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Abstract: The evaluation of existing approaches and the development of alternative approaches
to modeling and estimation of mating system characteristics is put on a firm basis by considering
the three fundamental functions of mating systems: (1) generative reproduction, (2) selection for
participation in generative reproduction, and (3) combination of genetic information into geno-
types. Intactness of the corresponding mating system mechanisms directly affects (1) adapted-
ness to current environmental conditions, (2) preservation of adaptability to future changes, and
(3) preservation of adaptedness. Indicators for the intactness of these mechanisms are estimates of
(1) reproductive success, (2) reproductively effective population size, and (3) selection load. The
latter two are elaborated conceptually. All three indicators are integrated into the modeling and
estimation of mating system characteristics by utilizing parentage distributions. A parentage dis-
tribution consists of a pool of zygotes and a group of potential parents such that each zygote has
at least one parent from the group. This approach is useful for the design of models, methods of
estimation and for the exploration of mating system characteristics. It is applied to measurement
of the effects of mating systems on the demarcation of populations, on the reproductively effective
number of maternal and paternal parents, on the amount of gene flow including its two sexual com-
ponents, and on subpopulation differentiation by spatial variation in mating relations. Application
of measures of mating preference as defined by the parental pairs of zygotes is shown to provide
conceptually more satisfactory information on the reproductive isolation and coherence patterns
that determine metapopulation structure and initiate or prevent speciation. Self-fertilization, for
example, can be viewed in this context as establishing an extreme type of genealogical metapop-
ulation structure, which is detectable with the help of estimates of “self-preference” but not of
proportions of self-fertilization.

Introduction

In the present paper, an attempt will be made to bring to attention the fundamental
functions of mating systems as the ultimate goals to which modeling and estimation of

mating system characteristics are directed. By this, it is hoped that the comparative
evaluation of existing approaches can be put on a firmer basis and that the development
of alternative approaches, if desirable, is aided.

Objectives of modeling

For a start, recall that any analysis of the consequences of mating system characteristics
for population development and survival must be preceded by a description and estima-
tion of these characteristics. Modeling is required here, either as a means of predicting

this development on the basis of observed characteristics, or as a means of obtaining these
characteristics if no methods of direct observation are available. In the latter case, where
target characteristics are not observable, a model is designed in which the target variables
depend on observable variables. Calibration of this model with respect to the observa-

tions (usually by maximization of likelihood) then yields “indirect” (or model-dependent)
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estimates of the desired target characteristics. These estimates are only acceptable if a
test of the calibrated model does not recommend its rejection. Estimation of rates of
self-fertilization in trees is a well-known example of indirect estimation.

A third common area of application of models concerns the detection of equivalencies

in performance between different systems. This is usually realized in terms of “effective
sizes”, which result from the comparison of a complex system with an “ideal” model
system. In particular, this comprises all non-testable models, which yield “estimates” of

model parameters after calibration with respect to observations. Such “estimates” do not
refer to characteristics of the observed system and should thus be addressed as effective
parameter values. An example is to be seen in FST used to “estimate” amounts of gene
flow (in the form of N ·m) on the basis of Wright’s idealized model of drift and migration.

Experimental tests of this model are very difficult and possibly infeasible. N ·m may,
in this case, be addressed as an effective amount of migration, but it does not estimate
any realized number of migrants (for a detailed criticism of the FST method as yielding
indirect estimates of gene flow, see Whitlock & McCauley 1999). This category of model

is thus of limited value in the analysis of characteristics of real systems.

In summary, one can distinguish three major objectives of modeling,

. to provide testable hypotheses on causal mechanisms and serve the prediction of devel-
opments and planning of actions,

. to enable indirect estimation of system characteristics, after passing a test (“model-

dependent estimation”), and

. to enable the detection of equivalencies in performance between different systems (“ef-
fective sizes”)

Mating system functions

While the above objectives are pursued to various degrees in each analytical study of mat-

ing systems, the design of the applied models frequently does not permit clear recognition
of their relations to general biological functions of mating systems. Since the inherent
principles can be expected to guide any modeling effort it is useful to recall briefly the
three fundamental functions of mating systems, which are

(1) generative reproduction,

(2) selection for participation in generative reproduction,

(3) combination of genetic information (genes) into genotypes.

These functions of mating systems determine those adaptational capacities of pop-
ulations which can be realized during the transition from one generation to the next.
Consideration of the functions in experimental analyses is thus required to assess the
significance of observable mating system characteristics for population development and

survival. The same requirement applies, of course, to the design and parameterization
of mating system models. These models always contain the observable mating system
characteristics as variables. They must, however, frequently employ non-observable vari-
ables (free parameters) in order to enable the desired analysis. As was mentioned above,

non-observable model variables serve in the calibration of the model and by this enable
indirect estimation. They can also be varied with the aim to predict effects of certain
scenarios on the three fundamental functions.

Major determinants of plant mating systems

In order to simplify reference of the following reflections to their biological basis, a short

list of categories of factors is compiled, which affect plant mating systems. Among the
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categories most frequently considered in experimental studies, the following can be dis-
tinguished:

(i) Spatial relations: Spatial distribution of individuals, in relation to their pollen dis-
persal characteristics.

(ii) Temporal relations: Temporally varying spatial distribution patterns and activities

or behavior, age of female and male sexual maturity, timing of female and male
flowering, time-dependent expression of reproductively relevant phenotypes.

(iii) Phenotypic relations: Prezygotic incompatibility or isolation mechanisms, includ-
ing biochemical or physiological agents, and morphological barriers (concerning e.g.
flowering phenology). With the exception of purely genetic control, expression of
the relevant traits involves interactions of genotypes with environments.

(iv) Ecological conditions: Availability and selectivity of pollinators, physical barriers to
pollen dispersal, species composition.

(v) Genealogical relations: With the exception of self-fertilization, they are rarely direct
determinants of mating relations. Preferential mating among relatives in plants is
mostly a consequence of limited seed and pollen dispersal, which reveals spatial
rather than genealogical relations as direct determinants of mating.

With particular reference to forest tree mating systems, mixed mating in the form of
selfing and random cross-fertilization (category (v)), preferential mating among neighbors

(category (i)), and gametophytic and sporophytic incompatibility (category (iii)) have
received most attention. More recently, ecological conditions (category (iv)) are attracting
some interest because of increased concern about tropical tree species with their animal
dominated pollination systems.

The adaptational context of mating systems

Intactness of a mating system

Adaptedness and adaptability of mating systems to environmental conditions can be
realized only if the mechanisms performing the three basic functions of the mating system
are intact. Corresponding to the three functions,

(1) the mechanisms of generative reproduction are intact if sufficient numbers of offspring
are produced, in the sense that the number of offspring compensates for the number

of deaths (i.e. the number of offspring of a cohort over its total life span is at least
equal to the cohort’s initial size);

(2) the mechanisms of selection for generative reproduction are intact if all of the adults’

genes are represented in their successful gametes (gametes appearing in zygotes);

(3) the mechanisms of combination are intact if the genotypic composition of the offspring
guarantees sufficient chances for survival to adulthood and reproduction in the next

generation.

Translated back into adaptational terms, this states that intact performance of the three

functions implies that the mating system of a population

(1) is adapted to the current environmental conditions,

(2) preserves the adaptability to future environmental changes by preserving genetic vari-
ation,

(3) preserves the adaptedness by reducing the mortality implied by the adaptational

pressures on the next generation.
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As opposed to mating system functions (1) and (2), adaptational forces do not directly
act on function (3). The adaptational effect of the performance of function (3) is deter-
mined by the initial conditions that it provides for the performance of functions (1) and (2)

in the next generation. In other words, function (3) should be performed such that the
genotypes, which are adaptationally advantageous under the environmental conditions of
the next generation, are produced at sufficient frequencies.

The mechanisms of the mating system are therefore impaired in the case of insufficient
offspring production (function (1)), participation of only a small fraction of adults in the

offspring production (function (2)), or in the case of excessive formation of adaptationally
inferior genotypes (function (3)).

Example: inbreeding depression

An example of the performance of mating system function (3) is provided by the degree
of self-fertilization, in combination with homozygote disadvantage, which is frequently

addressed as inbreeding depression. For given allele frequencies, the share of adaptation-
ally inferior genotypes increases with increasing degree of selfing. Over the generations,
this share will gradually lessen for dominant gene action, until a selection-mutation equi-
librium is reached. When starting with a high share of inferior genotypes, the following

reduction in population size could be so drastic that the implied genetic drift effects could
entail substantial losses of adaptationally important variation in the genetic background.
Under such conditions, the intactness of the mating system becomes manifest in the ef-
fects of the degree of selfing on the average survival and reproduction of the offspring

generation.

Example: mode of pollination

Performance of functions (1) and (3) can be affected simultaneously, for example, by the
mode of pollination. According to Lloyd (1979), three such modes can be distinguished:
prior, delayed, and competing self-pollination. Ziehe & Gregorius (1988) demonstrated

that each of these modes affects the pollination efficiency (function (1)) and the degree
of self-fertilization (combination of genes into genotypes, function (3)) differently. In
particular, delayed self-pollination may increase pollination efficiency in a supplementary

way if cross-pollination was insufficient or failed as a result of low population density or
of colonization events. Note that the assumptions of the classical mixed mating model
(random cross-fertilization, fixed ovule selfing proportions, all ovules have the same chance
to be fertilized) postulate the performance of the three fundamental functions rather than

explain how they are affected by certain mating relations.

Example: evolutionary effects of mating systems

The adaptational pressures on populations may reinforce the evolution of reproductive
separation (the “Wallace effect” after Wallace 1889) or of reproductive coherence (Steiner
& Gregorius 1997) between unlike genetic types. Separation and coherence correspond

to preventing and enhancing heterotypic matings. Consequently, reproductive separation
initiates speciation, and reproductive coherence stabilizes the population as a reproductive
community. In both cases the losses due to selection are reduced and thus the adaptedness
to the respective environmental conditions improved. Again, intactness of the mating

mechanisms refers to the performance of function (3).

Example: subpopulation differentiation

The concepts of reproductive separation and reproductive coherence are also relevant at
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the population or metapopulation level. Adaptation to spatially heterogeneous environ-
ments requires a certain degree of reproductive isolation in order to limit the formation
of adaptationally disadvantageous genotypes (function (3)). Depending on the type of

environmental heterogeneity (spatial, temporal, etc.), the causes for the isolation may fall
into any of the above-listed categories (i) to (iv) of determinants of mating. Reproductive
isolation leading to limited reproductive neighborhoods may be a prerequisite for the evo-
lution of local adaptations. Selfing need not contribute to the formation of reproductive

neighborhoods, but it directly affects the selection loads within these neighborhoods.

Indication of the adaptational status of a mating system

It remains to demonstrate the practicability of the present approach of tracing back the
adaptational status of mating systems to the intactness of their mechanisms performing

the fundamental functions. This requires us to specify the indicator variables for quan-
tification of the intactness of mechanisms of the mating system, such that they attest
fulfillment of the criterion of population survival. Reflecting the three fundamental func-
tions and their conditions of intact performance, the above exposition suggests as primary

indicator variables

(1) the reproductive success, as defined by the number of successful gametes produced
per member of a cohort,

(2) the reproductively effective population size, as defined by the effective number of
population members contributing to the zygotes produced in a specified period of
time, and

(3) the cohort selection load, as referred to the zygotes that established the cohort and

the number of successful gametes of each cohort member (fitness). The cohort se-
lection load is then defined by minimum reduction of the reproductive capacity of a
cohort that is required to arrive at the actual differences in production of successful
gametes between types (a generalized concept of selection load including survival and

reproduction is introduced in Appendix I).

Even though the experimental verification of indicator (1) simply requires counts of
cohort members and their offspring, these counts may be difficult to obtain in iteroparous
organisms, since offspring cannot be unambiguously assigned to a single cohort. In such

cases, model-dependent methods of estimating life table data must be applied, which are
based on observations from different cohorts.

The example of inbreeding depression can again be used to demonstrate the effects

of the mating system via self-fertilization on the cohort selection load (indicator (3)).
In combination with low reproductively effective population sizes (indicator (2)), large
selection loads resulting from unbalanced degrees of selfing can accelerate the loss of
adaptational capacity by the loss of genetic variation.

Among the three primary indicators, the third is probably most difficult to study
comprehensively in long-lived organisms like trees. It can, however, be very informative
to consider defined phases of the reproductive cycle separately. As an example, this is the
case for early stages, where the drastic reductions of the population size following seed

production allow for strong selective adaptation. In this case, a considerable fraction
of the cohort selection load is attributable to early developmental stages. Postzygotic
incompatibility constitutes an important special form of this load. It is therefore useful
to restrict studies of the effects of mating and viability selection on the selection load to

special phases.
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A more comprehensive but strongly model-dependent idea of the overall cohort selec-
tion load can be obtained from a comparison of adult trees with their seed production.
Assuming that the predominant characteristics of the mating relations do not change

essentially over the generations, the adult genotypic structures can be considered to have
resulted from viability selection that acted on zygotic frequencies which were similar to
those observable among the offspring of these adults. Thus, reverting the actual succes-
sion of mating and selection in this way, the assumption permits computation of selection

loads.

The requisites for the determination of selection loads are genotypic frequencies at two
successive stages, the first of which is close to the zygotic stage. While this is experimen-

tally feasible in most situations, the requisites for the direct determination of indicator (2),
the reproductively effective population size, are more difficult to realize. The reason is
that for direct determination, methods are required which allow the identification of the
parents of each offspring in a sample (as detailed in the next chapter on “parentage dis-

tributions”). With the perfection of methods of DNA-analysis, the chances for obtaining
such direct information are likely to improve considerably. Yet, since reproduction means
identical multiplication of individual genetic information, model-dependent methods of
estimating reproductively effective sizes in plants will always be required.

The commonly applied methods of estimating effective population sizes rely on quite
restrictive model assumptions that are hard to verify or test (see e.g. Schoen & Brown
1991 for an application of such a method). This problem is aggravated by the fact that in
many studies, the characteristics for which effective sizes are defined (such as inbreeding,

variance, drift, reproduction, etc.) are not clearly stated. In fact, reproductively effective
sizes are occasionally subsumed under some of these characteristics, and it appears that
the above definition is not yet explicitly applied in theoretical or experimental work.

Some mating system characteristics may affect several indicators of intactness simul-
taneously. This is true for the above-mentioned modes of pollination, which affect indica-
tors (1) and (3) via determination of the reproductive success and the selection load. In
more complex situations like this, the question of how mating systems affect the indica-

tors of intactness can frequently be answered only with the help of simulation scenarios,
based on models.

Characterizing mating systems by parentage distributions

When a decision is to be made on the mating system characteristics to be studied, the

above explanations suggest that their potential effects on the intactness of mechanisms
of the mating system should be taken into consideration. For the applied models, this
requires that their design and parameterization should enable inferences on the status of
intactness of the addressed mechanisms. Since the basis for these inferences is provided by

the three primary indicator variables of intactness, the model should supply information
on the differential reproductive success as part of the mating process. This can be achieved
in two ways. The direct approach consists of designing a model to yield estimates of the
indicators, after calibration for the observations. Otherwise, the model design should at

least provide for results which can be used in other models that produce the indicator
variables under realistic scenarios. Estimates of a proportion of self-fertilization could,
for example, be obtained with the help of a model that contained no assumptions on the
numbers of zygotes produced by the various genotypes (this is true for the classical mixed

mating model, for example). Another model, in which such numbers are explicitly taken
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into account, could be compatible with the former model, such that the selfing estimates
could be adopted and an analysis of intactness of the mating system mechanisms could
be carried out. In any case, a clear concept of the kind of observations that would be

useful may account for all of these aspects.

Inclusion of intactness aspects into the analysis can be realized in an ideal manner,
if experimental and model designs focus on each individual offspring as representing a
unique and successful mating event. The characterization of a mating episode would thus
be based on offspring (ideally zygotes) as units of observation, where for each offspring

two “traits” are scored, one indicating its maternal and the other of its paternal parent.
These observations specify a parentage distribution for each collection of offspring. The
distribution refers to any frequency distribution on the collection of offspring (see Ta-
ble 1). The parentage distribution thus summarizes all of the information relevant for the

estimation of frequencies of mating types and reproductive successes.

Table 1
�
–parent

�
–parent 1 2 3 4 . . .

1 Z11 Z12 Z13 Z14 . . .

2 Z21 Z22 Z23 Z24 . . .

3 Z31 Z32 Z33 Z34 . . .

4 Z41 Z42 Z43 Z44 . . .

. . . . . . . . . . . . . . . . . .

Parentage distribution with Zij := number of zygotes with the i-th individual as maternal and
the j-th individual as paternal parent. The Zii’s of the diagonal represent numbers of zygotes
resulting from self-fertilization. If the i-th individual is a female, then Zji = 0 for all j, i.e.
the i-th column in the table consists of zeros. Dioecious species are therefore characterized by
the fact that if the i-th row contains positive elements then the i-th column consists only of
zeros and vice versa.

Paternity analysis (Hamrick & Schnabel, 1985) is a well known example for the utiliza-
tion of parentage distributions. This method accounts for the fact that in plants seeds are

usually collected before dispersal from each of a sample of individuals. In this case the
maternal parent of each offspring is known and the paternal parent is to be inferred with
the help of gene markers. The relevant methods are mainly based on paternity exclu-
sion complemented by likelihood estimation procedures of paternity (see e.g. Weir 1996,

p.209ff). It is well known that the precision of the resulting inference depends heavily on
the available marker, the sample of potential paternal parents and the samples of seeds.
Models have a substantial part in the likelihood estimation procedures, even though they
are frequently not explicitly mentioned (mostly concerning free recombination, Mendelian

inheritance, stochastic independence among loci, absence of postzygotic selection, or ran-
dom mating). Particularly the assumption of random mating in the model-dependent
estimation of parentage is problematic, if the estimates are used in an analysis of mating

relations, because of the danger of circular reasoning.

The set of zygotes on which an analysis of mating system characteristics is to be based

depends on the problem to be studied. In the following sections, this will be demonstrated
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by addressing a few problems of elementary significance. Suggestions for an integrative
approach to their treatment with the help of parentage distributions will be made.

Demarcation of populations

Even if the totality of a population’s seed production could be representatively sampled

prior to dispersal, only the maternal contribution to each seed can be definitely stated to
have originated from this population. The paternal contribution could result via pollen
immigration from other populations. Moreover, a pollen grain produced by a population

member could fertilize an ovule produced by the member of another, neighboring popu-
lation. Seed dispersal could bring the resulting seed back into the vicinity of its paternal
parent. Strictly speaking, this raises the question as to the population to which such a
seed should be assigned and thus brings to attention the demarcation of a population

as a reproduction community. Since a reproduction community is, in turn, defined by
the mating relations of its members, mating systems can be conceived of as fundamental
determinants of populations.

To approach this problem, the above notion of parentage distributions will be gener-

alized to include the situation of a group of potential parents, together with all zygotes
with at least one parent from this group. All of these zygotes, but no others, result from
mating relations realized by the members of the group. They must therefore be part of the
group’s mating system, irrespective of the place where they become established (grow).

To simplify wording, zygotes with both parents from the group will be called “homo-
demic” with respect to this group, and zygotes with only one parent from the group will
be called “heterodemic” (for an illustration see top of Figure 1). There is probably wide

consent to call the group a population if all zygotes are homodemic with respect to the
group. Yet, since populations are also generally accepted to be open systems, sufficiently
small fractions of heterodemic zygotes are counted as a result of gene flow by mating into
the group, without questioning its status as a population.

With increasing fractions of heterodemic zygotes the population concept does gradually
become blurred and no clear delineation can be made. It could therefore be meaningful
and is probably closer to reality, if one specifies the degree to which a group behaves as
a closed population by the fraction of homodemic zygotes among all zygotes (homo- and

heterodemic) of the group. This fraction becomes 1 for a completely closed population
(or reproductively isolated group) and it reaches a value of 0 if the members of the group
mate only with individuals outside the group. A trivial example of a group with a zero
degree of its population status is provided by any set of males in a dioecious species. To

realize a positive degree, some females are to be added to this group.

Gene flow by mating

For a given population, its gene flow by mating is described by the set of heterodemic
zygotes. To enable a formal representation, denote by Z the number of zygotes with

at least one parent from the population, by Zhom and Zhet the numbers of homodemic
and heterodemic zygotes, and by Z �het and Z �het the numbers of heterodemic zygotes with

maternal and paternal parent, respectively, from the population. Then Zhet = Z �het+Z �het

and Z = Zhom+Zhet. The fraction of zygotes resulting from gene flow thus equals Zhet/Z
(also note that this equals the complement of the above degree Zhom/Z to which a group
behaves as a closed population, see Figure 1). This obvious measure of the overall amount
of gene flow by mating does not, however, underly the common measures of gene flow.

The reason is to be found in the fact that in the common concept an offspring is assigned
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Figure 1
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Top: Illustration of homodemic and heterodemic matings in parenatge distributions. Bottom:
Illustration of amounts of gene flow by mating considering both maternal and paternal parents
(left) and considering only maternal parents (right) among the heterodemic matings.

to the population to which either its paternal or (mostly) its maternal parent belongs.
Only from this point of view can gene flow by mating be conceived of as being directed

into or out of a population. If neither gametic sex can be assigned a sessile role, gene flow
cannot be analyzed for its direction.

In plants, seeds are almost exclusively assigned to the population of their maternal

parents. Consequently, gene flow into a population by mating is measured by the fraction
of heterodemic seeds, but excluding all those heterodemic seed with paternal parent from
within the population and maternal parent from outside the population (i.e. Z �het, see

bottom of Figure 1). With the above notation, this fraction amounts to Z �het/(Z −Z �het).
Clearly, this measure of gene flow can be used to describe external mating relations of
population members functioning as female parents. The external mating relations of
population members functioning as male parents, which would represent the gene flow

out of the population, are here completely ignored. This marks the strong bias observable
in the great majority of experimental and theoretical studies (see e.g. the review of Adams
& Birkes, 1991, which still provides a good account of the prevailing basic approaches

to modeling and estimation of mating system characteristics of forest tree populations;
Willson, 1994, reviews sexual selection in plants as being female governed; Gregorius
et al., 1987, demonstrate the differential effects of both sexes on the measurement of
self-fertilization).

The tacit assumption that female parents are the predominant determinants of plant
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mating systems still awaits an experimental verification. Concerning external mating
relations, this would require at least a comparison between maternal and paternal par-
ents with respect to their amounts of heterodemic zygotes. The fraction of heterodemic

zygotes characterizes the extent to which the three fundamental functions of mating sys-
tems are realized through reproductive contacts with individuals from outside the group.
Therefore, and because of the differences between genetic information transmitted by
male and female gametes (chiefly concerning extranuclear information such as resides in

mitochondria and plastides), it is important to have reliable information about a possible
asymmetry between the sexes in their external mating relations (Z �het 6= Z �het). The de-

velopment of methods for the estimation of amounts Z �het of external matings by paternal

parents is a big challenge.
In fact, the fraction Zhet/Z of overall gene flow by mating always exceeds the female

oriented fraction Z �het/(Z − Z �het) as can be taken from

Zhet

Z
−

Z �het

Z −Z �het

=
Z �het · Zhom

Z · [Z − Z �het]

Hence, even strong (but with the presently available experimental means, hardly ver-

ifiable) assumptions such as sexual symmetry among heterodemic mating relations
(Z �het = Z �het) cannot compensate for this difference in the measurement of gene flow
by mating.

Gene flow, in the sense of heterodemic matings, involves intactness considerations

through its effects on the reproductive success of the population members, on the repro-
ductively effective population size, and on the genotypic structure among the offspring.
The assessment of reproductive success and effective size is complicated by the fact that
heterodemic matings involve only one parent from the population. Gene flow by mating

may thus affect the intactness performance of all three fundamental functions of mating
systems.

Reproductively effective number of parents

There are two approaches to the reproductively effective numbers of parents. One ap-

proach focuses on a group of potential parents, the reproductive output of which is rep-
resented by the totality of their successful gametes. In terms of zygotes, the totality of
successful gametes is contained in the pool of all zygotes with at least one parent from
the group of potential parents. An effective number of parents is thus defined for a spec-

ified group of potential parents. The other approach focuses on a pool of zygotes as the
reproductive output of their parents. An effective number of parents is here defined for
a specified pool of zygotes. The following derivations will be formulated such that they

apply equally to both approaches.
Again denoting by Z the number of zygotes under consideration, it follows that the

effective number of parents of these zygotes cannot exceed a number of 2·Z. More specif-
ically, let Zij as specified in Table 1, so that

∑

i,j Zij = Z. The number of zygotes

produced by self-fertilization of the i-th parent equals Zii. If all parents would reproduce
solely by self-fertilization, the effective number of parents could not be more than Z,
which is half of the maximum number realizable without self-fertilization.

It follows that the i-th parent occurs
∑

j(Zij +Zji) times as a contributor of a gamete

to the pool of zygotes under consideration. In terms of relative frequencies, the i-th
parent therefore has a share of gi :=

∑

j(Zij +Zji)/(2·Z) among all gametes contributed
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to the zygotes. Note that
∑

i gi = 1 since all parents of the pool of zygotes are taken
into consideration. These relative frequencies allow us to relate the concept of effective
number to that of diversity. One of the most frequently applied measures of diversity is

v2 = (
∑

i g
2
i )
−1, which, considering the definition of the gi’s, specifies the reproductively

effective number of parents in terms of the diversity of parents in their contribution of
gametes to the pool of zygotes. The measure v2 is one from a continuum of measures va

(given by va = (
∑

i g
a
i )

1

1−a ), where the index a runs from 0 to ∞, and where v0 equals

the number of types (parents) found in a collection and v∞ = (maxi gi)
−1. For a given

frequency distribution, va decreases with increasing a, so that v0 and v∞ constitute the
largest and smallest diversity measure in this continuum (Gregorius 1978).

The smallest measure v∞ is distinguished by a property which has particular intuitive
appeal as a measure of the reproductively effective number. Considering the parent that
contributes the most to the pool of successful gametes as a reference for effectiveness, it is

of immediate interest to know how many of such parents would have sufficed to produce
all of the gametes of the pool. This number would ideally reflect the notion of a number
of reproductively effective parents. In fact, if G denotes the overall number of successful
gametes, then G ·maxi gi equals the maximum number of successful gametes contributed

by a single parent. If each parent would contribute this number to the pool of successful
gametes, it would require G/(G ·maxi gi) = (maxi gi)

−1 such parents to account for all
the gametes.

The effective number of parents alone makes an incomplete statement as to the intact
performance of the second fundamental function of mating systems. It remains to relate
the pool of zygotes and their parents to a group of individuals considered as a population

of potential parents, as is pointed out in the first of the two above-mentioned approaches.
These potential parents must, of course, comprise at least one of the actual parents for
each zygote from the considered pool of zygotes. By this, it is guaranteed that all zygotes
are offspring of members of the group, with the possibility that not all zygotes have both

parents from the group (existence of heterodemic zygotes) and that not all of the successful
gametes of the group are represented in the pool of zygotes. The reproductively effective
size of the group is defined relative to the considered pool of zygotes, and it equals the
above effective number of parents only if all zygotes are homodemic for the group.

Otherwise, each heterodemic zygote is represented by only one parent from the group,
so that the maximum number of parents from the group contributing to the zygotes

reduces from 2·Z to 2·Z − Zhet. Then the i-th group member has a share of gi =
∑

j(Zij + Zji)/(2·Z − Zhet) among all gametes contributed to the zygotes by the group.
Note that the subscript j runs over the whole set of parents of the zygotes (thus including
parents from outside the group), while the subscript i refers only to group members.

Hence, summation of the gi’s only over group members yields 1. The above indices va,
when applied to these gi’s, are again possible measures of the reproductively effective
number of group members.

The same principles apply to the determination of sex-specific reproductively effective
numbers. Thus, the reproductively effective number of maternal parents rests on the
fractions g �i =

∑

j Zij/(Z − Z �het) of gametes contributed by the i-th group member to

all successful female gametes of the group. The pertinent fractions for the reproductively
effective number of paternal parents are g �j =

∑

i Zij/(Z − Z �het), where j refers to the
j-th group member.

The above explanations apply to any given group of individuals and pool of zygotes,
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provided each zygote from the pool has at least one parent from the group. This allows
us to treat a large variety of situations in terms of reproductively effective numbers of
parents. For example, if the seed of a single tree is to be analyzed with respect to its

effective number of paternal parents, this can be done on the basis of the above frequencies
g �j . In this case g �j = Zij/Z and Z �het = 0, since only one maternal parent (individual i)
is considered and since all paternal parents of the zygotes are included in the group of
potential paternal parents. This can be extended to any group of potential parents, in

combination with the pool of all zygotes with maternal parent from the group. It is
also possible to invert the point of view by consideration of the pool of all zygotes with
paternal parent from the group. This case will, however, be hardly possible to study in
plants, because the totality of ovules fertilized by a pollen parent can normally not be

sampled.

Population structure due to mating preferences in continuous populations

The structure of metapopulations is closely related to subpopulation differentiation due to

mating preferences. This type of differentiation can again most consistently be analyzed
if parentage distributions can be assessed. Parentage distributions are to be specified for
the differentiation criterion to be studied. For example, if the differentiation criterion
is membership of locally defined groups, each offspring is characterized by the group

membership of its maternal and paternal parent. Since location is a spatial characteristic,
the above category (i) of mating system determinants applies. Parentage distributions
are then specified by the frequencies of offspring with parents belonging to the same
group (homodemic offspring) or belonging to different groups (heterodemic offspring). If

external matings are considered not to contribute to population subdivision, only offspring
with both parents from the total population (homodemic for the total population) enter
the analysis.

Subpopulation differentiation due to preferential mating among members of the same
group can then be inferred by comparison of the frequencies of homodemic and hetero-
demic offspring, since these correspond to matings within and between groups. If no
obvious subdivision of the population into disjoint groups is observable (i.e. if the popu-

lation is continuous), an analysis of mating systems is usually aimed at the detection of
relationships between spatial distance and mating. A mere analysis of frequency distri-
butions of mating distances (frequencies of zygotes with given spatial distance between
their parents), however, may not be satisfactory. Spatially heterogeneous distribution of

potential mating partners may feign preferential mating among neighbors simply because
of clumped occurrence. The situation is similar to the bias of spatial autocorrelation
analyses by clumped spatial distributions of population members. Such pitfalls can be
avoided when the analysis is based on a clear concept of mating preferences, as will be

demonstrated in the following section.

Spatial distance and individual mating preferences

As a rule, preferential mating among spatial neighbors cannot produce discrete subpop-
ulation structures if neighborhood is distributed more or less evenly in space. In this

case, an analysis of subpopulation differentiation may be inadequate, since no a priori
discrete subpopulation structure can be identified. A more adequate approach to studies
of population structure is then suggested by an analysis of the mating preferences of each
parent as a function of the distance between the parent and its mates.

More concretely, consider all zygotes which have the i-th individual as female parent,
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the frequency of which is
∑

l Zil. The j-th potential male parent appears at a proportion
Zij/
∑

l Zil as contributor to these zygotes, and for each such male parent its distance
from the reference female parent i is recorded. Note that individuals are regarded as

potential parents only to the degree to which they contribute to the pool of zygotes. In
order to detect special preferences with respect to distance, all paternal contributors to
the total pool of zygotes have to be drawn upon, together with their distances from the
reference female parent, for comparison. On this set of potential mates, in which the

j-th paternal parent is represented with a proportion
∑

k Zkj/Z, the mating preferences
are based. The preference of the female parent for a particular mate is then obtained
by computing (a) the frequency of this mate among all mates of the female and (b) the
frequency with which the mate occurs among the paternal contributions to the total pool

of zygotes. Division of (a) by (b) yields the desired measure of preference. The mating
preference Uj/i of the i-th maternal parent for the j-th paternal parent is therefore given
by

Uj/i =
Zij
∑

l Zil

/
∑

k Zkj

Z
=

Zij · Z

[
∑

l Zil] · [
∑

k Zkj ]

(for the concept of mating preferences see Gregorius 1989). For each mate of the reference
female parent, its mating preference and its spatial distance are thus known, and this per-
mits an analysis of neighborhood mating by plotting distance against mating preference.

The resulting graphs are directly interpretable (consult Figure 2 for an illustration of
isotropic – i.e. independent of direction – mating preferences).

Figure 2

(i) = random mating
(ii) = preferential mating with neighbors including self−fertilization
(iii) = preferential mating with neighbors, no self−fertilization
(iv) = preference for mates at intermediate distances

(iv)

(i)

(iii)

(ii)

0

1

spatial distance between a parent and its mates

m
at

in
g 

pr
ef

er
en

ce

Mating preferences and spatial distance

Illustration of isotropic mating preferences as a function of distance between mating partners
for different mating systems.
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This procedure can be repeated for each female parent and would provide an impres-
sion of the degree to which spatial distance determines female mating preferences. The
same can be done with the mating preferences of male parents, in which case Ui/j denotes

the preference of the j-th paternal parent for the i-th maternal parent. The symmetry of
the preferences, i.e. Ui/j = Uj/i, follows directly from the above definition of mating pref-
erences. This symmetry is a consequence of considering individuals as potential mating
partners, to the degree to which they contribute to zygotes.

In such an analysis, spatial distance between parents can in fact be replaced by any
other measure of difference between parental characteristics, without having to change the
principle of the analysis. This is easily realized for the categories (iii) and (v) of mating
system determinants, when considering differences between parental pairs with respect

to their phenotypes, genotypes, or with respect to their common ancestry, measured in
terms of coefficients of kinship.

A problem frequently arising in parentage analyses of co-sexual plants consists in the

lack of means to distinguish ovule from pollen contributions to zygotes or embryos. Par-
ents of zygotes may still be identifiable, but they cannot be distinguished with respect
to their maternal and paternal functions. In this situation observations are restricted
to the symmetric frequencies Z◦ij := Zij + Zji for i 6= j and Z◦ii := Zii. Obviously

Z◦ij = Z◦ji and
∑

i≤j Z
◦
ij = Z. Under these restrictions, the frequency with which

the i-th individual contributes as (maternal or paternal) parent to the zygotes equals
∑

j(Zij + Zji) =
∑

j(1 + δij)Z
◦
ij , where δii = 0 and δij = 1 for i 6= j. Therefore,

among all zygotes with the i-th individual as parent, a proportion Z◦ij/
∑

k(1 + δik)Z
◦
ik

has the j-th individual as second parent, and this parent appears at a proportion of
∑

k(1 + δjk)Z
◦
jk/(2·Z) among the 2·Z contributions of all parents to the set of zygotes.

By the above definition, one now arrives at a mating preference Uj/i of the i-th for the
j-th parent, given by

Uj/i =
Z◦ij

∑

k(1 + δik)Z
◦
ik

/

∑

k(1 + δjk)Z
◦
jk

2 · Z

=
2 · Z◦ij · Z

[
∑

k(1 + δik)Z◦ik] · [
∑

k(1 + δjk)Z◦jk ]

All of the above principles for an analysis of spatial distance as a determinant of sex-

specific mating preferences apply equally to the symmetrical preferences.

Discrete population structure, due to mating preferences

Treatment of a broader spectrum of problems requires extension of the measurement of
mating preferences to arbitrary traits of the parents. The individual parent, which was
focused on in the last chapter, is then replaced by the set of all parents with the same trait

state. In principle, any of the categories (i) to (v) of mating system determinants can be
treated on this basis. In most cases, the traits of interest are of a discrete type or can be
classified into such types so that distinguishable groups or demes of potential parents can
be specified. Matings (as determined by the parentage distribution) can then again be

characterized by the affiliation of mating partners (parents) to groups, and the frequencies
of matings within and between the groups (homodemic and heterodemic matings) can,
for example, form the basis for an analysis of differentiation among groups with respect to
their mating relations. To provide a conceptual basis for such an analysis, each zygote is

now considered to express two traits, specified by properties of its maternal and paternal
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parent. Variables X and Y will be used to identify the maternal and paternal trait,
respectively.

The basic frequencies which are required for the computation of mating preferences are

then given by the frequency P (Y=y |X=x) of zygotes with paternal parents (Y ) of type y
among all zygotes with maternal parents (X) of type x and the frequency R(Y =y |X=x)
of paternal parents of type y among all potential mates of maternal parents of type x.
With this notation, the mating preference of maternal parents of type X=x for paternal

parents of type Y=y reads

UY =y / X=x =
P (Y=y |X=x)

R(Y =y |X=x)
.

The inverse quantities P (X=x | Y=y), R(X=x | Y=y) and UX=x / Y =y are defined anal-
ogously.

If, as was done in the last chapter for individual mating preferences, the potential
mates are equated to their overall maternal and paternal contributions to the pool of
zygotes, then R(Y =y |X=x) = P (Y =y) and R(X=x | Y=y) = P (X=x), where P (Y=y)
and P (X=x) equal the frequencies or probabilities of zygotes with paternal parent (Y )

of type y and maternal parent (X) of type x, respectively.

Given the frequencies of the potential mating partners, it follows that the mating
preference UY =y / X=x is bounded from above byR(Y =y |X=x)−1 since P (Y=y |X=x) ≤
1. This upper bound is reached if maternal parents of type X=x mate exclusively with

males of type Y=y, which is indeed the highest preference an individual can realize
among its potential mates. Hence, to make more apparent the concept of preference and
rejection of potential mates and to allow its quantification over the whole range from
complete preference via indifference to complete rejection, it is desirable to normalize the

measures U such that they vary symmetrically between +1 and −1. Symmetry around
0 is required to enable comparison of the extents of rejection and preference. This is
achieved by the following normalization

ÛY =y / X=x :=







UY =y / X=x − 1 if UY =y / X=x ≤ 1

UY =y / X=x − 1

R(Y=y |X=x)−1 − 1
if UY =y / X=x > 1

As desired, ÛY =y / X=x = −1 for complete rejection of Y=y mates by X=x females
(UY =y / X=x = 0), ÛY =y / X=x = 1 for exclusive mating of X=x females with Y=y males,

and ÛY =y / X=x = 0 for indifference of X=x females towards Y=y males (randommating,
UY =y / X=x = 1).

Û can be written in a more compact form if one considers that for UY =y / X=x > 1,
one obtains

ÛY =y / X=x =
R(Y =y |X=x) · (UY =y / X=x − 1)

1−R(Y =y |X=x)

=
P (Y =y |X=x) −R(Y=y |X=x)

R(Y 6=y |X=x)

=
R(Y 6=y |X=x) − P (Y 6=y |X=x)

R(Y 6=y |X=x)
= 1−UY 6=y / X=x.
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With the help of this equation, Û can be rewritten in the form

ÛY =y / X=x = max{1− UY 6=y / X=x , 0} −max{1− UY =y / X=x , 0}.

The inverse normalized preferences are defined analogously.

The preferences U are symmetrical for potential mates, given by the actual mating
frequencies P (Y=y) and P (X=x). In contrast, Û is symmetrical for these potential

mates only when it is negative. Otherwise, both ÛY =y / X=x and ÛX=x / Y =y are positive,
and symmetry is realized only for P (Y=y) = P (X=x).

In the following examples of application, in which population structure is considered
solely for the reproducing members of populations, frequencies of potential mates will be

assumed to equal their actual mating frequencies.

Metapopulations: reproductive isolation and coherence

In particular, if only membership of a group is relevant for maternal parents X and
paternal parents Y , and if groups are denoted by z, then ÛY =z / X=z specifies the degree
to which maternal parents from group z prefer to mate with paternal parents from the

same group (homodemic mating preferences). Positive values of ÛY =z / X=z state that,
on the average, maternal parents from group z prefer matings with paternal parents
from their own group over matings with paternal parents from outside the group. This is
reversed for negative values of ÛY =z / X=z. Analogous statements hold for the preferences

ÛX=z / Y =z of paternal for maternal parents. In other words, group z is reproductively
isolated from other groups and thus forms a subpopulation, to the degree to which both
homodemic preferences ÛY =z / X=z and ÛX=z / Y =z are positive.

Hence, if the ÛY =z / X=z and ÛX=z / Y =z are strictly positive for all groups z, a clear

tendency towards formation of a metapopulation, with respect to the chosen group struc-
ture, can be stated. Looking at metapopulation structures from the opposite point of
view, i.e. in terms of degrees to which matings are performed among groups, the repro-
ductive coherence or gene flow among groups is to be quantified. The relevant measures

are the heterodemic preferences ÛY 6=z / X=z and ÛX 6=z / Y =z. The exact complementar-
ity of both views is reflected by the mathematical identity ÛY =y / X=x = −ÛY 6=y / X=x.
Positive values for ÛY 6=z / X=z and ÛX 6=z / Y =z therefore indicate the absence of metapop-
ulation structures for the chosen grouping criterion.

To arrive at a single measure of metapopulation structure, the differences between
the sexes must again be taken into account. This suggests that we should distinguish
between the average homodemic mating preferences of maternal for paternal parents,
i.e.
∑

z ÛY =z / X=z · P (X=z), and of paternal for maternal parents, i.e.
∑

z ÛX=z / Y =z ·

P (Y=z).

The special case of self-fertilization

When group structure is broken down to the level of the individual, so that each individ-
ual is considered a group of its own, the above homodemic mating preferences correspond
to self-fertilization. It is thus meaningful in this case to talk about a measure of genealog-

ical “self-preference” (the computation of U follows in this case the rules stated in the
previous chapter, in connection with effects of spatial distance on mating preferences).
The asymmetry in the measure Û takes care of the possibility that self-fertilization has
a female and a male component which may differ. Thus ÛY =z / X=z > ÛX=z / Y =z > 0

states that parent z self-fertilizes more than at random and it does so to a larger degree
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as a maternal than as a paternal parent. At an extreme, when parent z is completely self-
incompatible or produces for other reasons no offspring by self-fertilization, one obtains
ÛY =z / X=z = ÛX=z / Y =z = −1, which correctly reflects the implied complete rejection

of homodemic matings.
Note that negative values of self-preference do not exclude self-fertilization but rather

state that the reference individual mates more frequently with other individuals than with
itself. In other words, despite a partial self-incompatibility, estimates of the proportion

of offspring resulting from self-fertilization may be positive. This is an important mating
system characteristic that does not show up in the common estimates of proportions of
self-fertilization. Estimates of large proportions of self-fertilization may also be the result
of random fertilization combined with low reproductively effective population sizes. In

this case, high proportions of self-fertilization would be due to non-intact performance of
the second fundamental function of mating systems. The third function is not directly
affected by low reproductively effective population sizes. The inbreeding depression that

might show up in the next generation is not due to the mating preferences but rather
to the loss of adaptational capacity due to the drift effects associated with the small
reproductive population size. Misinterpretations of this kind are, in fact, ruled out by
consideration of the values of self-preference, since these would be zero because of the

random fusion of the gametes.

Indirect (model-dependent) estimation

In the introductory remarks, it was indicated that the legitimacy of indirect estimates
rests on tests of the validity of the underlying model. Models for which no experimental

methods of testing are available are of limited practical relevance. This applies particu-
larly to models which are used for the estimation of characteristics of real systems. Thus,
if the mixed mating model is used in the estimation of the proportion of self-fertilization,

the estimate is arbitrary if no test as to the validity of the model was performed. Esti-
mates obtained from models which did not pass a statistical test are without substance.
The estimation of amounts of gene flow among populations with the help of FST was
mentioned in this context.

It is, of course, common practice to discuss unexpected indirect estimates in terms
of the validity of the underlying model. Occasionally, sensitivity analyses are performed
to rule out the possibility of substantial misinterpretation of data on the basis of the
model. Most frequently, however, detailed arguments refer to more tractable problems,

such as those arising from sample variance of estimators or from estimation algorithms
connected with the respective model. Problems of testing the validity of the applied
model are then of lesser concern (a more recent account of this situation is given e.g., by
Ivey & Wyatt, 1999). This is at odds with the system analytic requirement for the joint

consideration of model-dependent parameter estimation and model testing (see e.g. the
paper of Gregorius, 1999, which demonstrates this requirement for the non-equilibrium
and equilibrium version of the mixed mating model; a more comprehensive account of

the system analytic approach is found in Gregorius 1998).

Intactness of mating mechanisms

The utilization of model-dependent methods of estimating mating system characteristics
enforces integration of elements of parameter estimation and intactness analysis in the
same model. This should be considered in the model design. For example, if the classical

mixed mating model (selfing and random cross-fertilization) is used for the estimation
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of individual selfing rates, and if these estimates are used in a model of the effects of
neighborhood mating including selfing, the assumptions on the form of cross-fertilization
are contradictory between the two models. Inferences as to the intactness of the neigh-

borhood mating mechanisms can thus not be consistently made, even if the neighborhood
mating model would include the information on mating success required in an analysis if
intactness.

Similar caution has to be taken with experiments in which the parentage (usually

paternity) analysis is restricted to offspring of special origin such as seed from a few seed
trees. Since intactness inferences of mating systemmechanisms are to be based on samples
that are representative of the population’s offspring (zygote) production, the seed tree
sample should represent the population, and the seed samples should represent each tree’s

seed production. Particularly the representativity of seed samples of the individual trees’
seed production is frequently difficult to realize. This problem is more easily settled if seed
is sampled after dispersal. Yet, this is achieved at the expense of reliable information on

the maternal parent. However, as long as affiliation of seeds to population is unambiguous
and representativity is guaranteed, the difference between sampling strategies affects the
analysis only through statistical precision.
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Appendix I: Selection load

A concept of viability selection load generalizing the classical approach of Haldane (1954)
was developed by Gregorius & Degen (1994). An analogous generalization of this concept
to include reproduction can be obtained by considering all adult individuals to have

the same maximum ability (capacity) to reproduce. Reproductive output (number of
offspring) can be measured in terms of zygotes, gametes, or successful gametes. Whenever
the actual number of offspring of an individual falls below its reproductive capacity,
impairment of the reproductive output due to environmental challenges or mating system

effects can be stated. Making use of the notation

ni := number of i-type adults

fi := number of offspring of i-type adults

n :=
∑

ini

f :=
∑

ifi

pi :=
ni

n

p′i :=
fi

f

c := individual capacity of reproduction
in terms of numbers of offspring,

the absolute reproductive impairment of the i-th type amounts to ni · c−fi offspring. By
definition, c is always sufficiently large to assure non-negativity of this difference for all
types. Hence, c ≥ fi/ni or all i, so that

c ≥ max
i

fi

ni

=
f

n
·max

i

p′i
pi
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It follows that the minimum reproductive capacity c = c∗, which must have been
realized per individual to produce the observed numbers of offspring of the various types,
equals c∗ = maxi(fi/ni). The absolute total reproductive impairment across all types

sums to
∑

i(ni · c − fi) = n · c − f , so that the relative impairment yields a fraction
n·c−f

n·c
by which the total reproductive output is reduced relative to the total reproductive

capacity. Since c∗ is the minimum individual reproductive capacity that must have been
realized to explain the differences in reproductive output between the types, c∗ must be

substituted for c to obtain the minimum relative reproductive impairment. One therefore
arrives at

LR :=
n · c∗ − f

n · c∗
= 1−

f

n · c∗
= 1−

1

maxi
p′

i

pi

= 1−min
i

pi

p′i

as the minimum reduction in total reproductive output required to arrive at the realized
differences in reproductive output between types. The fraction LR is thus meaningfully

addressed as the reproduction selection load to distinguish it from the viability selection
load.

Comparison with the viability selection load L as stated in Gregorius & Degen (1994)
shows that L is formally identical to the present reproduction load LR, if the number

of offspring of a type is measured by the number of individuals of this type remaining
after selection. Hence, the above concept of reproduction selection load can indeed be
generalized to include all vegetative and generative stages. One only has to refer the ni’s
and fi’s to any two successive developmental stages, the first of which being a vegeta-

tive (including zygotic) and the second a vegetative or generative stage. This justifies
denotation of LR simply as the selection load.
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