
Master’s Thesis

Entwicklung eines Datennahmesystems
für Teststrahlmessungen mit der ATLAS

Pixel Front-End Elektronik

Development of a Data Acquisition
System for Testbeam Measurements with
the ATLAS Pixel Front End Electronics

prepared by

Björn Klaas
from Detmold

at the II. Physikalisches Institut

Thesis number: II.Physik-UniGoe-MSc-2015/06

Thesis period: 23rd April 2015 until 23rd October 2015

First referee: Prof. Dr. Arnulf Quadt

Second referee: Priv.Doz. Dr. Jörn Große-Knetter

Abstract
The search for unknown particles and new physics continues at increasingly powerful
particle accelerators. The most energetic to date is the LHC at CERN, aiming for
a centre-of-mass energy of 14TeV at an instantaneous luminosity of 1034 cm−2 s−1

by 2018. Then, and again in 2022, it will be shut down for upgrades to more than
quadruple its currently achievable luminosity
The collisions are recorded by large detectors, such as the ATLAS experiment.

To continuously provide precision data at high efficiencies a huge R&D effort is
necessary, developing new detector technologies and designing, building and testing
prototypes. Evaluation is performed using several test systems, such as the USBpix
system for ATLAS Pixel Detector sensors and front-end electronics.
This thesis describes the current state of the USBpix system and the implemen-

tation of an improved read-out scheme. The new scheme transitions from on-board
data storage with stopping read-out to on-board data buffering with continuous
read-out, greatly improving the achievable average data acquisition rate. Changes
made to the hardware interface libraries of the host software and to the USBpix
FPGA firmware are presented.

Keywords: LHC, ATLAS, USBpix, Firmware, FPGA

iii

Contents

1 Introduction 1

2 The Large Hadron Collider 3
2.1 The Standard Model of Particle Physics 3
2.2 LHC Design . 5
2.3 LHC Runs and Upgrades . 6

3 The ATLAS Experiment 9
3.1 Original Detector Design . 9

3.1.1 The Inner Detector . 10
3.1.2 The Calorimeter System . 11
3.1.3 The Muon System . 12

3.2 Inner Detector Upgrades . 12
3.2.1 Phase I: Insertable B-Layer 13
3.2.2 Phase II: ATLAS Inner Tracker 15
3.2.3 Further Upgrades . 16

4 Detector Read-out 17
4.1 The USBpix Read-out System . 17

4.1.1 USBpix Hardware . 17
4.1.2 USBpix Software . 21
4.1.3 Scans . 21

4.2 Programmable Logic . 22
4.2.1 FPGA Architecture . 23
4.2.2 FPGA Design . 26

5 USBpix Configuration 29
5.1 Stable USBpix discussion . 29

5.1.1 Data Recovery & Decoding 30
5.1.2 Read-out Modules . 31

v

Contents

5.1.3 Memory Arbiter . 32
5.1.4 SRAM control . 33
5.1.5 PixLib & USBpixI4dll . 33

5.2 Stopless USBpix configuration . 34
5.2.1 Read-out Module . 37
5.2.2 Data Arbiter . 38
5.2.3 SRAM FIFO . 40
5.2.4 PixLib & USBpixI4dll . 46

6 Measurements 49
6.1 Fundamental Tests . 49
6.2 Calibration measurements . 50

6.2.1 Analog Scans . 51
6.2.2 Digital Scans . 52

6.3 Source measurements . 53
6.3.1 Set-Up . 53
6.3.2 Noise Measurements . 54
6.3.3 Strontium Measurements . 56

7 Summary 59

vi

1 Introduction

The scientific search for the fundamental particles of the universe and their inter-
actions resulted in the Standard Model of Particle Physics. This collection of well-
tested theories describes most physical phenomena observed to date. Even though
the model contains all observed particles, as well as three out of four fundamental in-
teractions between them, many unanswered questions remain. These lead physicists
to push technological boundaries ever further to obtain data from energy regions
inaccessible so far.
The current frontier is set by the Large Hadron Collider (LHC), the world’s largest

and most energetic particle collider. It is located at the European Centre for Nuclear
Research (CERN) at Geneva, Switzerland. During its first run (Run I, 2010–2013)
it operated at centre-of-mass energies of 7TeV and 8TeV, and reached a peak lu-
minosity of 6 · 1033 cm−2 s−1. During a first long shut-down from 2013 to 2015, the
LHC received a complete overhaul, preparing it for Run II at centre-of-mass ener-
gies of 13TeV and 14TeV, with a peak luminosity of 1034 cm−2 s−1. A second and
third shut-down, to further increase the luminosity, are planned for 2018 and 2022
(HL-LHC, see chapter 2).
The spray of particles generated in the LHC’s high energy collisions is recorded

by four large physics experiments, built around the interaction points. The data
collected by the two general-purpose experiments, ATLAS and CMS, allowed them
to already discover a Higgs boson-like particle, increase the precision on many cross
section measurements, and push the exclusion boundaries of many theories further
out. The increased luminosity during future LHC runs will allow them to collect
an even larger data set, and thus increase the likelihood of discovering new physics.
The greater number and intensity of generated particles also increases the strain on
the detectors, making upgrades and replacements imperative. The chosen path for
ATLAS includes replacement of the entire Inner Detector (ID) by the new ATLAS
Inner Tracker (ITk), scheduled for the 2022 HL-LHC upgrade (see chapter 3).
Selecting technologies for these upgrades is a delicate affair, requiring extensive

1

Contents

testing and analysis of proposed designs. Similar tests are performed to carefully
characterize each part of the current detector, so all gathered data can be interpreted
correctly. This multitude of precision measurements is carried out at laboratories
and testbeam facilities around the world. A major test system for ATLAS Pixel
Detector components is the USBpix test system (see chapter 4). This flexible system
provides a framework for testing several generations of various detector components,
implementing numerous technologies.
A large part of the system’s versatility stems from on-board programmable logic,

provided by a Xilinx Spartan-3A Field Programmable Gate Array (FPGA). The
FPGA handles most on-board logic concerned with device configuration, triggering
and data processing. It can be reconfigured via firmware updates, to handle new
devices and requirements. An analysis of the FPGA firmware and the hardware
interface library of the host software was performed, identifying room for improve-
ment on the current USBpix configuration. Based on this, a set of changes necessary
to increase the USBpix data acquisition rate is described, and a possible implemen-
tation proposed (see chapter 5). The implementation is evaluated by comparison of
several measurements, performed with the current as well as the presented USBpix
configuration (see chapter 6).

2

2 The Large Hadron Collider

Decades of intense research in particle physics resulted in a set of concise and well-
tested theories. They describe most of the observable universe through several el-
ementary particles and interactions, introduced below. To explore what lies be-
yond, and find answers to some yet unsolved problems, the Large Hadron Collider
(LHC) was built at the European Centre for Nuclear Research (CERN), located near
Geneva, Switzerland. It is the world’s largest and most energetic particle accelerator,
and involved more then 10 000 scientists and engineers from over 100 countries in
design and construction. After almost ten years of assembly the 27 km long machine
was turned on in 2008, achieved first beam in 2009, and started physics operation
in 2010. Below the LHC design and upgrade path are outlined.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM, Fig. 2.1) was formed by combining
the aforementioned theories into a unified model, describing all known elementary
particles and three out of four interactions they engage in. The SM contains twelve
spin-1/2 matter particles, called fermions, and five full-integer spin bosons. The
fermions are divided into two groups of six particles each, the leptons and quarks [?
].
Leptons and quarks are organized in three generations, combining two particles

of each group. The first generation contains the lowest mass particles, which cannot
decay and are hence called stable. They make up almost all observable matter.
Each particle has a partner with equal mass but opposite charge signs, called an
antiparticle.
The four spin-1 particles, labelled gauge bosons, mediate the three fundamental

interactions described by the SM. These are the electromagnetic force, mediated
by photons, the weak force, mediated by the vector bosons Z and W±, and the
strong force, mediated by eight gluons of different colour charge. Which particles

3

Figure 2.1: Overview of the particles described by the Standard Model of Particle
Physics.

are affected by a certain force depends on the respective gauge boson’s character-
istics. Photons couple only to electromagnetically charged particles, and gluons
to particles carrying colour charge, while Z and W± couple to all fermions. The
ranges of the interactions differ greatly, as well as the particles they interact with.
Since the photon is massless, the range of the electromagnetic interaction is infi-
nite, while the strong interaction is severely limited by colour confinement, and the
weak interaction due to the decay of the Z and W±. These decays occur because
Z and W± are massive particles, measuring mZ = (91.1876± 0.0021) GeV/c2 and
mW = (80.385± 0.015) GeV/c2 [?].

Those masses require an extension of the SM, since it originally needed massless
gauge bosons to ensure local gauge invariance. The spin-0 Higgs boson was proposed,
as part of the Higgs mechanism, providing the most elegant way of keeping the model
consistent [? ?]. Finding it was one of the main goals of the LHC and the ATLAS
and CMS experiments, and was achieved in July 2012 [? ?]. The discovery was a

4

2.2 LHC Design

great success for particle physics and rewarded with a Nobel Prize for the founders
of the Higgs theory, Peter Higgs and Francois Englert. The ATLAS and
CMS collaborations received honorary mentions during the ceremony and in the
laudatio, for finally discovering the elusive particle. The search had taken many
decades, since theory could not predict the mass of and no decay exclusive to the
Higgs. It was eventually found at mH = (125.6± 0.3) GeV/c2 [?], an energy only
accessible with very limited luminosity prior to the LHC.
Many more theories and extensions of the SM were proposed, trying to answer the

questions left open by the current SM. So far, no evidence could be found for any of
them. On the contrary, many theories and versions thereof were already excluded
by ATLAS and CMS. The recently started Run II of the LHC will allow to expand
the search into new energy regions.

2.2 LHC Design

The LHC was designed for a centre-of-mass energy of
√
s = 14 TeV and a luminosity

of 1034 cm−2 s−1, thought to provide the necessary energy and statistical significance
to discover the Higgs boson and new physics phenomena [?].
The high target luminosity required a proton-proton collider, since currently

achievable anti-proton production rates are too small to sustain the targeted col-
lision rate of 40MHz of bunches containing 1.1 · 1011 particles each. To reach this
rate, 2808 bunches need to circulate in two separate beampipes, required to keep
equally charged particles, moving in opposite directions, on the same trajectory.
The number of particles per bunch and the beam focusing facilities were chosen to
produce at least 25 inelastic interactions per bunch crossing, generating more than
1000 charged particles every 25 ns.
At the four interaction points, the large LHC experiments ATLAS, CMS, ALICE

and LHCb are located (Fig. 2.2). ATLAS and CMS are general-purpose experiments,
designed to gather information on all physics phenomena examined at the LHC,
while LHCb focuses on b-physics and ALICE on heavy ion collisions, occurring
when the LHC is circulating lead ions.

5

Figure 2.2: The LHC, shown are the locations of the four large experiments and part of
the injection chain.

2.3 LHC Runs and Upgrades

An incident upon first start-up delayed the LHC Run I, which occured at a centre-of-
mass energy of 7TeV and 8TeV from 2010–2013. During the run the LHC delivered
an integrated luminosity of approximately 25 fb−1 [?]. In early 2013 it was shut
down for upgrade and consolidation work, to allow operation at nominal centre-of-
mass energy and luminosity upon resuming operation. The following Run II was
started in 2015 and is scheduled to end in 2018, when further upgrades to the LHC
are due. Initial Run II collisions occurred at a centre-of-mass energy of

√
s = 13 TeV

with a bunch spacing of 50 ns. The bunch spacing was switched to 25 ns shortly
after, matching the nominal collision rate of 40MHz, and immediately doubling the
instantaneous luminosity.
The LHC is meant to reach its final collision energy of

√
s = 14 TeV at a luminosity

of 1034 cm−2 s−1 before the 2018 shut-down. During this next long operational break
(LS2, ≈ one year) enhancements are to be implemented to raise the luminosity to
twice the previous value.
Research and development for a third upgrade named High Luminosity-LHC (HL-

6

2.3 LHC Runs and Upgrades

LHC) has already begun. The upgrade is scheduled for 2022 and will further increase
the LHC’s instantaneous luminosity to 5 · 1034 cm−2 s−1. This increase will not only
provide more data to the experiments, but also vastly increase the occupancy of the
detectors and the radiation damage inflicted on them. The reward for operation
under such strenuous conditions will be a data set large enough for many additional
precision measurements, outlined below.

Physics at HL-LHC

Increasing the luminosity to HL-LHC values will widen the energy scales under
investigation in high energy boson-boson scattering, allow the study of electroweak
symmetry breaking (EWSB) and extend the search for SUSY and extra dimensions
into the multi-TeV region [?]. In the search for new physics, signatures of high-
mass gauge bosons, complex SUSY cascade decays, and resonances in tt̄-pairs are of
special interest. The large amount of data will also greatly increase the precision of
Higgs measurements and allow the observation of rare channels, such as H → µµ,
vector boson fusion production of H → γγ and H → ττ , and the production with
a top-pair tt̄H, with H → γγ [?]. It will also allow to study Higgs self-coupling in
channels such as HH → ττbb and HH → γγbb.

7

3 The ATLAS Experiment

The ATLAS experiment proofed to be a great success during LHC Run I. It very
reliably produced a continuous stream of precision data at high efficiencies, achieving
its original design goals stated in [?]. Nevertheless careful evaluation of Run I
performance and damages identified several components not suited for operation
under LHC Run II conditions. These are either not capable of handling the expected
occupancies and trigger rates, or prone to eventually break under the prolonged
exposure to intense radiation. Affected components will be upgraded or replaced in
a series of upgrades, planned for the 2018 and 2022 LHC shut-downs.

3.1 Original Detector Design

A set of basic design criteria was established for ATLAS, to ensure high efficiencies
for most physics processes of interest at the LHC. These included very good electro-
magnetic and full-coverage hadronic calorimetry, high-precision muon momentum
measurements, efficient tracking for high-pT lepton-momentum measurements, elec-
tron and photon identification, τ -lepton and heavy-flavour identification, and full
event reconstruction capability at lower luminosity. Other criteria were large accep-
tance in pseudo-rapidity with almost full azimuthal angle coverage everywhere, and
triggering and measurements of particles at low-pT thresholds.
The overall detector layout chosen to accomplish these goals is shown in Fig. 3.1.

Its a cylindrical design with several layers of subdetectors and magnets. The inner-
most layer is the Inner Detector (ID), extending to 1.15m from the beampipe, and
surrounded by a thin superconducting solenoid. The solenoid itself is surrounded by
the calorimeter system, extending to a 4.25m radius. The calorimeters are enclosed
by the muon system, containing a large superconducting air-core toroid magnet,
consisting of independent coils arranged in an eight-fold symmetry. It provides the
magnetic field for the muon system and extends to 11m from the beampipe [?].

9

3.1.1 The Inner Detector

Figure 3.1: Overall layout of the ATLAS general-purpose detector.

3.1.1 The Inner Detector

The purpose of the Inner Detector is precise tracking of particle trajectories and
vertex reconstruction. To achieve this, the ID was placed at the centre of ATLAS,
directly adjacent to the beampipe. It consists of three subdetectors, each containing
several barrel layers and endcaps, chosen to provide the best balance between pre-
cision, spatial coverage and cost efficiency. The innermost subdetector, providing
the best spatial resolution, is the Pixel detector (APD). It is surrounded by the
Semiconductor Tracker (SCT), itself encased by the Transition Radiation Tracker
(TRT). Combined, the three subdetectors have a length of 7m, a diameter of 2.3m
and provide a relative momentum resolution of σ/p = (4.83± 0.16) · 10−4 GeV−1 ·pT

[?].
The APD (Fig. 3.2) consists of three barrel layers and two endcaps. The endcaps

consist of three disks each and are located on both sides of the interaction point
in beampipe direction. This assembly yields three space points per particle on
average, very close to the interaction point, and thus providing very good vertex
reconstruction. The APD main components are 1744 identical sensor-chip-hybrid
modules, totalling approximately 8 · 107 pixels. Each module contains a silicon
sensor subdivided into 47 232 pixels, mostly 50× 400µm2 in size. Each pixel is
connected individually to one of 2880 analogue pixels, located on one of the 16
Front-End read-out chips (FE-I3) per module.

10

3.1 Original Detector Design

Figure 3.2: Engineering drawing of the original ATLAS Pixel detector in its global sup-
port frame, prior to the IBL upgrade.

The SCT consists of four barrel layers and two endcaps with nine disks each. The
layers and disks are made of single sided p-in-n microstrip sensors glued back to
back. They are rotated by 40mRad to provide three-dimensional hit information,
and are read out via 6.2 · 106 channels. This provides a resolution of 16 µm in the
Rφ plane and 580µm in direction of the beampipe.
The TRT is made of straw tubes, arranged in parallel to the beampipe in the

barrel layers, and perpendicular in the endcaps. It provides a resolution of 170µm
per straw. Each tube contains a sense wire and is filled with a gas mixture. Parti-
cles traversing the tubes ionize the gas mixture and are detected by collecting the
produced free electrons at the sense wire. When light particles, such as electrons,
cross the walls of the tubes photons are emitted. Measuring this transient radiation
helps to distinguish these particles from heavier ones. Approximately 36 hits are
recorded per particle, and read out via the TRT’s 420 000 read-out channels.
All ID subdetectors are under the influence of the 2T magnetic field created by the

superconducting solenoid magnet surrounding the ID. It measures 5.6m in length
and 2.4m across, and is supplied with a current of 7600A.

3.1.2 The Calorimeter System

The calorimeter system is a two part system, designed to precisely measure the
energy of particles leaving the ID, and to stop all particles except for the close to
unstoppable muons and neutrinos.
The inner part of the calorimeter system is the electromagnetic calorimeter, a

11

sampling calorimeter made of lead absorbers and liquid Argon. The outer part is the
hadronic calorimeter, also a sampling calorimeter, but made of steel absorbers and
plastic scintillators. To stop almost all particles both calorimeters are approximately
25 radiation lengths thick.

3.1.3 The Muon System

Since the calorimeters cannot stop muons, they were encased with a third detector,
the muon system. It performs unambiguous identification of muons and provides
space points far away from the interaction point, allowing very precise track re-
construction when combined with the ID space points. To measure muon energy
a magnetic field is generated, penetrating the muon system. It originates from a
toroid magnet, consisting of eight superconducting air-coils and two endcaps, cre-
ating ATLAS’ characteristic shape. The coils are 25.3m long and extend from a
radius of 9.4m to 20.1m, producing a magnetic field of 3.9T peak strength. The
endcaps extend from a radius of 1.65m to 10.7m, and produce a magnetic field of
4.1T peak strength.
The muon system has four parts. Resistive Plate Chambers (RPC) in avalanche

mode in the barrel regions, and Thin Gap Chambers (TGC) in the endcap regions,
handle triggering. Drift Tubes (MDT), made of aluminium and filled with a gas mix-
ture, and Cathode Strip Chambers (CSC), made of multi-wire proportional cham-
bers, perform precision measurements. They provide a spatial resolution of approx-
imately 50 µm.

3.2 Inner Detector Upgrades

Many parts of ATLAS receive periodic upgrades to ensure reliable and highly ef-
ficient data acquisition in increasingly harsh conditions. These conditions worsen
with each LHC upgrade and are accompanied by years of intense radiation exposure.
A first large upgrade of the ATLAS Pixel Detector was performed during the LHC
shut-down in 2013–2015, when a new pixel layer was successfully inserted into the
existing APD. The next large upgrade is planned for the long shut-down prior to
the start of HL-LHC, and foresees the replacement of the entire Inner Detector with
a new, all-silicon ATLAS Inner Tracker (ITk).

12

3.2 Inner Detector Upgrades

3.2.1 Phase I: Insertable B-Layer

The Insertable B-Layer (IBL) project was an effort to prepare the ATLAS Pixel
Detector for the increased irradiation and occupancy resulting from the LS1 and
LS2 LHC upgrades, so it could keep providing precision data at high efficiencies
until deployment of the ITk. It resulted in the insertion of a fourth and innermost
pixel layer into the existing APD, during the LS1 shut-down from 2013–2015 [?].

The IBL Design

In between the original APD and the beampipe existed an 8.5mm radial gap, which
was enlarged to 12.5mm by reducing the radius of the beampipe [?]. The enlarged
free space allowed the installation of said fourth pixel layer. The layer provides full
coverage in the Rφ plane and only small gaps in z direction, unavoidable due to the
tight space.
The layer consists of 14 staves, equipped with 32 modules each. The staves are

enclosed by the IBL Support Tube (IST), stabilizing the layer during installation and
operation. All parts were thinned as much as possible to reach the target radiation
length of 0.015X0 [?].
The majority of IBL modules are double-chip modules with one large n-in-n planar

silicon sensor and two newly developed FE-I4 Front-End read-out chips [?]. The
outermost modules of each stave are composed of 3D silicon sensors and four FE-I4
chips. A third type of module, a single-chip module with a diamond sensor, was
developed for the IBL but not deployed due to changes in the IBL time table. They
are thus used in the Diamond Beam Monitor (DBM) exclusively, a telescope-style
detector system meant to provide high precision luminosity measurements. It allows
testing of the new technology in a non-critical application [?].

The Read-out Electronics

A new generation of front-end electronics, the FE-I4 read-out chip, was developed
to fit the conditions of the IBL. It employs several technological enhancements to
be more radiation hard and operable under higher occupancies than the previous
FE-I3 of the original APD. It contains per pixel analogue and digital circuits for
processing and storing charge information from an attached sensor, and periphery
circuits handling off-chip communication.
The FE-I4 (Fig. 3.3) is one of the largest ASIC designed for a HEP application to

13

3.2.1 Phase I: Insertable B-Layer

date, measuring 18.8× 20.2mm2 when diced [?]. This allows for a large 80× 336
pixel array and several other size related advantages, such as an improved active
over total area ratio. The pixel and feature size were shrunk to 250× 50µm2 pixels
and an inherently radiation hard 130 nm CMOS process. The increased density al-
lowed increased complexity of the on-chip digital circuits and thus processing power.
The new CMOS process and careful design increased the total ionizing dose (TID)
radiation hardness to 250MRad.

Figure 3.3: Block schematic of the FE-I4 read-out chip, enlarged are four analogue pixels
connected to a 4-Pixel Digital Region [?].

A new pixel matrix architecture was employed, storing data locally at the pixel

14

3.2 Inner Detector Upgrades

level until triggered. This ensures FE read-out to be efficient up to a luminosity of
3 · 1034 cm−2 s−1 at the IBL radius, sufficient up to the HL-LHC upgrade.

3.2.2 Phase II: ATLAS Inner Tracker

When starting operation around 2025 the HL-LHC will provide a levelled instan-
taneous luminosity of 5 · 1034 cm−2 s−1, far beyond the capabilities of the ID, even
after the IBL upgrade. To ensure reliable operation during an envisioned 10 year
run, providing a 2500 fb−1 data set [?], multiple upgrades and modifications are
necessary.

The HL-LHC upgrade will increase the average number of interactions per bunch
crossing from currently about 25 to 140. This dramatically increases the received
radiation dose, occupancy and pile-up, neither of which can be handled by any
subdetector of the current ID [?]. This motivates the complete replacement of
the ID with a new Inner Tracker (ITk), an all-silicon design built on the experience
gained from the ID.

The inner four or five ITk layers will be pixel modules, providing pattern recog-
nition and vertex detection, the outer layers will be strip modules, allowing precise
tracking at lower cost. This choice preserves and partially improves the tracking
performance, while keeping the material budget at a minimum. Various layouts and
pixel and strip technologies fulfilling the ITk requirements have been proposed and
are currently under investigation (Fig. 3.4). Good candidates for pixel sensors are
the planar and 3D silicon, and diamond sensor technologies, currently used in APD,
IBL and DBM. 3D silicon is considered for the inner layers due to low depletion
voltage after irradiation, and planar silicon for the larger outer layers, due to high
yield and low cost. Additional technologies, such as active CMOS sensors, are tested
as well, promising lower cost and smaller pixel sizes than traditional hybrid designs.

For high-speed detector read-out, matching the high luminosity and thus increased
trigger rate, a new Front-End chip is necessary. At the inner layers data rates of
5Gbit s−1 per FE are expected, far beyond the capabilities of the current FE-I4.
Testing of FEs delivering such rates is also beyond current test systems, making
upgrades to them inevitable.

15

3.2.3 Further Upgrades

Figure 3.4: 3D view of the open rings layout considered for the ITk pixel endcaps, as
opposed to conventional solid endcaps. The open rings promise better cable
routing, cooling and easier construction [?].

3.2.3 Further Upgrades

A major upgrade to the trigger system is necessary to provide sufficient bandwidth
for the HL-LHC hit rates. A two-stage hardware trigger will be used to reduce
the initial rate of 1MHz to 400 kHz, still more than current read-out electronics
can handle. Therefore the calorimeter and muon system read-out electronics must
be replaced as well as the pixel electronics. This will be used to provide the full
calorimeter granularity and improved muon pT resolution to the trigger system. The
calorimeter itself will also be upgraded, especially the forward part, as will be the
muon system and ATLAS computing.

16

4 Detector Read-out

During detector development and testing a portable, quickly installable and self-
contained read-out system is needed. The large scale ATLAS read-out system does
not match this description, so smaller systems, suitable for laboratory and testbeam
environments, were designed. A widely used system for ATLAS Pixel Detector
development is the USBpix system, currently capable of testing FE-I3 and FE-I4
read-out chips and matching sensors. In the sections below the core components of
the system and a subset of the exchangeable parts are introduced, before examining
the programmable logic provided on the main PCB in greater detail.

4.1 The USBpix Read-out System

The USBpix system [?] was developed to cater to the needs of a large community,
involved in many different projects based around various pieces of hardware. To
support as many of these devices as possible, both the USBpix hardware and software
were designed to be modular and adaptable. The system subsequently found its way
into laboratories and testbeam facilities, is used for testing front-end electronics and
sensors, and for interfacing many supplementary devices, such as external trigger
sources.

4.1.1 USBpix Hardware

The core component of the USBpix hardware is the Multi-IO board, handling com-
munication between the host software, the device under test (DUT), and any sup-
plementary devices. It connects to the host PC via a USB2.0 port, to the DUT via
one of several adapter cards, and to any other devices via LEMO or RJ-45 ports.
The DUTs are placed on carrier cards, dedicated to a specific type and number
of DUTs, which interface with a matching adapter card. An exemplary hardware
assembly suited for testing a single FE-I4 is shown in Fig. 4.1.

17

4.1.1 USBpix Hardware

Figure 4.1: USBpix set-up for testing a single FE-I4: Multi-IO board with Single Chip
Adapter card and attached Single Chip Card with FE-I4.

The Multi-IO Board

The S3 Multi-IO board [?] is equipped with a USB2.0 capable CY7C68013A
microcontroller (µC) [?], a XC3S1000 Xilinx Spartan-3A Field Programmable
Gate Array (FPGA) [?], and a CY7C1061AV33 asynchronous static random-access
memory (SRAM).

The µC handles all communication between the host and the on-board logic, via
the USB Full Speed and USB High Speed protocols. Using USB Full Speed single
bytes paired with a 16 bit addresses are transferred, used for setting and reading
configuration and status registers. In USB High Speed mode large blocks of data
can be quickly transmitted, used for sending data received from the DUT to the
host. Time critical tasks, such as FE clocking, data recovery, data processing, and
trigger logic, are handled on-board by the Spartan-3A FPGA (see sections 4.2 & 5).
For data intensive tasks the FPGA relies on the 2MB SRAM for increased storage
capacity. Communication with all devices aside from the host is also handled by
FPGA, via the aforementioned LEMO and RJ-45 ports. A block diagram showing
the board layout is presented in Fig. 4.2.

18

4.1 The USBpix Read-out System

Figure 4.2: Functional block diagram of the S3 Multi-IO board, showing the µC, FPGA,
SRAM and interconnects [?].

FE-I4 Adapter Cards

A range of adapter cards allows the Multi-IO board to communicate with various
DUTs. Each card connects to the Multi-IO board via a 100 pin connector, and
receives signals directly from the FPGA. The main task of most adapter cards
is converting these single-ended Multi-IO/FPGA signals to the mostly differential
signals used by the DUTs. Most cards provide pin headers for debugging signals
and DUT specific additional functionality.

The standard card for interfacing a FE-I4 is the Single Chip Adapter Card (SCA),
capable of passing signals between a single FE-I4 and the Multi-IO board. The Burn-
In Card (BIC) is a more sophisticated model, allowing to connect up to four FE-I4s
simultaneously. It still receives only a single pair of FE clock and command signals
from the Multi-IO board, which it routes to all connected FE-I4s. The FEs return
data via a separate data line per FE, which are all passed to the Multi-IO board
individually and in parallel.

19

4.1.1 USBpix Hardware

FE Carrier Cards

The DUTs are mounted on carrier cards, which route power and communication
signals to the DUTs. The cards typically connect to a matching adapter card using
an RJ-45 port and CAT cable. This form of connection allows them to be placed
several meters away from the core parts of the USBpix system, e. g. in the path of
a particle beam.
The counterpart of the SCA is the Single Chip Card (SCC), holding a single

wire-bonded FE-I4. A BIC is usually paired with a 4-chip-module card, holding four
FE-I4s. Both carrier cards offer bias voltage ports to deplete any sensor that may be
attached to the FEs. The SCC has a dedicated LEMO port for biasing, the 4-chip
module card receives the bias voltage on the same 8 pin MOLEX as the FE supply
voltages.

Front-End communication

The FE-I4 has three differential serial links, a clock, a command, and a data line.
The clock line supplies the FE with a reference clock, needed for setting the bunch
crossing id and counting charge and trigger information. The uni-directional com-
mand line transmits slow configuration commands and fast trigger commands to
the FE. Slow commands usually contain an address and a data payload, and are
used to access specific registers on the FE and set them to the provided value. The
fast trigger command is a short bit sequence without payload, instructing the FE
to transmit all stored data via the data line. Data transfer occurs in frames, typi-
cally consisting of one data header (DH), up to three service records (SR), and an
arbitrary number of data records (DR), enclosed in start of frame and end of frame
comma symbols.
The DH specifies the bunch crossing and trigger ids for all following DR. Each

DR contains a pixel location and the charge information collected for that and an
adjacent pixel, during the given bunch crossing. Charge is measured in Time-over-
Threshold (ToT), which is proportional to the observed charge. Combining the ToT
information of neighbouring pixels is called φ-paring and reduces the FE data rate,
since pixel are often hit in pairs. The SRs contain status and error information.
Each record is 24 bit long and send out in three, sequentially transmitted 8b/10b
symbols.

20

4.1 The USBpix Read-out System

4.1.2 USBpix Software

The USBpix hardware is controlled by the STcontrol software application. It pro-
vides a graphical user interface (GUI), using ROOT and Qt, for performing measure-
ments and analysing obtained data. It builds on the functionality of a customized
ATLAS PixLib library, a collection of C++ classes originally used to access the
ATLAS Pixel Detector read-out devices (RODs). The STcontrol PixLib implemen-
tation is supplemented by several hardware specific libraries for interacting with
FE-I3s and FE-I4s via the USBpix hardware. Several abstraction layer and abstract
classes allow adding additional hardware interface libraries, to easily widen the pool
of supported DUTs. To work seamlessly within larger testbeam set-ups STcontrol
integrates with the EUDAQ software suite [?] over a TCP connection.

4.1.3 Scans

The STcontrol PixScan panel offers a large number of scans. Among them are scans
to test the electronics of an FE, calibrate its charge threshold, determine cross talk,
gather data from an attached sensor, and many more. Two groups of scans can be
distinguished by their underlying mechanisms. The larger group of calibration scans
includes all scans relying on the internal charge injection of the FE. The second
group measures charges injected into a sensor by an external source, typically a
laser, particle accelerator or radioactive source.

Figure 4.3: The analogue pixel electronics of the FE-I4, showing the Vcal (lower left
corner) and DigHit (lower right) analogue and digital injection pads [?].

21

Internal injections can occur at the analogue or the digital pixel electronics, and
are controlled by the Vcal and DigHit parameters [?] (see Fig. 4.3). The Analog Scan
and Digital Scan instruct the FE to perform the injection corresponding to the scan
title and record the registered hits in occupancy histograms. All other scans of the
group rely on the same injection mechanisms and are thus derivatives of the Analog
and Digital Scan. For example, should the users choose to perform a Threshold
Scan, to determine the amount of charge necessary for a pixel to register a hit, the
system performs a set of Analog Scans, injecting various charges, and calculates
the threshold from the hit-or-no-hit information gained from the individual Analog
Scans. To validate any scan of this group on the hardware and hardware interface
level it is thus sufficient to verify the Analog and Digital Scans. When only altering
the FE read-out, it would even be sufficient to perform just one of the scans, since
even these two differ only in their injection parameters.
The second group consists of merely the Source Scan and its testbeam derivative.

These rely on external charge injection and triggering. The data returned from the
FEs is again the same, regardless of injection mechanism, but triggering and scan
duration are very different for these scans. During calibration scans the USBpix
system issues a predefined number of injections and generates a read-out trigger
after each one. Source Scans know a large number of trigger mechanism, internal
and external, which have to be translated and counted by the USBpix system. Scans
can also run for many hours and produce vast amounts of data. Therefore this group
has to be validated individually.

4.2 Programmable Logic

The Multi-IO board is equipped with a programmable logic chip, allowing swift sys-
tem upgrades without the need for manufacturing and distributing new ASICs and
PCBs. The Xilinx Spartan-3A FPGA chosen for the USBpix system can handle a
wide range of logic functions and signalling standards, at clock rates up to 333MHz.
It can be reprogrammed at any time by pushing a new firmware file to the chip, mak-
ing it a great choice for ever evolving, high frequency applications such as USBpix.
The architecture of modern FPGAs involves a diverse set of specialized resources,
requiring special design paradigms to be followed during firmware development, for
optimal utilization.

22

4.2 Programmable Logic

4.2.1 FPGA Architecture

At the lowest level, FPGAs consist of a large array of interconnected transistors,
often times several billion. They are arranged to form logic gates, many of which
are combined to more complex structures, such as Look-Up Tables (LUTs), registers
and multiplexers. The named structures are sufficient for implementing a wide
range of logic functions, and capable of emulating many other structures. They
have therefore become the main resources on most modern FPGAs,

LUT

D Q
i1
i2
i3
i4

o

clock
Figure 4.4: A LUT connected to a register and a multiplexer, representing the basic

logic block common to most FPGAs.

A LUT maps n logic inputs to a single logic output, and is typically capable of
implementing any logic function with n parameters. In combination with a register,
usually a D-flip-flop, and a multiplexer it becomes usable for both synchronous and
asynchronous logic. Therefore the LUT output gets connected to both the register
and multiplexer. The register stores the output value and makes it available on its
own output during the next clock cycle, which is connected to the other input of the
multiplexer (see figure 4.4). This way the arrangement can be used for synchronous
logic, when selecting the register output, and asynchronous logic, when selecting the
LUT output at the multiplexer.
On the Spartan-3A the described cells are combined in pairs of two and sup-

plemented with additional elements to form slices, shown in Fig. 4.5. The extra
elements allow chaining of LUTs, to construct larger logic functions or structures
like memory cells and shift registers.

Specialized Resources

The Spartan-3A contains five fundamental programmable functional elements [?
], their placement on the FPGA is laid out in Fig. 4.6. As shown, most of the

23

4.2.1 FPGA Architecture

WF[4:1]

UG331_c7_02_110708

YB

Fi

Y

YQ

CE

D

DYMUX

GYMUX

YBMUX

DIWS

COUT

CE

BY

G[4:1]

FXINB
FXINA

CLK
SR

F[4:1]

BX

CIN

CYINIT

DIWS

Logic FunctionsLEGEND:

Distributed RAM and
Shift Register Functions

Top Portion

Common Logic

Bottom Portion

F-LUT

FFX

G-LUT

FFY

Q

CK
SR REV

Figure 4.5: Simplified diagram of the contents of a Xilinx Spartan-3A slice [?].

Spartan-3A’s area is taken up by Configurable Logic Blocks (CLBs), which combine
four slices each, and implement most of the logic on the FPGA [?]. All LUTs are 4-
to-1 LUTs and can thus be configured as 16× 1 memory cells or 16-bit shift registers.

24

4.2 Programmable Logic

Knowledge of these exact numbers is important to utilize the CLBs optimally in the
design.

CLB

B
lo

ck
 R

A
M

M
ul

tip
lie

r

DCM

IOBs

IOBs

DS312-1_01_032606

IO
B

s

IO
B

s

DCM

B
lo

ck
 R

A
M

 /
M

ul
tip

lie
r

DCM

CLBs

IOBs

OBs

DCM

Figure 4.6: Architecture of a Xilinx Spartan-3A, shown are the fundamental building
blocks and their locations [?].

Off-chip communication is handled by Input/Output Blocks (IOBs), arranged
along the edges of the Spartan-3A. These perform encoding and decoding of a large
number of signalling standards, allowing to connect the FPGA directly to most
other system components, without the need for external decoders. The IOBs are
capable of bi-directional tri-state operation, necessary for using the USB and SRAM
data channels. They also permit double data rate operation (DDR), allowing SRAM
writes on consecutive clock cycles.
The Spartan-3A provides two columns of 18-Kbit dual-port RAM blocks, allowing

efficient implementation of first-in-first-out queues (FIFOs). These are often used
for buffering data on-chip for a small number of clock cycles, and passing data from
one clock domain to another. Both are very common tasks and handled by FIFOs
with either the same or independent read and write clocks. Using the block RAM,
first-word-fall-through (FWFT) FIFOs can be implemented as well. These make the
first word pushed in immediately available on their output, enabling designs with
minimal delay.
Another major resource are Digital Clock Managers (DCMs), necessary for proper

generation and distribution of clocks to synchronous logic. Ideally a clock signal
would be supplied to all connected logic at the exact same time, impossible due

25

4.2.2 FPGA Design

to routing delays on the large FPGA area. These unwanted delays can be com-
pensated, because clocks are periodic signals, and only the arrival of an edge at a
predictable time is important, not the arrival of any specific edge. Therefore the
DCMs can calibrate themselves to simulate instantaneous transmission of a clock to
all registers via use of a feedback clock. DCMs can also generate new clocks by divid-
ing, multiplying and phase shifting an input clock. Designs often require multiple
clocks, when communicating with devices operating at different frequencies, such as
the µC and DUTs, or when oversampling is necessary to recover data from external
sources.

Interconnects

The FPGA contains several networks of traces for routing clock, configuration and
logic signals. To receive or send these signals all functional elements connect to a
subset of the networks via switch matrices, associated with the individual elements.
The clock nets are carefully designed to have the same delay, called clock skew,

at as many endpoints as possible. To achieve this a form of tree structure is used,
first distributing the signal evenly to all areas of the FPGA, before connecting to
the individual registers. The large fanout requires many stages of amplification, also
evenly distributed across the FPGA. To allow optimal operation of the clock net
great care must be taken, to only use proper clock signals to trigger synchronous
logic. Otherwise logic signals may be inserted into the clock net, hindering perfor-
mance.
Separate nets are provided for routing logic signals. Flexibility in routing is pro-

vided by transistors in the nets and the switch matrices of the functional blocks.
These get set, to pass through or block signals, during configuration of the FPGA.
Signal routing introduces delays, which must be considered in any design, just as the
delay from the logic operations. Their sum needs to be small enough to fit within
one clock period. Routing delay can be optimized by placing connected elements as
close to one another as possible, and thus minimizing the length of signal paths.

4.2.2 FPGA Design

When designing an FPGA configuration it is obviously not feasible to set the state
of each transistor or even logic gate individually. Instead, designing is done on a
higher abstraction layer, usually the Register Transfer Level (RTL). On this level,

26

4.2 Programmable Logic

registers exist as the primary storage for logic levels. At each rising edge of a clock,
a set of registers is read. A logic computation then generates new logic levels from
the read registers’ states. This result is then stored in another set of registers, and
made available at the next rising clock edge. The source, destination and logic
function are commonly described using a Hardware Description Language, such as
VHDL (Very High Speed Integrated Circuit Hardware Description Language) or
Verilog. These languages allow control of hardware specifics, such as signal timing
and asynchronous and synchronous parallel command execution.
Designs are split in modules, or entities, designed for specific tasks, and connecting

to one another using a specified set of input, output and bi-directional ports [?
]. The body of an module contains asynchronous signal assignments, synchronous
processes, and instances of other modules. This level of abstraction simplifies the
design process, but obscures the underlying complexity and requirements of the
hardware. Especially the set-up and hold times of signals before and after a clock
edge, necessary for safe operation, are hidden from the designer. They need to
be specified in dedicated constraints files, read by the place and route tools when
mapping and routing a design on an FPGA. The tools inform the designer if any
constraint could not be met for the design at hand, requiring design optimization
or even careful, manual placement of registers.

27

5 USBpix Configuration

Before any update to the USBpix system can be discussed the current configuration
must be examined, and room for improvement identified. Then the feasibility of the
chosen upgrade path needs be shown, and finally the implementation described.
Since the goal of this thesis is the implementation of a new read-out scheme, the

following discussion focusses solely on the read-out related parts of FPGA firmware
and USBpix software. The new read-out implementation is supposed to allow data
transfer to the host PC in a continuous stream, without the current need for frequent
stopping of ongoing scans. It is motivated by an expected large increase in average
data acquisition rate. Also unified data handling for all measurements is desired,
enabling the system to store the complete and unaltered raw data regardless of scan
type.

5.1 Stable USBpix discussion

The modifiable parts of USBpix are the host software, the microcontroller firmware,
and the FPGA firmware. Since the microcontroller firmware is closed source, and
already provides modes for bulk data transfer and addressable single byte transfer,
it will remain as is. STcontrol will require only minute changes, since it is well
separated from the actual scan processes by the software abstraction layers. The
underlying PixLib and USBpixI4dll libraries on the other hand require major changes
to read-out functions and procedure, while the configuration functions can remain
unchanged. The same holds for the FPGA firmware, since only the last two of the
major blocks USB Full Speed interface, clock generation, control strobe, configuration
state machine, trigger id control, read-out block, and SRAM control, are directly
involved in board read-out only these need modification. A sketch of the current
read-out scheme is shown in Fig. 5.1, offering some guidance during the following
discussion.

29

5.1.1 Data Recovery & Decoding

FE 1Tr
ig

ge
r

ID
Raw Data Writer

Histogrammer

D
at

a
R

ec
ov

er
y

D
ec

od
er

M
em

or
y

A
rb

ite
r

SRAM

FE 2

FE 3

FE 4

to µC

SRAM
Control

~

~

~

Figure 5.1: The read-out chain of the stable USBpix firmware starts with a dedicated
data recovery module for each FE. The data streams are passed through de-
coders and a hit processor and are combined in the memory arbiter module.
The data is then buffered in the SRAM and send to the host via the µC.

5.1.1 Data Recovery & Decoding

The serial data streams received from the FEs are first sent to the data recovery and
decoder blocks, for synchronization, deserialization and decoding. These actions are
performed for all data streams in parallel by multiple instances of the described
blocks.
The data recovery modules search for edges, i. e. logic level transitions, on the FE

data link. Whenever such an edge is detected the data stream is sampled to retrieve
the currently send bit. In between the edge and the sampling point a short amount
of time, optimally half a clock cycle, is waited to ensure the link settled on a stable
level. If no new edge is detected for a full clock cycle after the previous sampling
point, the next sample is taken at the beginning of the clock cycle following the
latest sampling. This approach requires at least three samples per bit, with more
samples improving the granularity of the edge detection. Using an even number
simplifies the design, hence four times oversampling was chosen for implementation.
The needed clock frequency is achieved by using two 90◦ phase shifted clocks and
their inverse, in combination delivering the 640MHz clock needed at maximum FE
data rate. Further details are found in Xilinx Application Note 224 [?].
The decoder receives the serial bit stream from the data recovery and pushes it

into a shift register. The register is constantly checked for FE protocol commata,
marking the beginning of a new word. Once found the following data is aligned and

30

5.1 Stable USBpix discussion

the packages send to the 8b/10b decoder. The returned bytes are checked for start
of frame markers, and the following bytes combined into 24 bit FE protocol words
and flagged with a valid bit.
The described data recovery and decoder modules handle parallel data streams

from up to four FEs very efficiently and reliably. The resulting data format of fully
decoded FE protocol words with valid bit is well suited for the subsequent processing
and transmission, so both modules can remain unchanged.

5.1.2 Read-out Modules

Two types of read out modules are implemented, one for on-board histogramming
during calibration scans, and one for writing raw data during source scans. The
histogrammer module offers two modes, one for creating per pixel ToT, and one for
creating per pixel occupancy histograms. Since the occupancy histogram is simply
a ToT histogram with all ToT bins combined in the first bin, both histograms are
handled by the same module. Both module types create memory commands, which
are send to the memory arbiter for execution. The arbiter applies the commands to
the external SRAM, since the FPGA does not provide sufficient memory capacity
for handling such data intensive tasks on-chip.
The commands begin with a single bit, identifying the type of command and thus

triggering either the arbiter’s add function (histogram memory command) or a write
function (raw data writer memory command). The second bit marks a command
as valid and ensures every command is executed only once. The next 21 bit are
the SRAM memory cell address the command is to operate on, while the last 8 bit
contain the data, which is either to be added or written to the given memory cell.
The histogrammer extracts the pixel location and both ToTs from each data

record. It then computes the memory addresses corresponding to the histogram
bins the hits are to be added to, and issues a memory command for each valid
hit. The raw data writer performs no analysis of the FE data, instead it just adds
sequential addresses to the words and passes them along. Additionally, it merges
any trigger ids it receives into the FE data streams. To keep the multiple FE data
streams separate, the raw data writer assigns one SRAM segment to each FE and
matches data and addresses accordingly. Once a segment is full, the data writer
raises a flag and the current measurement halts.
Neither of these read-out modules is suited for a unified continuous read-out. The

histogrammer discards all data after extracting a selected piece of information and

31

5.1.3 Memory Arbiter

is thus out of the question. The raw data writer preserves all data, but lacks the
memory management capabilities required for continuous read-out. Adding them
to the existing module would be cumbersome and put many constraints on the
implementation of downstream logic and interfaces. Removing both modules and
passing the FE words along on a 24 bit parallel bus allows for a much more resource
efficient design.

5.1.3 Memory Arbiter

The memory arbiter merges the memory commands received from the up to four
read-out channels into one command stream and executes the write and add com-
mands on the SRAM. Since an add requires reading the current cell value from the
SRAM, adding the received byte and writing the new value back to the SRAM, the
arbiter implements a bi-directional SRAM interface. An analysis of read and write
frequencies required for four FEs at maximum data rate showed the necessity for
grouping read and write operations, and performing them at a finely tuned SRAM
clock [?].
The first stage of the arbiter consists of four FIFOs, buffering the memory com-

mands from one channel each, until they are merged into the common arbiter input
FIFO. They simultaneously pass the commands into the SRAM clock domain. Merg-
ing is performed in two stages, to meet timing at the high SRAM clock frequency.
Raw data writer commands received by the arbiter are passed to the operations
FIFO and executed. histogrammer commands are held in the input FIFO until the
arbiter begins a read cycle. Then the address from the first command in the FIFO is
read, the retrieved data stored in the read FIFO, and the histogramming command
stored in the operations FIFO. The process repeats until the read cycle is over. Then
the data payload of the first command in the operations FIFO is added to the first
data byte in the read FIFO, and the calculated byte written to the address given by
the histogramming command.
The merging stage of the arbiter will remain necessary for any read-out scheme,

since only one SRAM data bus exists, onto which four read-out channels have to
be merged. Without the raw data writer merging the trigger number into the FE
data streams trigger merging will have to be handled at the arbiter stage. With-
out on-board histogramming no high frequency switching between read and write
operations will occur, allowing to operate the modified arbiter at a more moderate
clock frequency. The only entity reading the SRAM will be the host software, which

32

5.1 Stable USBpix discussion

performs reads in bulk and with comparatively long time intervals in between. This
also removes the need for the read and operations FIFOs, and the two-stage merging,
and a two-way SRAM interface.

5.1.4 SRAM control

All SRAM interface signals are handled by the SRAM control module. When SRAM
access is requested by the memory arbiter, the module mostly provides tri-state
buffers for the bi-directional SRAM data bus. When accessed by the host via the
USB High Speed interface, it becomes responsible for making the requested SRAM
data available on the USB data bus. The High Speed interface provides no address
signal, so the start address for a read operation is delivered to the FPGA via the Full
Speed interface beforehand, and must be decoded by the SRAM control. Whenever a
USB read is performed, the read strobe signal is raised for one clock cycle by the µC,
causing the SRAM control to pull the data from the next SRAM address and make
it available on the USB data bus. When the host is not reading the USB bus, the
SRAM control holds it in a high impedance state. Additionally, the module handles
domain crossing between the SRAM interface and USB interface, via several sets of
registers.
The SRAM control requires significant changes to handle continuous read-out. It

will have to keep track of the SRAM addresses last written to and read from, and
buffer incoming FE data while SRAM writes are blocked by SRAM read issued by
the host. It also needs to calculate the amount of buffered data, so the host can
query the number of read strobes to issue.

5.1.5 PixLib & USBpixI4dll

All scans are initiated from a control thread within the STcontrol application. The
thread keeps running during the entire scan process, printing status information,
and aborting the scan should the user choose to do so. After the scan the thread
performs any necessary post-processing of the scan results. The specific actions
taken upon starting a scan depend on the type of scan, which is either calibration
scan or a source scan.
Calibration scans require frequent interaction with the FE, to control the injection

mechanism and alternate the pixels receiving the injections. Therefore a dedicated
scan thread is started, performing all necessary actions. Once the scan is done

33

the finished histogram is retrieved from the hardware, copied to the corresponding
histogram object and presented to the user, upon which the scan and control threads
return.
The Source Scan is performed without an additional thread, since it requires no

interaction with the FE once a scan was started. The read-out system however needs
attention, since it relies on the host software for instruction, when to read out the
SRAM. Among the status information pulled from the board by the control thread
is the fill level of the SRAM. Once received, it is compared to a threshold defined in
the scan parameters, and, if matched, the instruction to hold the scan and retrieve
all data from the SRAM is issued. The data is transferred byte by byte to an array
equal to the SRAM in capacity. The bytes received are recombined to FE protocol
words and triggers numbers and stored on disk. The hardware is then reset and the
scan resumed, until the threshold is reached again.
The start scan and control procedures are mostly independent of the read-out and

can therefore remain unaltered. Only the conditional statement, triggering read-out
based on the SRAM fill level during source scans, must be removed. The function
reading the SRAM needs to be modified to be able to read only a select portion
of the SRAM. Additionally, some mechanism must be implemented to periodically
call the function during all scan types, and to perform processing of received data
in parallel, so data polling is not slowed by data processing.

5.2 Stopless USBpix configuration

After identifying the parts of the USBpix system, needing changes to achieve a higher
average data acquisition rate and unify the data processing across scan types, the
feasibility and implementation of the required improvements can be analysed and
laid out. Since the changes involve mainly the read-out block of the FPGA firmware
and the PixLib and USBpixI4dll libraries the discussion will again focus on these
parts.
On the host side the functions for stopping the measurement and reading the

entire SRAM are replaced with two threads, one of which constantly polls data
from the board, while the other processes the available data. The use of a dedicated
thread for data polling allows near continuous read-out of the USBpix hardware and
thus minimizes the risk for buffer overflows on the board.
On the FPGA side the read-out modules are replaced with data buffers and id

34

5.2 Stopless USBpix configuration

taggers. The taggers implement a revised data-to-FE matching scheme, which re-
places the no longer applicable id-by-SRAM-address scheme. The memory arbiter
is replaced by a data arbiter, and the SRAM control module by an SRAM FIFO
module. The data arbiter is much simpler than its predecessor, since it does not
handle direct memory access, but only selects the data packet which is to be sent
to the SRAM FIFO next. The SRAM FIFO module then handles memory access
and management, by implementing a circular buffer in the SRAM, a common ap-
proach for streaming applications. Fig. 5.2 presents an overview of the proposed
new scheme.

FE 1

Trigger ID

D
at

a
R

ec
ov

er
y

D
ec

od
er

R
R

P
D

at
a

A
rb

ite
r

FE 2

FE 3

FE 4 SRAM

to µCBu
ffe

r
FI

FO

Ta
gg

er

Bu
ffe

r
FI

FO

Ta
gg

er

SRAM FIFO
~

~

~

Figure 5.2: The proposed USBpix firmware keeps the data recovery blocks, but replaces
the processor blocks with buffer and tagger modules. The memory arbiter is
split into a round-robin with priority data arbiter and the SRAM FIFO module,
which absorbs the SRAM I/O multiplexer.

Feasibility Study

The USBpix system needs to read out four FE-I4s in parallel at most, which can
send data at a maximum clock frequency of 160MHz each. The 24 bit FE protocol
words are split in 8 bit words and 8b/10b encoded (see section 4.1.1), resulting in
30 bit sent sequentially for each word. This means at peak data rate the USBpix

35

system receives

160 Mbit
s × 1

30
word
bit × 4 FEs = 21.4 · 106 words

s = 512 Mbit
s . (5.1)

The system is connected to the host PC via USB2.0 and capable of Full Speed
and High Speed transmissions. The faster High Speed specification is defined with
a bus rate of 480Mbit s−1. This rate results in a maximum effective data rate
of 424Mbit s−1, due to encoding and transfer protocol overhead [?]. The data
rate is further limited by the USBpix implementation of the specification. The
microcontroller on the Multi-IO board operates at 48MHz and issues a read strobe
to the FPGA every three clock cycles, reading 8 bit in parallel at each strobe. This
results in a data rate of

1
3 strobe× 48 MHz× 8 bit

strobe = 128 Mbit
s . (5.2)

The calculations show that simultaneous, continuous read-out of four FEs at peak
data rate is not possible with the available hardware. Especially considering, that
the calculated transfer rate is only theoretical and in practice diminished by other
transfers occurring on the USB bus and host software processing times. Fortunately
the peak data rate is only seldom reached and only for very short times, if at
all, during real world operation. It is also unlikely, that all four FEs reach their
maximum rate at the same time. Thus simultaneous, continuous read-out remains
possible, as long as sufficient storage and mechanisms for data buffering are included
in the design.

The maximum sustainable trigger rate for source and testbeam measurements
can be obtained by estimating the maximum number of pixels to read out for each
event. The number of pixels hit per event is usually a single digit number. When
working with a bad module about one hundred noise hits must be added on. Thus
two hundred hit pixels resulting in two hundred data records accompanied by 16
data headers and a few service records per FE per event is a safe upper limit. This
yields a worst case trigger rate of(

128 Mbit
s × 0.9

)
× 1

220
event
words ×

1
4FEs ×

1
24

word
bit ≈ 5.5 kHz , (5.3)

when working with four noisy modules. A realistic calculation with one noisy and

36

5.2 Stopless USBpix configuration

three good modules yields a far more satisfying sustainable trigger rate of(
128 Mbit

s × 0.9
)
×
(

1
220

event
words ×

1
1FE + 1

25
event
words ×

1
3FEs

)
× 1

24
word
bit ≈ 16.3 kHz .

(5.4)
The same calculation for a single good module gives a rate of(

128 Mbit
s × 0.9

)
× 1

25
event
words × 1FE× 1

24
word
bit ≈ 192 kHz . (5.5)

The calculated worst case trigger rate is achieved in some testbeams, while the
realistic rate lies beyond observed rates [?]. The single module rate lies way
beyond the rates achieved in any testbeams, but still gives a handy upper limit for
the multitude of single chip laboratory set-ups. The calculations show the proposed
upgrade surpassing the real world requirements, and thus support its feasibility. For
a comparison to the current stopping read-out implementation and experimentally
determined real world performance refer to chapter 6.

5.2.1 Read-out Module

The first two blocks processing incoming FE data, the data recovery and decoder
described in section 5.1.1, efficiently turn unsynchronised serial bit streams into
parallelized FE protocol words with accompanying valid bits. This data needs to
be buffered, moved to the microcontroller clock domain and tagged with an id byte,
before it can be passed to the data arbiter. These tasks are performed by a new
read-out module, shown in Fig. 5.3. An instance of the module is created per FE
and trigger channel, to simultaneously apply the operation to all data streams.

WR RD
emptyWR CLK

RD CLK

D Q

S Q

&D Q

FE/Trigger Data

Valid

FE CLK
µC CLK

ID

to/from Arbiter

Figure 5.3: Buffering and clock domain crossing is achieved by using a FIFO with in-
dependent read and write clocks. The D-flip-flop and AND gate on the write
port (WR) ensure every word is written only once.

37

5.2.2 Data Arbiter

Buffering and clock domain crossing are achieved most easily using a FIFO with
independent read and write clocks. A first-word-fall-through FIFO (FWFT FIFO)
was chosen, to minimize the delay introduced by the module, and simplify the
downstream logic. The received data and valid bit are synchronized to the 40MHz
FE clock, which thus serves as the FIFO write clock. Since the microcontroller, and
subsequently the USB bus, operate on a 48MHz clock this clock is chosen for the
remainder of the read-out chain and routed to the FIFO read clock port. The data
is directly fed to the FIFO, since any data on the input is ignored as long as no write
signal is received. The write command is generated from the valid signal, by feeding
it to a register, and the inverted register output and the valid signal itself to an
AND gate. This ensures that the write signal is only HIGH for one clock cycle per
valid signal, without delaying the signal. This way the valid bit still marks the data
on the correct clock cycle, and every incoming FE word is ensured to be written to
the FIFO only once.
At the output of the FIFO a byte with constant bit pattern is added to the data.

The pattern uniquely identifies the words read from this read-out module instance,
and is later used to match the data to the different FEs or identify trigger words.
Each trigger word is tagged with a 0x80, each FE word with a (0x01 + FE_ID).
Adding the id after the FIFO keeps the width of the FIFO at a minimum. The FIFO
depth is rather unimportant, since each read-out module is checked for data at least
every sixth µC clock cycle, and data arrives at maximum every seventh FE clock
cycle. It can therefore be chosen to match the remaining resources on the FPGA.

5.2.2 Data Arbiter

The data supplied by the five read-out modules must be muxed to the single data bus
of the downstream module. Valid words on the arbiter output must be marked as
such, and the downstream module needs to be offered a way to hold the arbiter when
it cannot digest further data. Upstream communication to the read-out modules
must include read and data available signals. A schematic of the arbiter is shown in
Fig. 5.4.
A round-robin schedule was chosen for input multiplexing, since it minimizes the

risk of buffer overflows on any given channel. A priority option was added to the
trigger number input, because the host software expects the trigger number of a
given event to always arrive before the FE data of the same event. The round-
robin with priority (RRP) block thus always checks the trigger input first, and, if no

38

5.2 Stopless USBpix configuration

&

FE & Trigger Data

RRPD

CE
select

WR REQ

µC CLK

Data to SRAM FIFO

DATA REQ

RD Data Valid1>

Figure 5.4: The arbiter muxes multiple input data buses to one data output bus using
a round-robin scheme. Priority is given to the trigger data bus.

trigger word is available, proceeds to sequentially checking the FE inputs, starting
with input following the one selected last. The input of the RRP block is composed
of the five inverted empty signals of the read-out modules. These signal valid data
at the output of their respective FIFO and thus function as write request signals.
The RRP block is enabled by a data request signal from the downstream module
and put on hold when this signal goes LOW. While enabled the block iterates over
all input channels following the aforementioned scheme and sets a select signal to
the first channel with a write request it finds.

The select signal is passed to the multiplexer, choosing the matching input for
pass-through, and to the upstream read and downstream valid outputs of the arbiter.
The upstream port passes the information which channel was selected to the read-
out modules, and the corresponding module clears the read data from its FIFO. The
downstream module has no use for this information, so the bits of the select signal
are ORed to a single valid bit. By ANDing the select signal with the write request
and data request signals, before passing it to the outputs, the read and valid signals
are guaranteed to be HIGH for only one clock cycle per valid data word. As long
as data is requested and available, the select signal takes care of this. Should one
of the conditions no longer hold, the corresponding signal does so. Raising the read
signal for just one cycle is necessary to not skip any words at the read-out module
FIFOs, and raising the valid signal for just one cycle to write each word only once.

39

5.2.3 SRAM FIFO

5.2.3 SRAM FIFO

The SRAM FIFO module is a more delicate and complex affair than the upstream
modules. It needs to manage simultaneous read and write requests, adhere to the
SRAM interface timings, and communicate various status signals to the host soft-
ware. Additionally, it needs to break down the 32 bit data words, received from the
arbiter, to the 16 bit SRAM memory cells, and finally the 8 bit USB bus. Since cor-
rect timing of the SRAM and USB interfaces is crucial for successful implementation,
these requirements are discussed in detail, before presenting the implementation of
the SRAM FIFO.

SRAM Timing

The SRAM data sheet specifies a minimum read and write cycle time of 10 ns [?],
close to half a clock period of the µC 48MHz clock. Since only one such operation
needs to be performed per µC clock cycle, these constraints are easily met.
More careful investigation of the write cycle shows, that the address signal should

be provided at the same time or before the write signal, and the write signal before
the data signal. For the latter two, a time difference tHZWE = 5 ns is given. This
is the maximum time it takes the SRAM to switch its bi-directional data bus to a
high impedance state, after the write signal was received. If the data bus is driven
before the switch occurred, the SRAM and FPGA ports short-circuit and potentially
damage the devices. After this time the data bus can be safely written. It then needs
to be held steadily for at least tSD = 5.5 ns for the write to complete successfully.
These specifications are met by supplying the address and write signals at a rising

edge of the µC clock, and data at the falling edge of the clock, a little more than
10 ns later. All three signals are held for the remaining 10 ns of the clock cycle, and
removed at the next rising edge. The state of the read signal is irrelevant during
this process, since it is negated by the write signal.
When performing a read operation, this means first of all removing the write

signal. Reads can then be controlled by switching address to point to the desired
memory cell, and the read signal to HIGH in arbitrary order. The data bus is
guaranteed to be valid tAA = 10 ns after switching address and tDOE = 5 ns after
switching the read signal. Thus, when setting both at the rising edge of a clock cycle,
the data bus can be safely sampled at the following falling edge or any edge after, for
as long as the address and read signals remain unchanged. Since it is beneficial for

40

5.2 Stopless USBpix configuration

Signal Timing

µC clock
SRAM address 0x00 0x01 0x00 0x02 0x03 0x04 0x01 0x05 0x06

SRAM I/O O O I O O O I O

SRAM write
SRAM read
SRAM BHE
SRAM BLE
SRAM CE1

Table 5.1: Timing table of the SRAM interface of the SRAM FIFO module, matching
the signal timings specified in the SRAM data sheet. The letters on the SRAM
I/O bus denote outgoing (O) and incoming (I) data.

the FPGA design to perform as many operations as possible on the same clock edge,
the following rising edge was chosen as the sampling point. Tab. 5.1 shows the signal
timing achieved by the SRAM FIFO module, adhering to the stated specifications.
The byte high enable (BHE), byte low enable (BLE), and chip enable (CE1) interface
signals are not needed in the design and held at a constant value.
Consecutive USB reads were found to be performed every third clock cycle, read-

ing 8 bit each. Since 16 bit are retrieved from the SRAM during each read, and
buffered inside the FPGA, it is sufficient to perform an SRAM read every other
USB read. Thus, at least six clock cycles pass in between any two SRAM reads, by
far sufficient for coordinating quasi-simultaneous read and write operations on the
SRAM.

SRAM FIFO Implementation

A common type of intermediary storage for streaming applications is a circular
buffer. Such a structure is created by generating a write pointer and a read pointer,
respectively storing the next memory address to be written to or read from. When
consequently incrementing the corresponding pointer after each read or write, and
having them wrap around at the end of the address space, a behaviour resembling a
FIFO is produced. Since exactly this is desired, and a circular buffer maps well to
the FPGA/SRAM combination at hand, it was chosen for the implementation of the
SRAM FIFO module. A schematic illustrating the below description is presented
in Fig. 5.5.

41

5.2.3 SRAM FIFO

SRAM ADD

SRAM WE

SRAM OE

SRAM IND Q

D Q&

Data In
Data Valid
Data Req
µC CLK

WR
full

D Q
empty

RD

&

D Q

FSM
getword

USB Read

S Q
R rd 2nd byte

D Q

counter
CE Q

wr pointer
counter

CE Q

rd pointer

SRAM OUT USB dataD Q
CE

D Q

adder
i1

FIFO status

i2
full

emtpy
#bytes

i1
i2
i3

SRAM BHE
SRAM BLE
SRAM CE1

S QVCC

Figure 5.5: Schematic of the SRAM FIFO module. SRAM reads are performed every
other USB read, writes whenever new data arrives.

Since the 48MHz µC clock was shown to work well with the SRAM timing re-
quirements, and the USB interface operates at this very clock, it was chosen for all
synchronous module logic. To minimize skew on the SRAM interface, each signal
is routed through a register at the FPGA IOBs. The internally received data is
similarly buffered by passing it through a FWFT FIFO. This allows controlling the

42

5.2 Stopless USBpix configuration

data stream, necessary for delaying it during SRAM reads. The valid bit generated
by the data arbiter serves as the write signal to the FIFO. The inverted full signal
provides feedback to the arbiter via its DATA REQ input.

SRAM FIFO Write Operation

The output of the buffer FIFO is passed to the SRAM I/O bus via a multiplexer
(MUX) and a subset of the aforementioned output registers. At the MUX the 32 bit
bus gets split into two 16 bit buses, each matching the width of the I/O bus and
the SRAM memory cells. Which half is passed to the SRAM depends on the least
significant bit of the write pointer. Writing all lower halves to the even addresses
and upper halves to the odd addresses, ensures all words are stored in consecutive
memory cells. Since the address space begins with an even address, a word is fully
written when the write pointer switches from an odd address back to an even one.
By setting the FIFO read signal not on this transition, but already when the write
pointer is set to an odd address and a write is starting, the next word becomes
available on the FIFO output as soon as the write finishes. This saves one clock
cycle, and allows for continuous SRAM writes without any idle and thus waisted
clock cycles in between.
The read and write pointers are implemented by inferring a counter with clock

enable for each of them. These counters increment their stored value once per clock
cycle, as long as they are supplied with a logic HIGH on the clock enable (CE)
port. Otherwise the current value is retained. Since the respective pointer should
move to the next address after a successful read or write operation, the SRAM read
(SRAM OE) and write (SRAM WE) signals are connected to the corresponding CE
ports. The pointers are routed to another MUX, putting one of them through to
the SRAM address bus (SRAM ADD). This is usually the write pointer, unless the
SRAM read signal, connected to the select port of the MUX, becomes HIGH. Both
pointers are also connected to an arithmetic block, calculating the current fill level
of the SRAM FIFO and providing a full and empty flag.
The write signal is generated by inverting the buffer FIFO empty port, SRAM

FIFO full flag and SRAM read signals, and ANDing them. This way the SRAM is
written to, whenever data is available on the input FIFO, the SRAM has available
memory cells, and is currently not being read. Allowing SRAM read operations
to block writes is necessary, since write operations can be buffered by storing data
in the input FIFO, whereas read operations are instructed by the host and carried

43

5.2.3 SRAM FIFO

out by the microcontroller without any question or remorse. Should a read come
in between the two write operations for the first and second halves of a word, the
second half is simply written after the read was performed. By blocking the write
signal the SRAM read also inhibits the read signal to the buffer FIFO, so the current
word remains available.

SRAM FIFO Read Operation

As mentioned above, read operations are received from the microcontroller and
retrieve the data available on the 8 bit USB data bus. Since twice that many bits
are read from the SRAM simultaneously, the module must keep track of the number
of USB reads that occurred since the last SRAM read. The counting is done by a
finite state machine (FSM), taking the SRAM FIFO empty flag, USB read signal,
and read second byte (R2B) signal as inputs. From these values and its three states
it determines when the next SRAM read is due. It then generates a get word
instruction, which is received by the SRAM write, address and read signal logics
and switches them to read mode.
The initial state of the FSM is the try-sram-read state. While in this state the

FSM checks the empty flag every clock cycle, until it is removed. Once it goes LOW
the FSM transitions to the read-sram state and issues the get word command in the
process. At the next clock cycle the FSM moves to the third state, await-usb-read.
Here it remains until it detects the USB read and R2B signals being HIGH at the
same time. This indicates a second USB read being made, requiring a new word
from the SRAM FIFO afterwards. To get the next word the FSM transitions back
to the read-sram state, again issuing a get word command, and again moving to the
await-usb-read state one clock cycle later.
As the name suggests the R2B flag is not only responsible for informing the FSM

if a given USB read is a second read, but also for putting the proper half of the
latest word retrieved from the SRAM onto the USB data bus. This bus splitting
is once more achieved by routing the R2B signal to the select port of a MUX, and
the high and low bytes of the SRAM data bus to the inputs of the MUX. Before
being send to the MUX the SRAM data is stored in a register with CE, to remain
available after the SRAM switched back to writing. The CE port is supplied with
the SRAM read signal, causing the register to store the next value exactly one clock
cycle after the read (and thus address) signal was send to the SRAM. At this point
the data on the I/O bus is guaranteed to be valid by the SRAM manufacturer.

44

5.2 Stopless USBpix configuration

Generation of the R2B flag itself relies on the SRAM and USB read signals. Its
value is stored in a register with set and reset ports. The reset is connected to
the SRAM read signal, so it gets reset after each SRAM read, when a new word is
available and its first byte is to be read. The set port is connected to the delayed
USB read signal, so that the first USB read, after a new word arrived, sets R2B to
HIGH. Setting R2B to HIGH must be delayed by one clock cycle to make sure the
first USB read will always retrieve the first byte.

Tri-state and further control signals

So far the SRAM I/O data bus has been described as two separate buses, one SRAM
OUT and one SRAM IN bus. In reality, there is only one bi-directional data bus,
passing data to and from the SRAM. For successful communication only one end
of the bus is allowed to be driven at any time, the device on the other end must
either read or ignore the bus. Merging the SRAM IN and SRAM OUT buses to
the single SRAM I/O bus and controlling read and write operation is handled by
inferring tri-state buffers at the SRAM I/O pins in the IOBs. Such a buffer is shown
in Fig. 5.6.

SRAM I/OSRAM IN

SRAM OUT

T

& D Q
DDR

SRAM WE

Figure 5.6: Schematic of the tri-state buffers and tri-state controls of the SRAM FIFO
module.

The tri-state connects the SRAM OUT wire, used for reading from the bus, di-
rectly to the bi-directional SRAM I/O bus. The SRAM IN bus is connected via
an output buffer (OBUF) with active high tri-state control. This means, that the
bi-directional bus is only driven with the SRAM IN bus data, when the tri-state
port (T) is HIGH. Otherwise the output of the OBUF is in high impedance state,
and thus basically disconnected from the bus. To ensure the OBUF is only activated
after the SRAM had sufficient time to set its own tri-states to high impedance, a
double data rate (DDR) register is used. It activates the OBUF half a clock cycle

45

5.2.4 PixLib & USBpixI4dll

after SRAM write was issued. The inverted output of the DDR register is fed back
to its input, by ANDing it with the write signal. This deactivates the tri-state half
a clock cycle after it was activated, just at the same moment when other interface
signals such as read, write, or address may change. The DDR keeps toggling states
at both rising and falling clock edges for as long as write is HIGH, producing the
pattern shown in table 5.1, and allowing safe I/O operation.
The SRAM offers three more control signals, the byte high enable (BHE), byte low

enable (BLE), and chip enable (CE1). These are all constantly held HIGH, which
permanently activates the SRAM (CE1), and causes I/O operations to be performed
on all 16 bit of the SRAM memory cells simultaneously. This obviously doubles the
achieved data throughput per clock cycle, compared to alternating activation of the
bytes or using just one of them.

5.2.4 PixLib & USBpixI4dll

The data provided on the USB bus has to be frequently polled by the host, and
the retrieved words reconstructed, histogrammed, and stored. These tasks are slow
compared to the required polling rate, and would thus hinder proper board read-out
when performed sequentially for each retrieved data set. Offloading the processing
steps to a second thread allows to perform them in parallel to data polling, and
reach the polling rates required to avoid buffer overflows and thus data loss on the
hardware. The two-threaded design is visualized in Fig. 5.7.
The read-out threads and functions were placed in the USBpixI4dll hardware

interface library, minimizing latency and strengthening the abstraction layer sep-
arating the hardware interface from the higher level classes. The involvement of
the higher level libraries is subsequently reduced to starting and stopping scans, all
further actions are handled internally by the USBpixI4dll. Upon start of a mea-
surement it starts both threads, thenceforth continuously polling and processing
data. When the measurement is stopped, first the polling thread is instructed to
exit, following the order once all data was retrieved from the hardware. Then the
processing thread is notified, and exits once all data has been processed.

Data Polling

Data is polled by a dedicated function incessantly called by the polling thread.
The function requests the number of currently buffered words from the FPGA and

46

5.2 Stopless USBpix configuration

write
pointer

 read
pointer

STcontrol

PixLib
U

SB
 d

riv
er

H
D

D

SRAM
fill level

raw
data

decoded
data

USBpixI4dll
Polling Thread

data?

sleep
get data
transfer data

yes no

quit?

Processing Thread

data?

sleep
build streams
process

yes no

quit?

circular
buffer

= empty
= data

Figure 5.7: Outline of the USBpixI4dll structure. The two-threaded approach allows for
high frequency data polling by offloading time consuming tasks to the second
thread. Both threads operate on a common memory structure.

instructs the USB driver to issue the corresponding number of USB reads. The
driver returns the gathered data, which is transferred to a circular buffer. Once all
data has been written the function returns true, and is called again by the thread. In
case no buffered data is available the function immediately returns false, whereupon
the thread checks its terminate flag and exits if it is set.
Storing the retrieved data in a circular buffer allows data sets of varying sizes to be

passed efficiently from the polling thread to the processing thread, without placing
any constraints on the order or frequency of execution of the functions writing and
reading the data. Absence of such constraints is important, since both parameters
depend on the instantaneous data rate and the operating system’s scheduler, and
cannot be predicted.

Data Processing

Data processing is organized in a reconstruction and data manager function. The
reconstruction function is called first by the processing thread. It checks the circular

47

5.2.4 PixLib & USBpixI4dll

buffer for unprocessed data, returning false if none was found. In this case the thread
checks if the polling thread is still running and, if so, again calls the reconstruction
function. Otherwise the thread exits.
If unprocessed data is available, the reconstruction function proceeds by loading

the next four bytes, bit shifting them to their proper positions, and ORing them
together. The words are then added to the record streams matching their id byte.
The streams are vector data types designed for storing 24 bit FE protocol words and
trigger numbers. FE words are added to dedicated streams, trigger numbers to all
of them. Once all available data was processed the function returns true.
This causes the processing thread to call the data manager function. The manager

starts either one or both of the raw data histogrammer and raw data file writer
routines, based scan type and user settings. The histogrammer was designed for
creating histograms from record streams, was used for source scan histogramming by
the stopping configuration. Due to unification of the read-out process all scans now
produce record streams, so the histogrammer can be used for creating all stopless
configuration histograms.
The file writer also operates on record streams, but needed some modification be-

fore being usable. The comparatively low write frequency of the stopping read-out
scheme allowed creation and subsequent deletion of new file writer and ofstream
objects for each write cycle. The higher write frequency introduced by more fre-
quent updates to the record streams demand a more efficient approach. Therefore
the writer was modified to keep the necessary objects alive and the destination file
opened during the entire measurement. Periodic updates to the file are ensured
by flushing the ofstream after each write cycle. Once histogrammer and file writer
return, the manager function returns, and the thread resumes by calling the recon-
struction function once more.
Histogramming and long-term storage are the final steps in the proposed upgrade

to the USBpix read-out chain. All remaining tasks, such as presenting the histograms
to the user, are handled by higher level classes. These remained unaltered, since
all added and upgraded functions were fitted to the existing interfaces between the
higher level and hardware interface libraries. The system is thus complete and ready
for validation.

48

6 Measurements

The proposed stopless read-out scheme should provide the same results as the stable
USBpix configuration across all scan types. The only visible difference should be a
greatly improved data acquisition rate during Source and testbeam measurements.
The full data retention for all scan types was, as of this writing, only implemented
in hardware and the USBpixI4dll hardware interface library, but lacked support
from higher level classes. Hence the results and histograms produced per scan type
are the same for both configurations, and compared below. Once the higher level
classes are adapted to the proposed read-out scheme, the user can be presented with
options for raw data storage and creation of additional histograms.

6.1 Fundamental Tests

Before tests involving large volumes of data can be performed, the system has to
be examined on a per-word level. This is achieved by performing an Analog Scan
with a single injection in a single pixel, and observing the data stream on the FPGA
and the data received by the host. The injections were limited to a single pixel
by deactivating all others in the CAP0 and CAP1 masks of the FE. Read-out was
limited to the same pixel by activating only the chosen pixel in the ENABLE mask.
Fig. 6.1 shows the used ENABLE mask as an example for all three identical masks.
The signals on the FPGA were examined using the Xilinx Chipscope utility. The
captured waveform shows the data bus and valid signal at the data arbiter output.
It is presented in Fig. 6.2. The occupancy plot generated from the data received by
the host is shown in Fig. 6.1, next to the ENABLE map.
The scan was performed with a Single Chip Adapter Card (SCA) and a 4-chip

module. The test pixel was randomly chosen to be the pixel in row 92 and column
46. The waveform captured the data record (DR) containing the hit information,
amidst several of the 16 data headers (DH) generated per event. The DR shows
the bit pattern 0x015E5D6F, comprised of 8 bit channel tag, 9 bit row number, 7 bit

49

column number, 4 bit TOT1 and 4 bit TOT2. Decoding this shows a hit with ToT
code 6 in pixel 92/46 of FE 1, and no hit in the adjacent pixel, just as expected.
The waveform thus shows the correct hit information being properly tagged and
available at the data arbiter output. The occupancy plot shows the same pixel
having registered exactly one hit, while all other pixel have none. This confirms,
that the DR was received and decoded correctly by the host.

Occupancy

Column
-0.5 79.5

R
o
w

300

200

100

0

0

0.2

0.4

0.6

0.8

1

1.2

ANALOG_TEST Pixel 92/46 Single Injection.

Module "66-W10-IBl3"

Map of ENABLE

0 10 20 30 40 50 60 70

300

200

100

0

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Column

R
o
w

Figure 6.1: The ENABLE mask for a single pixel Analog Scan and the occupancy plot
generated from the received data.

Arbiter DOUT [31:0]
Arbiter DVALID

200 ns180 ns160 ns

01E900ED 01E900EE 015E5D6F 01E900EF 01E900F0

Figure 6.2: Waveform showing the single data record produced by the scan at the data
arbiter output.

6.2 Calibration measurements

As described in section 4.1.3, the Analog Scan and Digital Scan fully involve the
FE-I4’s internal testing mechanisms. Performing these scans is thus sufficient for
validating any calibration measurement on the hardware and hardware interface
levels. For the initial measurements a Single Chip Adapter (SCA) and Single Chip

50

6.2 Calibration measurements

Carrier (SCC) card were chosen, since the combination is simpler in design and
handling than the alternative Burn In Card (BIC) and 4-chip module combination.
Both scans were successfully performed using the stopping and stopless USBpix
configurations, and are presented below.
Afterwards the SCA and SCC were swapped against a BIC and 4-chip module.

Both scans were again performed for both configurations, but all results were unclear
due to difficulties in the operation of the prototype 4-chip module. Without a proper
baseline measurement from the known-good stable configuration, any attempt at a
meaningful analysis of the proposed configuration would be futile. Therefore the
four-chip measurements had to be postponed until all issues with the available 4-
chip module have been resolved.

6.2.1 Analog Scans

The results of the Analog Scans are presented in colour-coded occupancy histograms,
showing how many hits each FE pixel registered. Both configurations properly re-
turned a histogram, shown in Fig. 6.3. A typical Analog Scan injects the same charge
200 times into each pixel, so 200 hits are expected in each bin of the histograms.

ANALOG_TEST, Standard Mask, 200 Injections.
Module "66-W10-IBL3"

Occupancy

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

20

40

60

80

100

120

140

160

180

200

220

240

USBpix Stable USBpix Stopless

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

20

40

60

80

100

120

140

160

180

200

220

240

Occupancy

Figure 6.3: Analog Scans performed using the stable and stopless USBpix configurations.
Both show the same two dead pixels.

This result is observed for both configurations for all but two FE pixels, which

51

6.2.2 Digital Scans

are known to be dead and thus registered no hits. The first and last few columns
also show no hits, which is expected as well. These columns were disabled in the
scan configuration, since the FE at hand is a prototype model FE-I4A, containing
test pixels in the intentionally skipped columns.

6.2.2 Digital Scans

Since the Digital Scan is very similar to the Analog Scan its results are presented
using the same type of histogram. The only difference between the scans is the point
of the injection, located at the digital pixel electronics for the Digital Scan. As for
the Analog Scan 200 injections were made per pixel, so again 200 hits are expected
per pixel. Both histograms (Fig. 6.4) show all pixels registering all 200 hits, even the
dead pixels identified during the Analog Scan. Hence the point of failure is narrowed
down to the analogue electronics of both pixels.

DIGITAL_TEST, Standard Mask, 200 Injections.
Module "66-W10-IBL3"

Occupancy
USBpix Stable USBpix Stopless

Occupancy

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

20

40

60

80

100

120

140

160

180

200

220

240

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

20

40

60

80

100

120

140

160

180

200

220

240

Figure 6.4: Digital Scans performed using the stable and stopless USBpix configurations.
Both show the same perfect results.

The Analog and Digital Scans working perfectly is a strong indication towards the
validity of all calibration scans. Individual verification of each scan type remains to
be done, due to the limited time available.

52

6.3 Source measurements

6.3 Source measurements

Both configurations produced very good results during the calibration scans. The
FE at hand thus seems to be working properly and is suitable for the following source
measurements. The Source Scan mode used to produce the following measurements
is a very versatile scan type. Depending on which parts of the test set-up are well
understood and which are supposed to be investigated, it can provide information
about the sensor, the injection mechanism, the FE under test, or the test system
itself. In this set-up, the three former parts are well known, so the measurement
can be used to characterize the proposed USBpix configuration exclusively.

Two sets of measurements are presented below, a noise measurement without any
intentional injections, and a source measurement with injections originating from
a radioactive source. For each set a reference measurement is performed using the
stable USBpix configuration, before repeating the measurement with the stopless
configuration.

6.3.1 Set-Up

For the following measurements the same SCA/SCC/FE combination was used as
for the calibration scans. Charge injections were made into the n-in-n planar silicon
sensor bump-bonded to the FE, using a radioactive Strontium source. The source
and FE were placed in a containment box to prohibit radioactive contamination of
the laboratory environment. The sensor was depleted by applying a bias voltage of
−50V.

The Strontium source contains the Strontium isotope 90Sr. This isotope decays to
90Y and further to 90Zr, both via β−-decays. It has a half-life of 28.78 a and emits
electrons with an endpoint energy of 0.546MeV. The Yttrium isotope decays with
a half-life of 64.1 h, and emits 2.282MeV electrons. The initial activity of the source
was 18MBq when manufactured.

FE read-out was triggered using the FE self-trigger mechanism, which generates
a trigger signal whenever any of the FE pixels registers a hit. Each measurement
was restricted to 2min, from the time the Start Measurement button to the time
the Stop Measurement button was clicked.

53

6.3.2 Noise Measurements

Configuration: stopping stopless
Duration 108 s 108 s
#DH 448 544
#DR 40 54
#Hits 62 77
Hit rate 0.57Hz 0.71Hz

Table 6.1: Comparison of the amount of data received during the noise measurements
with the stable and proposed USBpix configurations.

6.3.2 Noise Measurements

The noise measurements were performed without the Strontium source, but still
inside the containment box and with bias voltage applied. The timestamps generated
at the beginning and end of the actual scans showed a scan duration of 108 s for
both configurations.
The number of collected FE words and encoded hits is summarized in table 6.1,

which shows comparable numbers for both configurations. The observed deviations
are well within the limits of statistical fluctuations. Occupancy histograms were
produced for both scans, showing the location and hit count for each pixel. Both
configurations recorded hits spread evenly over the FE, with two hits per pixel at
most (Fig. 6.5). The Time-over-Threshold (ToT) histograms (Fig. 6.6) present the
recorded numbers for each possible ToT code, translating to the amount of charge
collected by the FE per hit. The bins 0 through 12 encode charge intervals in
ascending order, while ToT code 13 contains all hits that would have a ToT code
larger than 12, and ToT code 14 all those with a ToT code smaller than 0. Both
configurations generated similar distributions, with peaks around ToT codes 2 and
3. The LV1 histograms (Fig. 6.7) reveal the time that passed in between a trigger
being issued and a hit being registered. Thus hits in LV1 bin 0 are likely to be
hits that caused a trigger. The hits in the following few bins mostly originate from
charge sharing or a particle only grazing a pixel while traversing the sensor. Such
small hits take longer to be registered and thus show up later in the LV1 histograms,
an effect called timewalk.
All three sets of histograms show very similar results for both configurations, fur-

ther supporting the validity of the proposed stopless configuration. The number of
noise hits is higher than expected for a good module in a closed containment box
with bias voltage applied, but still easily explainable. Even under such controlled

54

6.3 Source measurements

FE_ST_SOURCE_SCAN, Containment, Biased, No Source.
Module "66-W10-IBL3"

Occupancy USBpix Stable Occupancy USBpix Stopless

Column
-0.5 79.5

R
o
w

300

200

100

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Column
-0.5 79.5

R
o
w

300

200

100

0

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Figure 6.5: Occupancy histogram showing the number of hits per pixel during the noise
measurement with the stable and proposed USBpix configurations.

FE_ST_SOURCE_SCAN, Containment, Biased, No Source.
Module "66-W10-IBL3"

ToT USBpix Stable ToT USBpix Stopless

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

16

18

ToT code

#
h
it

s

ToT code

#
h
it

s

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

14

Figure 6.6: Time-over-Threshold histogram showing the charge distribution of hits dur-
ing the noise measurement with the stable and proposed USBpix configurations.

conditions many causes for noise hits remain, including cosmic and stray radiation,
sub-optimal FE tuning, high leakage currents in the sensor, noisy pixels, and in-
sufficient bias voltage for complete depletion. The collected data does not provide
enough information to narrow down the possible origins or rank them according to
their significance.

55

6.3.3 Strontium Measurements

FE_ST_SOURCE_SCAN, Containment, Biased, No Source.
Module "66-W10-IBL3"

LV1 USBpix Stable LV1 USBpix Stopless

LV1

#
h
it

s

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

LV1

#
h
it

s

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

Figure 6.7: LV1 histogram showing the time delay between trigger and hits during the
noise measurement with the stable and proposed USBpix configurations.

Configuration: stopping stopless
Duration 110 s 108 s
#DH 4813 021 45 604 075
#DR 779 423 7 382 864
#Hits 1 166 141 11 046 473
Hit rate 10.6 kHz 102.3 kHz

Table 6.2: Comparison of the amount of data received during the Strontium source mea-
surements with the stable and proposed USBpix configurations.

6.3.3 Strontium Measurements

After completing the noise measurement the Strontium source was placed in the
containment box and aligned with the FE. Then the same measurement procedure
was repeated as for the noise measurement, subsequently producing the same type
of data and histograms as explained above.
While the noise measurement showed very similar numbers of recorded hits and

subsequently hit rates for both configurations, table 6.2 presents a very different
picture for the source measurement. The stable configuration recorded 1 166 141
hits during a 110 s measurement, while the stopless configuration recorded almost
ten times the number of hits in two seconds less. This immense difference leads

56

6.3 Source measurements

to a hit rate of 102.3 kHz for the stopless configuration, 9.7 times higher than that
observed using the stopping configuration.

FE_ST_SOURCE_SCAN, Containment, Biased, Strontium Source.
Module "66-W10-IBL3"

Occupancy USBpix Stable Occupancy USBpix Stopless

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

20

40

60

80

100

Column
0 10 20 30 40 50 60 70

R
o
w

300

200

100

0

0

100

200

300

400

500

600

700

Figure 6.8: Occupancy histogram showing the number of hits per pixel during the Stron-
tium source measurement with the stable and proposed USBpix configurations.

The produced histograms (figures 6.8, 6.9, 6.10) verify, that the additional data
originates from the Strontium source and is not an artefact of the stopless configu-
ration. The histograms of all three sets appear almost identical to one another in
shape, but with a tenfold increase of the scales for the stopless read-out histograms.
The occupancy plots both show hits in all but the masked test pixels and the two
dead pixels identified during the Analog Scan. Additionally no hits appear in column
9, which was masked due to a high number of noisy pixels. The histogram from the
stable configuration hints at the position of the centre spot of the Strontium source,
whereas the stopless histogram clearly shows its location to the bottom left of the
chip’s centre.
The ToT histograms show the Landau distribution expected for the energy loss of

ionizing particles traversing a thin material [?]. The observed rise and large peak
at the tail of the distribution is due to the special purposes of ToT codes 13 and 14.
The LV1 histograms again show almost all hits in LV1 bin 0 and only few late hits,
which are likely caused by timewalk.
All obtained results strongly support the validity of the stopless read-out scheme

and the proposed implementation. The benefits to the data acquisition rate are
clearly shown by this measurement.

57

6.3.3 Strontium Measurements

FE_ST_SOURCE_SCAN, Containment, Biased, Strontium Source.
Module "66-W10-IBL3"

ToT USBpix Stable ToT USBpix Stopless

ToT code

#hits

ToT code

#hits

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14
0

200

400

600

800

1000

1200

1400

1600

1800

2000

3
10×

3
10×

Figure 6.9: Time-over-Threshold histogram showing the charge distribution of hits dur-
ing the Strontium source measurement with the stable and proposed USBpix
configurations.

FE_ST_SOURCE_SCAN, Containment, Biased, Strontium Source.
Module "66-W10-IBL3"

LV1 USBpix Stable LV1 USBpix Stopless

LV1

#hits

LV1

#hits

0 2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

310×

0 2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

310×

Figure 6.10: LV1 histogram showing the time delay between trigger and hits during the
Strontium source measurement with the stable and proposed USBpix config-
urations.

58

7 Summary

An analysis of the stable USBpix configuration showed the stopping read-out scheme
to severely limit the achievable average data acquisition rate of the system. The em-
ployed scheme required frequent interruptions of ongoing measurements for trans-
ferring data from the hardware to the host. An alternative stopless read-out scheme
was presented, allowing board read-out during a running measurement by manag-
ing simultaneous read and write access to the data buffer. An implementation was
proposed and necessary changes to the hardware interface library and the FPGA
firmware were motivated and described.
Measurements performed with both the stable and proposed USBpix configu-

rations were shown to support the validity of the stopless configuration. All ob-
tained results matched the expectations and reference measurements perfectly. The
achieved average data acquisition rate of the stopless configuration was found to be
almost ten times the rate achieved by the stopping configuration. The observed data
rate was likely limited by the activity of the available Strontium source, hinting at
a total increase in data acquisition rate even larger than the determined factor.
Several calibration scans remain to be verified individually. Additional source and

testbeam measurements need to be performed to fully characterize the proposed
upgrade and ensure its stability. Several minor updates to the FPGA firmware are
yet to be implemented as well. They aim to provide a more robust and precise
read-out of the SRAM FIFO fill level and better handling of unlikely yet possible
buffer overflows.
While a further increase in data acquisition rate may be achievable by rewriting

the microcontroller firmware, it is unlikely to provide any real-world benefits. The
rate achieved using the presented stopless configuration was shown to be sufficient
for testbeam measurements and laboratory applications. A jump in data rate large
enough to support either more FEs in parallel or FEs of the forthcoming HL-LHC
generation is prohibited by the hardware itself.
An upgraded Multi-IO board is developed as part of the USBpix 3.0 system,

59

6.3.3 Strontium Measurements

which supports the current USB3.0 SuperSpeed specification, offering data rates up
to 5Gbit s−1. Porting the USBpix FPGA firmware to the new system and integrating
it into STcontrol will be the next great challenges.

60

Bibliography

[1] D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, second edition
(2004)

[2] K.A. Olive et al. (Particle Data Group), Review of Particle Physics, Chin. Phys.
C 38, 090001 (2014)

[3] P. W. Higgs, Broken Symmetries, Massless Particles and Gauge Fields, Phys.
Lett. 12, 132 (1964)

[4] F. Englert, R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons,
Phys. Rev. Lett. 13, 321 (1964)

[5] ATLAS Collaboration, Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC, Phys.Lett. B716,
1 (2012)

[6] S. Chatrchyan, et al. (CMS Collaboration), Observation of a new boson at a
mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716, 30
(2012)

[7] S. Brüning et al., LHC Design Report, CERN-ATS-2012-236, CERN, Geneva
(2004)

[8] ATLAS Collaboration, Measurements of Higgs boson production and couplings
in diboson final states with the ATLAS detector at the LHC (CERN-PH-EP-
2013-103) (2013)

[9] ATLAS Collaboration, Letter of Intent for the Phase-II Upgrade of the ATLAS
Experiment, CERN-LHCC-2012-022. LHCC-I-023, Geneva (2012)

[10] ATLAS Collaboration, Physics at a High-Luminosity LHC with ATLAS (ATL-
PHYS-PUB-2012-004) (2012)

61

Bibliography

[11] ATLAS Collaboration (ATLAS), ATLAS Letter of Intent for a General-Purpose
pp Experiment at the Large Hadron Collider at CERN, CERN-LHCC-92-4,
LHCC-I 2 (1992)

[12] ATLAS Collaboration (ATLAS), ATLAS DETECTOR AND PHYSICS PER-
FORMANCE Technical Design Report Volume I, Technical Report ATLAS
TDR 14, CERN-LHCC 99-14, CERN (1999)

[13] G. Aad et al. (ATLAS), The ATLAS Inner Detector commissioning and cali-
bration, Eur. Phys. J. C70, 787 (2010)

[14] J. Große-Knetter (ATLAS), Overview of the ATLAS Insertable B-Layer (IBL)
Project, Technical Report ATL-INDET-PROC-2011-022 (2011)

[15] IBL Community (ATLAS IBL), ATLAS Insertable B-Layer Technical Design
Report, Technical Report ATLAS TDR 19, CERN-LHCC 2010-013, CERN
(2010)

[16] IBL collaboration (ATLAS IBL), Prototype ATLAS IBL modules using the FE-
I4A front-end readout chip, J. Inst. 7(11), P11010 (2012)

[17] M. Barbero et al. (ATLAS IBL), The FE-I4 Pixel Readout Chip and the IBL
Module, Technical Report PoS(Vertex 2011)038, CERN (2011)

[18] M. Červ, The ATLAS Diamond Beam Monitor, J. Inst. 9(02), C02026 (2014)

[19] L. Rossi, O. Brüning, High Luminosity Large Hadron Collider A description for
the European Strategy Preparatory Group, Technical Report CERN-ATS-2012-
236, CERN, Geneva (2012)

[20] S. McMahon et al., Initial Design Report of the ITk, Technical Report ATL-
COM-UPGRADE-2014-029, CERN, Geneva (2014)

[21] M. Backhaus et al., Development of a versatile and modular test system for
ATLAS hybrid pixel detectors, NIM A 650(1), 37 (2011)

[22] J. Schneider, H. Krüger, S3 Multi IO System – S3 Multi IO USB Card Version
V1.03, Technical report, Universität Bonn (2010)

[23] Cypress, CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A EZ-USB
FX2LP USB Microcontroller High-Speed USB Peripheral Controller, No. 38-
08032, Revised January 15, 2015, datasheet

62

Bibliography

[24] Xilinx, Spartan-3 Generation FPGA User Guide (2011), UG331, v1.8

[25] E. Corrin, EUDAQ Software User Manual, EUDET-Memo-2010-01 (2010)

[26] ATLAS Collaboration, The FE-I4B Integrated Circuit Guide (2012)

[27] Xilinx, Spartan-3 FPGA Family Data Sheet, Technical Report DS099, v3.1
(2013)

[28] J. Reichardt, B. Schwarz, VHDL-Synthese: Entwurf digitaler Schaltungen und
Systeme, Oldenbourg Wissenschaftsverlag (2012)

[29] N. Sawyer (Xilinx), Data Recovery (2005), XAPP224 (v2.5)

[30] J. Agricola, Development Of A Faster Test System For ATLAS Pixel Front End
Electronics (2014), ISSN 1612-6793, II.Physik-UniGö-MSc-2014/05

[31] R. Murphy, USB 101: An Introduction To Universal Serial Bus 2.0, AN57294,
Document No. 001-57294 Rev. *F

[32] J. Weingarten, private conversation

[33] Cypress, CY7C1061AV33 16-Mbit (1Mx16) Static RAM, No. 38-05256, Revised
January 16, 2015, datasheet

[34] L. Landau, On the energy loss of fast particles by ionization, J. Phys.(USSR)
8, 201 (1944)

63

Acknowledgements

I thank all people involved in the making and successful completion of this thesis.
First of all Arnulf Quadt, for allowing me to write this thesis as a member of his
group, and Jörn Große-Knetter, for his professional supervision. I further thank
Jens Weingarten for answering many questions, guidance throughout the making of
this thesis, and proofreading it.
I also extend thanks to Julia Rieger and Lars Graber for many helpful insides into

the quirks of the hardware at hand, and Johannes Agricola for the introduction to
FPGA design. Lastly I thank all members of the II. Institute for their support and
encouragement.

65

Erklärung nach §18(8) der Prüfungsordnung für den Bachelor-Studiengang
Physik und den Master-Studiengang Physik an der Universität
Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig
verfasst habe, keine anderen als die angegebenen Quellen und
Hilfsmittel benutzt habe und alle Stellen, die wörtlich oder sin-
ngemäß aus veröffentlichten Schriften entnommen wurden, als
solche kenntlich gemacht habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch
nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung
an dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 16. Oktober 2015

(Björn Klaas)

	1 Introduction
	2 The Large Hadron Collider
	2.1 The Standard Model of Particle Physics
	2.2 LHC Design
	2.3 LHC Runs and Upgrades

	3 The ATLAS Experiment
	3.1 Original Detector Design
	3.1.1 The Inner Detector
	3.1.2 The Calorimeter System
	3.1.3 The Muon System

	3.2 Inner Detector Upgrades
	3.2.1 Phase I: Insertable B-Layer
	3.2.2 Phase II: ATLAS Inner Tracker
	3.2.3 Further Upgrades

	4 Detector Read-out
	4.1 The USBpix Read-out System
	4.1.1 USBpix Hardware
	4.1.2 USBpix Software
	4.1.3 Scans

	4.2 Programmable Logic
	4.2.1 FPGA Architecture
	4.2.2 FPGA Design

	5 USBpix Configuration
	5.1 Stable USBpix discussion
	5.1.1 Data Recovery & Decoding
	5.1.2 Read-out Modules
	5.1.3 Memory Arbiter
	5.1.4 SRAM control
	5.1.5 PixLib & USBpixI4dll

	5.2 Stopless USBpix configuration
	5.2.1 Read-out Module
	5.2.2 Data Arbiter
	5.2.3 SRAM FIFO
	5.2.4 PixLib & USBpixI4dll

	6 Measurements
	6.1 Fundamental Tests
	6.2 Calibration measurements
	6.2.1 Analog Scans
	6.2.2 Digital Scans

	6.3 Source measurements
	6.3.1 Set-Up
	6.3.2 Noise Measurements
	6.3.3 Strontium Measurements

	7 Summary

