and provides an outlook on
future research.

II. RELATED WORK

Over the last years, sensor-fusion based activity recognition
(e.g. [16], [30], [31]) is in the focus of research. It is commonly
combined with alarm-systems for elderly people (e.g. [4], [15],

https://doi.org/10.1109/IWCMC.2019.8766459
https://doi.org/10.1109/IWCMC.2019.8766459
Alexander Richter
B. Leiding, A. Bochem, and L. Hernández Acosta. Automated Sensor-Fusion Based Emergency Rescue for Remote and Extreme Sport Activities. 2019 15th IEEE International Wireless Communications and Mobile Computing Conference (IWCMC), pp. 1233-1238. 2019.

lucahernandezacosta
Textfeld
© 2021, IEEE

lucahernandezacosta
Textfeld
The documents distributed by this server have been provided by the contributing authors as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, not withstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.



[23]) in order to support their daily lives and to assist them in
the case of emergency situations.

For example, Pansiot et al.[16] show that wearable sensors
can effectively measure the activity of patients despite ambi-
guities in the sensor data, by leveraging sensor-fusion tech-
niques. Hong et al.[4] identify different body states (running,
sitting, lying, etc.) with high accuracy by using information
from accelerometers and RFID sensors. However, these works
generally do not consider the use of sensor-fusion based
approaches in the context of supporting athletes in the course
of ESA activities.

In 2016, Mueller and Pell [13] investigate the role of
existing technologies in the context of adventures and certain
sport activities.

In the same year, Tonoli et al. [28] propose a wearable
device with a Kalman filter-based method to identify falls in
the context of climbing activities. However, they exclusively
focus on post-processing data instead of instant fall detection.
In addition, they solely designed their device to act as a
documentarian, disregarding other uses such automatically
notifying emergency services. While they attempt to identify
falls while climbing, their aim is not to identify potentially
dangerous emergency situations. No other types of ESA ac-
tivities are discussed by the authors.

III. DIMENSIONS AND ROLES OF TECHNOLOGY IN ESAS

Understanding the different dimensions and roles of any
kind of physical activities supports the proper design and de-
velopment of new hardware devices for extreme sport athletes.
For this purpose, we utilize Mueller and Pell’s [13] two dimen-
sional categorization of roles in adventure technology. Based
on [17], [25] and in accordance with [1] and [6], Mueller and
Pell define adventure as an “exciting experience involving haz-
ardous action with uncertain outcomes based around physical
exertion in a natural environment” [13]. Furthermore, they de-
fine adventure technology as “technologies that aim to support
the adventure, whether they were designed for the adventure
or not (for example, adventurers might choose to use high-end
smartphones for their expeditions although they are designed
for corporate work, often resulting in devastating consequences
when they break or lose connection)” [13]. Note that Mueller
and Pell’s definition of adventure is slightly different from
the definition of extreme sports introduced earlier in Section
I. If we exclude Mueller and Pell’s constraint of the natural
environment, we come to the insight that in context of this
work adventures are an essential part of ESAs–even though
the opposite is not true. As a result, we argue that adventure
technologies as defined above do not only support adventures
but can also be used to support ESAs. Therefore the two
dimensional categorization of roles in adventure technology
can also be used for technology supporting ESAs.

A. Dimensions of Technology in Adventures

As illustrated in Figure 1, the first dimension relates to the
instrumental and experiential aspects of adventure, whereas

Fig. 1: Four roles adventure technology (Based on: [13])

the second dimension focuses on the expected and unexpected
aspects of adventures.

Instrumental technology helps the athlete or adventurer
to achieve tangible goals and improve performance [19],
[27]. Typical examples are quantified-self products such as
pedometers, Zlagboards [29] for climbers and similar devices.

Experiential technology represents the other end of the
first dimension and focuses on technology that supports the
adventure experience, such as enabling a deeper engagement
with the environment or a richer way of sharing the adventure
story [13]. We argue that information and data collected by
experiential technology highly valuable for the purpose of
planning, logistics and knowledge exchange.

Expected situations are part of every sport activity or
adventure and technology supports users in such scenarios,
e.g. using a GPS tracker for proper navigation in unknown
environments.

Unexpected situations are far more difficult to prepare
for by definition and often lead to “using technology for
purposes that had not been considered before” [21]. Mueller
and Pell describe an example of “hacking” a 2G mobile phone
to receive BBC updates about an earthquake by inserting a
piece of wire into the audio port of the phone and creating
a shortwave magnetic loop around the device to receive BBC
Life Line updates via shortwave radio frequencies [13].

B. Roles of Adventure Technology

Based on the two dimensions, Mueller and Pell articulate
four roles (coach, rescuer, documentarian, mentor) that tech-
nology can play during adventures, as illustrated in Figure 1.

The coach technology provides structured guidance in ex-
pected situations to improve instrumental aspects, e.g. enhanc-
ing performance or providing experience. Mentor technology
provides the athlete or adventurer with guidance and support
for critical reflection, thereby enhancing the adventure’s op-
portunities for personal growth [5].

The technological role of a documentarian is most com-
monly fulfilled by cameras or similar recording devices cap-
turing experiential aspects. The authors mainly focus on self-
expression and storytelling aspects, whereas we would like
to emphasize less subjective aspects: Using a broad variety
of sensor-related devices to capture as many information of
the surrounding environment as possible, as well as internal



attributes of the user itself. Such data does not only serve as
a documentation of achievements, but also provides valuable
insights during later analysis that can lead to further perfor-
mance improvements, risk minimization and avoidance or aids
in the planning and logistics of future adventures.

The most crucial role of technology in the context of this
paper and the lives of most extreme sport athletes is the role of
the rescuer. Providing support in case of emergency or having
access to emergency services during unexpected situations is a
key concern of this work, which aims to minimize the risks of
loss of life, limb or any other serious injuries. As mentioned
earlier, satellite emergency notification devices (SENDs) such
as the SPOT3 [24] already provide basic emergency services
by manually pressing an emergency button, but due to the
complexity and physical exertion of ESAs, an automated
emergency system is able to further minimize risks for extreme
sport athletes.

C. Use-Cases and Scenarios of Technology in ESAs

As argued above, the presented two dimensional catego-
rization of roles in adventure technology can be applied to
technology supporting ESAs in a similar manner. For the
purpose of this work, we specifically focus on the application
of our approach to climbing and mountaineering in particular
due to space constraints. In the following, we map the two
dimensional representation system for adventure technology
to climbing as an ESA. We focus on the issue of support in
case of emergency and how technology can help athletes in
such situations.

Since both climbing and mountaineering provide similar
use-cases and requirements, we will not further differentiate
between the two. Rotillon [20] argues that climbing cannot be
considered as an ESA, since everything in climbing is done
to eliminate deadly risks. But according to our definitions
of extreme sports in Section I, the reduction of risks has
nothing to do with the fact of an activity being considered as
extreme sport. Most serious injuries in climbing are caused
by downfalls of the climber [14]. Injuries can be partially
prevented, but downfalls are an essential part of climbing–
especially at later stages when pushing personal limits.

Notifying relevant entities about emergencies using the
same technique as provided by satellite emergency notification
devices (SENDs) is the first crucial part of a rescuer system.
Devices such as the SPOT3 [24] are capable of sending
emergency notifications after manually pressing a button.
However, in an emergency, the user may be unable to press
a button. The device might be out of reach, or the user could
be seriously injured or unconscious and no longer able to
press the button. The use of sensor fusion-based techniques for
activity recognition enables us to detect emergency situations
and automatically send out a emergency notifications. Since
not all downfalls are emergencies, the device needs to consider
only falls of a certain minimum height (e.g. more than ten
meters) or those with following inactivity, which indicates
an incapacitated user. In order to avoid false alarms, the
device announces the detection of a potentially serious fall by

Fig. 2: Different scenarios of fall events in climbing.

emitting a loud alarm signal. If the user starts moving again,
the device recognizes the false alarm and does not send out an
emergency notification. Similar approaches are used in order
to prevent death by hypothermia or lack of oxygen during
high-altitude mountaineering.

IV. PROTOTYPE IMPLEMENTATION OF AN EMERGENCY
FALL DETECTOR SYSTEM FOR CLIMBERS

Based on the use case analysis conducted in Section III-C,
the design and development process of a prototype for down-
fall detection during climbing activities is outlined in this
section.

A. The Theory of Downfalls

Downfalls are an essential part of climbing, especially
when pushing personal limits. Climbers clip their rope
into several carabiners connected with the wall–so called
quickdraws–while climbing in order to keep the length of falls
to a minimum. However, this is not always possible and in
certain situations it is not possible to place such protections
at all. In such cases, the distance between two consecutive
quickdraws can be quite long or part of the protection fails
and therefore extends a downfall significantly. However, a
downfall is not only defined by its length. The angle of the
climbed wall is another important factor. Some examples for
this are given in Figure 2: scenario A shows the case of a
vertical wall, B a slightly inclined wall, thereby creating a
slab, C.1 and C.2 show walls with an overhang. Depending
on the wall’s angle, the climbers acceleration during a fall
might differ due to friction. In addition, the number of clipped
quickdraws and the angle between rope and quickdraws adds
further friction, thereby lowering the speed of a fall. More-
over, climbers use dynamic ropes that elongate in case of a
downfall. Nowadays climbing ropes elongate between 28% to
35% (dynamic elongation). Finally, experience and behavior
of the belayer, who secures the rope at the ground level,
also influence the downfall either in a negative or positive
manner. Most downfalls have no consequences at all due to
the small fall length (usually less than 2m) and the climber
continues climbing almost immediately. More serious falls are
rare especially indoors. However outdoors, fall distance might
reach up to 10m and pose a serious threat to the climbers
health in case of a fall.

B. Prototype Implementation

The purpose of implementing this prototype is to demon-
strate that a device with minimal hardware and software
requirements could save the lives of climbers in case of
accidents. The prototype detects serious falls (more than two
meters in fall distance) and sends an emergency signal in case



the climber does not start moving again afterwards. Since the
prototype is supposed to only detect serious falls, extreme
accuracy is less relevant which reduces hardware and software
requirements.

To automatically detect falls that occur during a climbing
session, our hardware device has to be capable of measuring
acceleration data. In addition, it is also necessary to determine
height differences during sudden movements. For this, we use
a barometer to calculate heights. Furthermore, in the context
of ESAs the device has to be designed in such a way that
it does not prevent the user from properly pursuing her or
his activity. We use an Android Nexus 5 phone [3] for our
prototype, but a small microcomputer such as a Rasberry
Pi [18] with corresponding sensors can also be used as an
implementation platform. The smartphone is equipped with
an MPU-6515 6-Axis motion sensor, based on the MPU-
6500[26], and a barometer as is necessary to collect the
relevant data. An Android app is then processing the collected
data using a Kalman filter [10] in order to smooth the recorded
data before further processing it. The pre-processed data
records are analyzed with minimal delay in order to detect
relevant acceleration deviations that indicate a downfall. In
case the downfall exceeds the pre-defined value for potentially
dangerous situations, an alert sound is played. In case the
climber does not continue her or his climb at some point
after the downfall, a further symbolic emergency notification
message is send via the phone. If the climber starts moving
again, the emergency notification is canceled and the downfall
marked as not harmful. The setup is placed in a small bag
and attached to the climber’s harness while climbing. The
demonstrated prototype does not contain any functionalities to
actually send emergency notifications to emergency services.

Android allows the customization of the sensor readout
frequency for every sensor. For our purpose, it is necessary
to gather sensor data as quickly as possible since fall events
may occur at any time. Our prototype uses the fastest readout
interval for both the accelerometer and the barometer sensor.
The accelerometer is gathering approximately 200 samples per
second (200Hz), while the barometer is gathering around 30
samples per second (30Hz). In the context of most ESAs,
electricity is a scarce resource and our prototype application is
continuously gathering sensor data in the background. Hence,
it is interesting for us to analyze the battery consumption of
our application. To do so, we used the profiler of the Android
Studio IDE. By comparing the data collected by the profiler we
get an overall estimated CPU utilization of 30%. According
to the specification of the accelerometer, we determined that
the accelerometer has a normal operating current of 500 µA.
The power consumption during a seven hour test run of the
application on the Nexus 5 phone was around 453mAh.

The barometer monitors the current altitude of the climber
and calculates the fall distance. A Kalman filter is used to
smooth the altitude outputs. The Kalman gain is determined
by calculating the variance of raw barometer samples and
adjusting the process variance. The process variance is usually
assumed to be very low and was determined experimentally

Climber Gender Weight Height Falls Belayer

Climber A male 81 kg 183 cm 6 0
Climber B male 86 kg 188 cm 10 1
Climber C male 70 kg 180 cm 6 2
Climber D female 74 kg 175 cm - 1

TABLE I: Data of test climbers that helped to evaluate the fall
detection algorithms.

to match the desired filter performance. Our variance of
the barometer sensor is 0.010627865 while the desired filter
performance is achieved using a process variance of 10−6.

In order to get more reliable data on fall events that have
been detected by our Android application, we decided on
implementing two algorithms that were following two similar
yet different approaches.

Algorithm A analyses the accelerometer values and Kalman
filtered barometer altitudes. Falls are detected whenever the
acceleration is close to 0m/s2 on every axis. However, the
actual free fall condition of 0m/s2 on all axes is never
achieved in our climbing scenario as the rope is slowing down
the fall due to various factors such as friction. Therefore,
we set a threshold for the beginning of fall events. We
experimentally determine that a threshold of 2m/s2 delivers
reliable data on detected falls. The end of a fall event is
identified by a harsh and rough movement, characterized by
sudden amplitudes in the accelerometer values. To obtain the
fallen distance, the difference between the barometric heights
readings of the beginning and end of a fall event are processed.

Algorithm B only processes raw altitude data from the
barometer and compares them in blocks of five samples. For
each block, the algorithm keeps track of the minimum and
maximum average height of the last five samples compared to
the previous blocks average altitude. Whenever the calculated
distance between the current highest and lowest average alti-
tude of all blocks exceeds 1.5m a fall event is detected and
the previous highest and lowest average altitudes are reset.

V. PROTOTYPE EVALUATION

The following section covers the evaluation of the prototype
described in the previous section.

A. Evaluation

We conduct a test series of 22 test falls with 3 different
climbers (see Table I) who test our prototype in different
fall scenarios (scenario A and scenario B from Figure 2). A
fourth climber participates as a belayer in our test sessions.
A dynamic rope (Edelrid Harrier) with an elongation of 34%
is used. We aim for a falling distance of 1.5m–meaning that
the climber has 1.5m of rope above the last point of where
he/she clips the rope into a quickdraw. Depending on rope
elongation, the belayer, who controls the safety rope of the
climber, and the weight different between the climbers this
results in falls between 1.5m and 3.5m. For safety reasons,
all test falls are conducted in an indoor climbing facility and
we limit the maximum fall distance to 3.5m.

During the sessions, the fall detection device is attached to
the harness of the climber and records data from the start



990.50

991.00

991.50

15:33:00 15:34:00 15:35:00 15:36:00 15:37:00 15:38:00 15:39:00 15:40:00

Ba
ro

m
et

er
 [

h
Pa

]

Time [H:M:S] 2018-11-11

Barometer Detected Falls

990.50

991.00

991.50

15:33:00 15:34:00 15:35:00 15:36:00 15:37:00 15:38:00 15:39:00 15:40:00

Ba
ro

m
et

er
 [

h
Pa

]

Time [H:M:S] 2018-11-11

Barometer Detected Falls

Fig. 3: Test session 1 with climber A conducting 6 falls in
scenario B (Algorithm a (top), algorithm b (bottom)).

of each session until the climber is back on the ground.
Figure 3 and Figure 4 illustrate the results of two of our four
climbing sessions with a total of 22 falls. Session 1 (Figure 3)
is conducted on a slightly inclined wall (scenario B), while
session 2, 3 and 4 cover scenario A. For each figure, we present
the barometer data (y-axis) over time (x-axis); detected falls
are marked with red crosses. Note that using the data output
from the barometer means that climbing upwards results in a
reduced barometric pressure–hence, climbing upwards results
in decreasing graph values, while conducting a test fall raises
the barometric pressure again due to a loss of height above
ground. The collected data is processed with the two fall
detection algorithms presented in Section IV-B.

The first test session is conducted with climber A in scenario
B and is illustrated in Figure 3. The graph starts at the
moment where the climber starts his ascent. At the top of
the route, six test falls are conducted. Both algorithms detect
all six falls correctly. However, both algorithms also detected
the process of lowering the climber to the ground (after
the test falls) as false positives. The false positives occur,
because our experienced belayers are accustomed to relatively
high lowering speeds. However, since the climber does not
remain inactive after being lowered, no emergency message is
dispatched.

The second test session is conducted with climber B in
scenario A and is illustrated in Figure 4. The climber starts his
ascent and afterwards conducts five test falls. In contrast to the
first test session, algorithm A performs worse than algorithm
B and misses three falls resulting in false negatives. Algorithm
B performs much better, but once again detects a false positive
during the process of lowering the climber at the end of the
test session.

Based on the results of the four test sessions, Table II
presents the confusion matrix for algorithm A and algorithm
B. Algorithm A correctly detects 19 out of 22 falls while
missing 3 falls and falsely detecting 6 false positives. On the
other hand, algorithm B correctly detects all 22 falls while
further detecting 4 false negatives. In the context of ESAs,
detecting false positives is a neglectable issue while missing
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Fig. 4: Test session 2 with climber B conducting 5 falls in
scenario A (Algorithm a (top), algorithm b (bottom)).

potentially life threatening events can be lethal. By adding a
further activity check (i.e. does the climber start moving again
just after a detected fall?) before sending an emergency signal,
the impact of such false positives is mitigated.

The source code of the Android app and a video of session
3 is available online∗.

B. Discussion and Limitations

The authors are aware of the limitations of the small sample
set size used to evaluate the accuracy and overall functionality
of the proposed prototype. However, due to limited resources
and test climbers only a small number of falls can be per-
formed. For the same reason, we also cannot conduct test falls
for scenario C. However, C.1) as well as C.2) are–in terms of
physical fall properties–closely related to scenario A) and are
expected to be detected with a similar accuracy. Moreover,
for safety reasons the data sample only contains test falls
that occurred indoors. Large falls outdoors can lead to severe
injuries due to the height of the fall or other safety hazards.
We also limited the maximum fall height of our test sessions
to not threaten the safety of our test climbers. Nevertheless, we
are confident that the results of our fall detection system will
yield similar detection rates for larger and potentially more
dangerous falls due to the fact that these are much easier to
detect due to the larger fall distances and speed.

Besides the limitations of our evaluation method, the pro-
totype is not yet ready to be deployed in real use scenarios
due to certain insufficiencies. Besides finalizing the software
component of the prototype, the hardware has to be updated
as well. Most ESAs are pursued outdoors and often in remote
areas. Hence a small device with long battery runtime as
well as a durable casing (e.g. IP68 certified) are necessary.
Furthermore, the device has to be resilient against extreme
temperatures - both heat and cold. In order to increase accuracy
of detected emergency events, future iterations of the prototype
might include additional sensors for sensor-fusion based data

∗https://www.youtube.com/watch?v=RH1ccpYoTns
https://github.com/bleidingGOE/ESA-climber-fall-detection
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A B
Fall No fall Fall No fall

Detected 19 6 22 4
Not detected 3 many 0 many

TABLE II: Confusion matrix for algorithm A and B.

analysis and even consider monitoring devices such as smart
watches in order to ease testing of the system.

VI. CONCLUSION

Despite the ever growing influence and pervasiveness of
technology in our daily life, ESAs have been somehow ex-
cluded from the advances in this area. In this work, we propose
a sensor-fusion based system for ESAs that allows for the
detection of emergency events and subsequent rescue in the
case of injuries. We present a prototype for climbers that can
detect potentially dangerous fall events.

The prototype correctly detects 100% of the conducted 22
test falls successfully while further detecting 4 false positives.
In the context of ESAs, detecting false positives is a ne-
glectable issue while missing potentially life threatening events
can be lethal. By adding a further activity check (i.e. climber
moves again) before sending an emergency signal, the impact
of such false positives is mitigated.

In the future, we plan to develop a hardware device that
provides sufficient resilience against outside influence (e.g.
IP68 certification) with a long battery lifetime and a small
casing. Moreover, we plan to add further modules for other
ESAs such as skydiving, BASE jumping, mountaineering and
whitewater kayaking. Depending on the activity, the user can
switch between different modes and configure specific settings.
We also plan to employ sensor-fusion methods that improve
the number of potential emergency events that can be detected
by our device. Moreover, for use in remote areas we plan to
add a satellite communication module similar to the SPOT
Gen3. Finally, we will add functionalities that extend the use
case of the device from the role of the rescuer to further roles
such as documentarian, mentor and coach.
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