
Bachelor’s Thesis

Entwicklung einer App für das HappyFace
Projekt

Development of an app for the HappyFace
project

prepared by

Timon Vogt
from Minden, NRW

at the II. Physikalischen Institut

Thesis number: II.Physik-UniGö-BSc-2018/03

Thesis period: 3rd April 2018 until 10th July 2018

First referee: Prof. Dr. Arnulf Quadt

Second referee: Priv.-Doz. Dr. Jörn Große-Knetter

Zusammenfassung
Das Speichern und Analysieren der aufgenommenen Daten am Lhc (Large Hadron Col-
lider) am Cern-Forschungszentrum in der Schweiz ist eine ressourcenintensive Aufgabe,
für die das WLCG (Worldwide LHC Computing Grid) aufgebaut wurde. Dessen stabi-
ler und störungsarmer Betrieb ist dabei unerlässlich um eine verlässliche und effiziente
Analyse der Daten zu ermöglichen. Zu diesem Zweck wird von den Administratoren des
WLCG eine Vielzahl unterschiedlicher Überwachungssoftware eingesetzt um den aktuel-
len Zustand aller Komponenten zu bestimmmen und mögliche Ausfälle so früh wie mög-
lich zu erkennen und zu beheben. Das modulare Meta-Überwachungssystem HappyFace
wird dabei eingesetzt, um die unterschiedlichen Zugriffspunkte auf verschiedene Überwa-
chungssysteme zu vereinheitlichen und in einer zentralen Oberfläche darzustellen. Diese
Bachelorarbeit beschäftigt sich mit der Entwicklung einer mobilen Version des HappyFace
Systems für Smartphones und Tablets um die Arbeit der Administratoren flexibler und
ortsunabhängiger zu gestalten.

Stichwörter: Physik, WLCG, Atlas, Grid Computing, HappyFace, Meta-Monitoring,
App, ionic, cordova, Android, iOS

Abstract
The storage and analysis of data recorded at the Lhc (Large Hadron Collider) at the
Cern research center in Switzerland is a resource intensive task, for which the WLCG
(Worldwide LHC Computing Grid) was established. Its stable operation with few inter-
ferences is thereby imperative for an efficient and reliable analysis of the data. To this
end, its administrators use a variety of monitoring tools to view the current state of all
components and to recognize failures in an early state. The modular meta-monitoring tool
HappyFace is thereby used to unify the access to different monitoring systems under one
common interface. This bachelor thesis deals with the development of a mobile version
of HappyFace for smartphones and tablets to make the job of the administrators more
flexible and less location dependent.

Keywords: Physics, WLCG, Atlas, Grid Computing, HappyFace, Meta-Monitoring,
App, ionic, cordova, Android, iOS

iii

Contents

1. Introduction 1

2. Background 3
2.1. The LHC . 3
2.2. The Atlas detector . 3
2.3. Acquiring data . 4
2.4. The WLCG . 5
2.5. Monitoring . 6

3. The HappyFace Project 7
3.1. Concepts of HappyFace . 7
3.2. HappyFace Mobile version 1.0 . 10

3.2.1. The user interface . 10
3.2.2. The applications background . 13

4. Smartphone application 15
4.1. Motivation for writing a new app . 15

4.1.1. ionic . 16
4.1.2. cordova . 16

4.2. Background Software . 17
4.3. Architecture . 18
4.4. Graphical user interface . 20

4.4.1. Monitoring Tab . 20
4.4.2. Analyzer Tab . 21
4.4.3. Controller Tab . 23
4.4.4. Visualizer Tab . 25
4.4.5. Logs Tab . 25
4.4.6. Home Tab . 26
4.4.7. Settings page . 28

v

Contents

4.5. Special Functions . 30
4.5.1. The instance chooser . 30
4.5.2. The ssh terminal . 32
4.5.3. The HappyFace classical view . 33
4.5.4. The connection error modal . 36
4.5.5. Widgets . 36
4.5.6. The search function . 37

5. Outlook and Conclusion 39
5.1. Outlook . 39
5.2. Conclusion . 39

Appendix A. List of links 41

vi

1. Introduction

Since mankind has existed, humans have tried to understand the world they live in. Start-
ing with practical questions, for example about the origin and the properties of fire to
acquire warmth and protection against predators, the questions evolved to deeper, more
complicated ones about the components of atomic nuclei or the origin of the universe
itself.
To answer these questions, humans did not limit themselves to their biological senses
but invented processes and machines able to perceive much more than any human could.
Of all these machines the particle accelerator Large Hadron Collider (Lhc) is probably
the largest, most expensive, and most complicated one ever build. Its purpose is just as
impressive: to find the fundamental particles the universe consists of and the interactions
between them, thereby (hopefully) answering two fundamental questions of mankind:
"What are we?" and "How did we get here?"
To do that, the Lhc collides protons with a very high kinetic energy, and records the
particles emerging from these collisions hoping to witness evidences of new fundamental
mechanisms responsible for the existence of the universe. To find them, the recordings
of the events which each contain a large amount of data then need to be analysed and
compared with simulations of the events, a job too enormous to be done by hand or by a
single computer. Therefore the WLCG was established, a worldwide network of powerful
computer clusters, each containing hundreds or thousands of computing cores, thereby
providing in its entirety enough resources to accomplish such a task.
Given the complexity of the WLCG itself and its tasks, keeping such a system up and
running is a toilsome task on its own. One of the tools used for this job is called "Happy-
Face", a meta-monitoring tool capable of reporting the status of computer systems and
finding possible failures.
During this bachelor thesis, the monitoring tool "HappyFace" is brought to mobile devices
like smartphones and tablets, which gives the administrators a greater flexibility for their
job and improves their working speed.

1

2. Background

The HappyFace project, and subsequently also a HappyFace smartphone application, is a
tool designed to monitor big and inhomogeneous computer clusters. This is of course use-
ful in any situation and for any project which has to deal with a lot of data, and therefore
uses big and complex computing systems, even commercial computer clusters. However,
currently the Lhc is likely the most data intensive physics experiment. Additionally, its
data needs to be accessible from all over the world since it is processed in universities and
physics institutes in different countries. Therefore such a monitoring tool is essential for
the Lhc.

2.1. The LHC

The Large Hadron Collider (Lhc) is a proton-proton particle collider located on the
Cern site near Geneva in Switzerland. Currently it is the most powerful particle collider,
able to accelerate protons to an energy of 6.5 TeV. Thereby, it produces a luminosity of
1034 cm−2s−1 [1]. The Lhc was constructed in a 27 km long tunnel which was built for its
predecessor, Lep (Large Electron Positron Collider). This tunnel lies about 100 m below
ground level in a stable rock layer. At this depth, the environment is protected against
the synchrotron radiation from the accelerator and the detector is protected against most
of the cosmic radiation which would decay in it and would thereby produce fake data.
Inside the Lhc, protons are running in two contrary circles and collide in one of the
four main experiments Atlas, Cms, Alice, and Lhcb. These experiments use the free
energy to produce elementary particles which are then measured by the detectors of these
experiments [2].

2.2. The Atlas detector

The Atlas detector is located at collision point 1 of the Lhc. Currently, there the proton
packages of the Lhc are collided with an energy of 6.5 TeV each, resulting in a centre of
mass energy of 13 TeV.

3

2. Background

The Atlas detector is 44 m long, 25 m high and weighs 7000 tons. It consists of three
concentrically ordered layers containing different detector types. This innermost layer
consists of pixel and micro-strip silicon semiconductor detectors as well as transition
radiation trackers. These lay within a magnetic solenoid field, which forces a circular
motion upon any charged particles due to the Lorentz force. Based upon the direction of
the circular trajectory and the radius, one can conclude the sign of the charge as well as
the transverse momentum of the particles. The next layer hosts the electromagnetic and
the hadronic calorimeters. In these, some particles (electrons, positrons, and photons in
the electromagnetic, and hadrons in the hadronic calorimeter) tend to produce particle
showers, which then can be used to measure the energy of the particles. Via the energy-
momentum relation

E =
√

~p2 + m2 (2.1)

one can then deduct the mass of the particle. The outer layer of the detector is a muon
spectrometer to detect muons, which are too heavy to be stopped by the calorimeters.
A special feature of the Atlas detector is that the muon spectrometer is surrounded by
a toroidal magnetic field, which forces the charged muons on another circular trajectory.
This is again used to calculate the transverse momentum of the muons, resulting in two
independent measurements, thereby reducing the errors [3].

2.3. Acquiring data

The bunch crossing frequency at the Atlas detector is 40 MHz, giving collisions every
25 ns. This, given the amount of detector cells, of course results in a huge amount of
data, too much to be saved on the current systems. To reduce the data rate, Atlas
uses a combination of so-called triggers, beginning with custom-made integrated circuits
sitting directly on top of the detector cells to determine whether the cells have detected
something important, and special algorithms which do the first reconstructions of the
occurred event to exclude further uninteresting events. In combination, these triggers are
able to reduce the data size to an average of 1.3 Mbyte per event at an average event rate
of 200 Hz giving an average output of 300 Mbyte/s from the Atlas experiment, which
can then be stored in the Cern data storage service [3].

4

2.4. The WLCG

2.4. The WLCG

Even though a large number of events is sorted out using the triggers, the data from the
Lhc still reaches up to 50 PB per year, which requires large efforts to process them [2].
To do this, the WLCG (Worldwide Lhc Computing Grid) was established. The WLCG
is a decentralized system consisting of 170 computing centres all over the world. Most of
them belong to universities or institutes for high energy physics and are categorized into
four Groups (so called tiers):

• Tier-0 The tier-0 centre of the grid system is the Cern data centre located on the
Cern side itself. It gets the raw data from the detectors directly after the triggers
and also provides computing power for the first reconstructions. For redundancy
and security, the Cern data centre is directly connected to a backup tier-0 data
centre located in Budapest, Hungary via three fibre optic cables with a transfer rate
of 100 GB/s each. Together, these two centres host 20% of the computing power of
the WLCG [4].

• Tier-1 Currently there are 13 national tier-1 computing centres in 12 countries
worldwide. They save a large amount of raw data and provide most of the computing
power used for reconstructions and simulations of the events. To do that, each tier-1
centre is directly connected to the Cern data centre via a 10 GB/s fibre optic cable.
These cables are called the Lhc optical private network [4].

• Tier-2 Tier-2 computing centres are regional and are hosted directly by the insti-
tutes and universities working on the Lhc. Their main job is to run simulations from
the respective institute on the data provided by tier-0 and tier-1 computing centres.
Tier-2 computing centres do not have a dedicated connection to the WLCG, but
send and receive data via the internet. Currently there are 155 tier-2 computing
centres worldwide. The one in Goettingen is called the "GoeGrid" computer cluster.

• Tier-3 A tier-3 computing centre is a local computing cluster. In contrast to all
tiers above a tier-3 center does not have to share its computing resources with the
WLCG, but is completely used by its owner[4].

5

2. Background

2.5. Monitoring

“The act of performing computer surveillance of computing resources is called monitor-
ing. The analysis of monitoring data is responsible for the detection, comprehension, and
rectification of failures related to computing resources” [5].
In the WLCG, many different software packages are used to monitor the different comput-
ing clusters. These monitoring tools are either central monitoring tools, which provide an
overview over the whole WLCG, or large sections of it or local monitoring tools which are
intended to monitor single clusters or even single computers. Thereby the local monitor-
ing tools often provide the data for the central monitoring tools by implementing software
interfaces which enables central monitoring tools to read out their results. Examples of
the central monitoring tools are SSB (Site Status Board) [6], DDM (Distributed Data
Management Dashboard) [7], and Big Panda (monitoring dashboard of the Atlas job
submission system) [8]. Examples for local monitoring tools include popular monitoring
tools for big computer systems like Nagios [9] and Ganglia [10].

6

3. The HappyFace Project

3.1. Concepts of HappyFace

The HappyFace project was developed to meet the problems coming from establishing a
distributed computing system like the WLCG, described in Chapter 2.4. Because of the
structure of the WLCG, it is very likely, especially for the tier-1 and tier-2 computing
clusters, to consist out of a large amount of individual processing units, these could even
be decentralized and stored in various buildings. Furthermore, the individual computers
may not be equally configured, but use various versions of software and even different
operating systems. Monitoring such an inhomogeneous system can be a toilsome task for
the administrators because of the different ways of accessing the monitoring data from
different systems and different monitoring software packages. To solve this issue, the
meta-monitoring system HappyFace was developed [11].
Meta-monitoring means that the HappyFace system does not observe the system itself but
instead collects the data from another monitoring system. This data is then combined with
data from other monitoring systems on the same and other machines and is afterwards
presented to the administrator in a compressed way, so that an administrator can check
quickly and easily whether a certain computer is working normally or has problems which
need a reaction [11].
This places various requirements on the design of such a system [11]:

• Flexibility HappyFace needs to be compatible with a large number of different
architectures and setups. Therefore, it needs to be built to general guidelines and
support different environments by implementing interfaces which can be accessed
by locally customized modules.

• Simplicity HappyFace should provide a single output, on which all information
from all systems come together. Critical information (such as the current overall
status) should be visualized through symbols positioned prominently, so that a
quick glance is enough to know if a reaction is necessary. All further (non-critical)
information should be quickly accessible too, optimally in less than four mouse

7

3. The HappyFace Project

clicks.

• Speed The interface of HappyFace should provide a fast access to all information
and should therefore not have very long loading times. On the contrary, many
monitoring systems which HappyFace is intended to observe, have long readout
times. Therefore the information gathering and the visual presentation in Happy-
Face should be separated, for example by a readout system which writes into a
database and a user interface reading from there, even though this means that the
displayed data is not always the latest one available.

• History To be able to find correlations between problems and to predict trends for
the future, a history of the data should be kept in the database. This history should
be easily accessible through the interface.

• Scripting Since the HappyFace system is mainly intended for administrators of big
computer clusters and advanced WLCG users to check their batch jobs, it should
provide an API to include customized scripts. With that, administrators as well
as users have the opportunity to apply custom tests, write their own programs to
monitor their jobs or extend the functionality of HappyFace in another way to meet
their requirements.

To realize all requested features, HappyFace uses a modular design. The base frame-
work, called HappyCore, provides the requested database, controls the automatic execu-
tion of all modules to update the dataset and initiates the composition of all modules
output into a single webpage once a user requests it. On top of HappyCore, a variable
number of modules realise the monitoring of each individual system. These modules, once
executed, read out the data of their monitoring system and store it into the database man-
aged by HappyCore. Also, the modules create PHP scripts and HTML fragments to read
out the data from the database and visualize it. HappyCore then collects these fragments
and composes them into a single webpage (as shown in Figure 3.1(a)). Once a user opens
this webpage, the data from all monitoring systems is visible. Additionally some global
values are presented which HappyFace calculated from the result from all modules. This
is, for example, an overall rating calculated as a combination of all ratings of the differ-
ent modules, possibly modified by some weights to realise importance levels between the
modules.
To meet the scripting feature request, an XML file is generated, containing the data from
all modules. This XML file can be read out using custom scripts, so that custom pro-
grams reacting on the data from HappyFace can be realised. An example of this XML file
is shown in Figure 3.1(b) [11].

8

3.1. Concepts of HappyFace

(a) HTML output of HappyFace.

(b) XML output of HappyFace.

Figure 3.1.: Example output from the HappyFace instance GoeGrid located at
Goettingen, Germany.

9

3. The HappyFace Project

3.2. HappyFace Mobile version 1.0

The HappyFace webpage discussed in Chapter 3.1 gives a main entry point to the status
of a monitored computer cluster. However, the webpage has one main disadvantage: it
is optimised to be used on a desktop computer or a notebook. The screen resolutions
and orientations of these devices make it necessary to use font sizes and layouts which
are hardly readable from mobile devices. But smartphones and tablets have become so
popular in the past decade that nowadays it is fair to say that nearly everybody owns a
smartphone and most people tend to carry it in their pocket at all times. This makes the
incapability of using the webpage from a mobile device a huge drawback. Just updating
the webpage to support mobile devices and low screen resolutions was considered a wasted
potential, because mobile applications have different advantages over optimized websites,
for example faster startup times (because the source code does not need to be downloaded
from a server, but instead resides on the smartphone), better security (the encryption
algorithm does not need to be sent over a potentially insecure connection) and the ability
to use the smartphones native features (vibration, background tasks, file storage access).
Due to these advantages the decision was made to develop a smartphone application (app)
for the HappyFace project [12].
The first version of the HappyFace smartphone application was developed by Fabian
Kukuck during his bachelor thesis at the university of Goettingen in the year 2014 [12].

3.2.1. The user interface

The focus of this version was to display the data from the HappyFace web instance on
smartphones. To do that, the data from the HappyFace web instance is separated into a
logical structure. Every level of this structure is then displayed in another so-called view.
A view is a logical unit of a mobile app, displayed fullscreen to the user. A view displays
information and provides buttons to move to the next view. The first view, and therefore
the first level, in the HappyFace mobile application is the categories view shown in Figure
3.2(a). It lists every category available on the HappyFace web instance in a box with its
name and an icon giving the current overall status of the category. The icons are: for
ok, for warning, for critical and for error. Over the boxes, a time stamp is displayed
showing when the information was last updated. To manually update the information, a
refresh button is placed on the top right of the screen using the icon . Since the data
displayed is not live, but the status in the moment of the last update, it outdates after
a while and should be refreshed. To make sure this is done, 20 minutes after the last
successful refresh, an overlay is placed on top of the view stating "Outdated" as shown in

10

3.2. HappyFace Mobile version 1.0

Figure 3.2(b). This reminds the user not to use old data when checking the status of the
HappyFace instance. Once a user wants detailed information about the category, a tap
on its box on the screen redirects to the modules view [12].

(a) Normal [12]. (b) Outdated [12]. (c) Modules [12].

Figure 3.2.: Categories (normal and outdated) and modules view.

The modules view is displayed as a list of the modules contained in a category, as shown
in Figure 3.2(c). Every module is again shown with its name and an arrow icon indicating
the status of the module. The status icons are the same as in the categories view and also
the timestamp and the refresh button are visible on the top of the view. However in the
top left corner of the view, there is now a back button, directing back to the categories
view. By tapping on an entry from the module list, the user is directed to the detailed
module view [12].
The detailed module view displays either the HTML fragment produced by the module

(Figure 3.3(b)) or a parsed version of the data of the module (Figure 3.3(a)), which are
both stored in the database managed by HappyCore. Which of the two versions is shown
depends on whether the active HappyFace instance uses the DB web service, as explained
in detail in 3.2.2, since it provides the raw data. If the parsed version is available and
shown, the button displays the HTML fragment of the module. As in the modules
view, the top left corner of the detailed module view contains a back button bringing the
user back to the modules view [12].

In the categories view, instead of the back button, the opens the side menu, which
swipes in from the left of the screen. This menu contains the settings for the application.
Most of this view is a list containing all known instances of HappyFace which can be

11

3. The HappyFace Project

(a) Using web service [12]. (b) Not using web service [12].

Figure 3.3.: The detailed module view.

(a) Site menu [12]. (b) Add instance [12]. (c) Settings [12].

Figure 3.4.: The site menu of the app.

monitored (Figure 3.4(a)). A tap on one of them loads their data into the categories and
modules views. In the top left corner the button opens the settings view (Figure 3.4(c)),
in which the user can enable “extended notifications”, which will notify the user every
time the background service updates the data, reset the instances to predefined ones and
open the legal notice. In the top right corner is the button, which opens a view where
the user can add a new instance by entering its name, the URL of its XML file and the URL

12

3.2. HappyFace Mobile version 1.0

of its DB web service if that is available (Figure 3.4(b)). When entered, the user has to
tap on “Add This Custom Instance” and the instance will be saved in the list of the site
menu view [12].

3.2.2. The applications background

The HappyFace mobile application gets its data in two different ways: the data for the
categories view and the modules view are parsed from the XML file that the HappyFace web
instance generated. Also the module details view shows HTML fragments using links from
the XML file. However, using the DB webservice the module details view gets its data from
a special HappyFace module called database web service. This module is not assigned to
any monitoring system, instead it is its purpose to provide the data stored in the internal
HappyFace database. To get the data, the DB webservice uses compound URLs: The URL
starts with the path of the script (e.g: http://happyface-goegrid.gwdg.de/webser
vice/db_backend.py) followed by ?data= as an identifier. The rest of the URL specifies
the desired data using the SQL language (modified to be usable as an URL, following [13]).
The called script (db_backend.py) then queries the database and returns the results in
the form of a JSON file stored on the server (e.g. http://happyface-goegrid.gwdg.de/
webservice/query_result.json), which the application downloads and parses into the
module details view [12].
The HappyFace smartphone application was intended for the two major smartphone op-
erating systems Android and iOS. Since these two operating systems require different
programming languages and frameworks to be used, a variety of frameworks tried to fill
that gap and produce Android and iOS applications based on one source code. For the
HappyFace project the ionic framework was chosen, a framework which uses HTML and
JavaScript.

13

4. Smartphone application

4.1. Motivation for writing a new app

Compared to recent developments, the HappyFace mobile version described in Section 3.2
has some major drawbacks.
Since the WLCG grows and evolves, more and more new HappyFace instances have been
created. The HappyFace smartphone application uses a list of known instances to choose
from, with the ability to add new ones to the bottom of the list. With a growing WLCG
and the desire of users to supervise many different instances, the list tends to become
confusing and hard to manage. Also the addition of a new instance is done by entering
hard coded URLs. That means once a URL changes or is disabled, all users of the
smartphone application need to be notified about the change. In the new smartphone
application the list of active instances is downloaded as a JSON file from a server, which
could easily be modified once any change in the URLs is necessary. Furthermore the
instance choosing ability was extended to a “tree-like” structure, giving the ability to group
HappyFace instances inside parent instances and give them child instance themselves.
This organisation increases the readability significantly.
Another drawback of the “old” HappyFace mobile application is the strict focus on the
categories/modules structure of the HappyFace web instance. By simply parsing the XML
data from the HappyFace instance and displaying it as a menu, the HappyFace mobile
application follows the strict rule that every module has the same importance, even though
some display generalised, summarised information about the whole managed computer
centre while others display very specific data from one monitoring system supervising one
particular aspect of one machine. This tends to be complicated to read and results in
many unnecessary clicks. In the new smartphone application, the modules are grouped
by their importance and an overall status is shown, which gives a quick view of the whole
system. Furthermore the interdependency of the different modules is displayed to help
determine the significance of an error occurring in a particular module.
Additionally, as stated in the HappyFace development article [14], HappyFace should
contain a history function to compare performances over time to detect failures in an

15

4. Smartphone application

early stage. This function was missing in the HappyFace mobile application, instead
once the data was updated via the refresh button, the old data was gone. In the new
HappyFace smartphone application a history function was implemented.
For the development of these functions, the question arose whether to extend the existing
application or to write a completely new one. Even though extending the existing app
would be faster, it was decided that a complete rewrite is the better option. The reason
is that the used frameworks ionic and cordova were updated in the recent years, so a
complete rewrite gives the opportunity to integrate those updates and make use of the new
functions they bring. Additionally, in the fast changing world of development frameworks,
these new versions of ionic and cordova are more future-safe; whereas the old versions
carry the risk of being discontinued and unsupported in the future.

4.1.1. ionic

The user interface (UI) of the mobile application is developed with the ionic framework,
which was updated to version 3.20.0. In ionic, apps are built using website technologies
like HTML, CSS and Typescript (an extended version of JavaScript supporting typed vari-
ables and object-oriented programming) instead of native code to develop applications,
which are then packed into native applications for both the Android and iOS operating
system. The ionic framework is an open source project under the MIT-licence (although
a paid version also exists) developed by the company “Drifty Co”. Its focus lies on very
“natively” feeling user interfaces, which fit into the "look and feel" of native smartphone
applications. The structure and controlling of the application is done by angular, an
open-source framework for dynamic HTML maintained by Google. This framework man-
ages the control of the application by choosing the view to be displayed (so called routing),
reacting to button taps and updating the displayed view according to the user input or
remote events. The default choice in ionic is angular which is shipped with it [15] [16].

4.1.2. cordova

To export the HTML, CSS and Typescript-written source code to a binary format which
the smartphones can accept and execute (.apk for Android and .ipa for iOS) ionic uses
the framework cordova. It bundles the source code, which is de facto a webpage, with a
natively written webbrowser to display it in. This bundled code is then compiled using the
specific producing software for each Android and iOS. Plugins for the webpage are also
provided by cordova, which enable smartphone specific features like file-storage-access,
vibration, bluetooth, etc. The compiled smartphone applications can then be distributed

16

4.2. Background Software

using the regular app markets [16] [17].

4.2. Background Software

To gather the data for the smartphone application, two new modules were integrated into
the HappyFace web instance: the modules MadAnalyzer and MadBrowser. The name
prefix MAD is an abbreviation of the steps these modules are performing: Monitoring,
Analysing and Deploying.
The module MadBrowser is responsible for generating images from the overview pages of
the different monitoring systems supervised by HappyFace. To do that, it gets the links to
the monitoring systems from MadAnalyzer and then uses the open-source Firefox browser
to open them and capture screenshots, which are transferred back to the MadAnalyzer
module.
MadAnalyzer then works as the main entry point for the HappyFace mobile application
to the data managed in the HappyCore database. It extracts the data from the database,
calls MadBrowser to produce images, plots the stability of modules over time, and places
it all into JSON files, together with some configuration informations. These output JSON
files are:

• config.json This file contains the basic configuration information necessary for the
smartphone application, such as the name of the current HappyFace instance, port
numbers and, most importantly, the link component with the data directory in
which the images are stored.

• monitoring-urls.json The monitoring URLs file contains one entry for every mod-
ule inside HappyFace web. For each module it holds the name, a direct link to the
web interface of the corresponding monitoring software and the file prefix which is
used to generate the link to the different plots. MadAnalyzer uses a specific link
structure to store every plot in a location accessible via the image directory, the file
prefix, the capturing time, and the type of plot.

• summary.json A file containing the current status (as a level of criticality and a
short status text explaining it) as well as the list of link components for the time.
Thereby the summary file gives the information how long the history is saved and
which previous files are still available.

• systems.json This file lists the different systems in the cluster that are monitored
as well as information on how to access them. Using this file the HappyFace mobile

17

4. Smartphone application

application can connect to the cluster and perform rudimentary repairs. This is
explained in more detail in section 4.5.2

• visualizers.json Because the new HappyFace mobile application may not only be
used by administrators looking for specific information for active supervision but
also by the responsible people who want to have an overview over their cluster over
a longer period of time, the visualizer file hosts links to overview plots for the whole
cluster.

• logs.json To more easily find the origin of any error occurring, usually it is helpful
to have a look into the log files. The logs JSON file therefore hold their links.

• meta-meta.json Following the tree-like structure of HappyFace instances explained
in Chapter 4.1, each instance can have many sub-instances. These are stored in the
meta-meta JSON file of the instance.

4.3. Architecture

Using the latest version of ionics provides the opportunity to use the HTML/Typescript
written source code of this application, not only as a smartphone application but also as a
so-called progressive web application. This is basically a website in the design of a smart-
phone application. The advantage compared to the classical HappyFace web instance is a
unified design. It also increases the support for the HappyFace mobile application, since
progressive web apps are supported by chrome books and are very similar to the Universal
Apps for Windows [16].
The application is structured using the model-view-controller architecture. The key idea
of this software architecture is to separate the data and its loading and process algorithms
from its visualization in the user interface. The model part thereby loads and stores the
data and provides functions for its manipulation. The view part is responsible for visual-
ising the data and presenting it to the user. Any input the view receives (e.g. the tap of
a button) is not processed directly by the view, but is sent to the controller of the view.
This part acts as an interface between model and view, it receives interactions with the
view, activates the responsible functions in the model to manipulate the data and then
updates the view according to the result. The controller also listens for external data
changes in the model and updates the model and the view accordingly. The advantage
of such an architecture is that all data is stored in a central place and only needs to be
loaded once [18].
In the HappyFace smartphone application, the different parts of the architecture reside

18

4.3. Architecture

in different files in the source code directory.
The src/data/DataModel.ts file marks the model part of the architecture. It contains
the cumulative data for all views.
The src/pages/ directory contains the different views for the application. Each subdi-
rectory (except modals/) each contain a .html file with the same name as the directory,
which is displayed by the system. They represent the view part of the architecture. Apart
from the .html files the subdirectories each contain a .ts file with the name of the
directory, which act as a controller for their respective view. The controllers load the data
from the DataModel.ts file and react to user input in the views.
To give the controller of each view access to the data, the DataModel.ts file is im-
plemented as an angular service using the @Injectable() decorator. Using angulars
dependency injection (DI), the DataModel service will be included into any view con-
troller, making the data accessible in all views and giving all controllers the ability to
initiate a reload of the data once a user presses a reload button. If any error occurs
while downloading the files, DataModel can also initiate the display of a connection error
modal (described in more detail in Subsection 4.5.4). After downloading all necessary files,
DataModel is also responsible for generating the plot links from the file prefix, the chosen
time and the plot type. Apart from downloading the necessary data on startup and on
reloading, the DataModel service manages the storing and loading of the configurations
from the settings view. To do that, DataModel uses the new ionic storage system, which
can save key-value pairs in a local database, available in mobile applications as well as in
progressive web applications. Furthermore, DataModel is also responsible for managing
the update loop, which uses the built-in setInterval() function from TypeScript to
update the data periodically and start regular status message readouts, in a time interval
chosen by the user in the settings view. Finally, DataModel holds the isCordova()
function, which is able to determine whether the code is executed as a smartphone appli-
cation or a progressive web application. Depending on this determination, various design
and functional changes are applied, because progressive web applications are limited in
multiple ways compared to fully functional smartphone applications (for example by the
available computing power).
In the unlikely case that the HappyFace modules MadAnalyzer and MadBrowser have
failed and the JSON files the HappyFace mobile application depends on were not pro-
duced, the “old” HappyFace acquiring mechanism (which depends on the XML file pro-
duced by the HappyFace web instance) works as a backup. Due to the very module
specific nature of the XML file, it is only displayed using a rebuild of the original Hap-
pyFace interface from the “old” smartphone application (more in Subsection 4.5.3). For

19

4. Smartphone application

this, a new model is implemented, the ClassicalDataModel.ts . It is responsible for
downloading the XML file and parsing it for the use in the HappyFace classical view
(described in Subsection 4.5.3). However, the ClassicalDataModel does not provide the
additional functions of DataModel, such as the automatic update or the voice readout.

4.4. Graphical user interface

The Graphical user interface consists of six full-sized views sorted in tabs. Below the
views, at the bottom of the display, lays the tab bar, which is blue for the tab currently
selected. At the top of the display, above the view, is the so-called “action bar”, a small
white stripe which displays the name of the current view as well as buttons corresponding
to functions for the view.

4.4.1. Monitoring Tab

Figure 4.1.: The monitoring
tab

The first tab, which is selected by default, is called mon-
itoring. The purpose of this tab is to both give an
overview over the current overall status of the moni-
tored instance, and show the detailed reports from all
modules. Therefore the view starts, on the top, with
the so-called status card. This card is a segment which
indicates the current overall status. The status level is
written on top of the card with a background color fit-
ted to the different levels. Currently the possible levels
are Normal (green), Warning (yellow), Critical (orange)
and Error (red). Below the top line, the card contains
an icon which also displays the current status level (a
smiley which gets angrier on higher levels) and the sta-
tus text. This text describes the current status and, if
the status is not normal, says which modules have prob-
lems. If the volume of the smartphone is high enough
and voice readout is activated in the settings, a tap on
the status card will activate the text-to-speech function
of the application, which will then read out the status
text. This function especially comes in handy when the
smartphone application is used to monitor the cluster
on-the-side while the user is performing another task simultaneously. By using the voice

20

4.4. Graphical user interface

readout system, one does not have to look to the screen, but can focus on the other things.
This help can be extended by using the automatic readout, described in Subsection 4.4.7.
Beneath the status card, the history function is implemented as a dropdown list, holding
every time in the past from which the data is still available. Once a new time is selected,
the status card and the modules are updated back to that time.
Underneath the history menu, the different modules are displayed. They are divided up
into several groups according to their individual level of severity, ordered downwards from
the most to the least severe groups. Each group starts with a blue bar above presenting
the name of the group. Each module in each group is placed in a small card stating the
name and a thumbnail image. The thumbnail is a minimized version of the screenshot
MadBrowser took from the overview page of the corresponding monitoring system. This
image can be enlarged for better visibility by clicking on the thumbnail, which opens a
new view containing a bigger version of the image. Below the thumbnail, the name of the
corresponding monitoring system is placed as a link, which redirects to the original page
of the system. Therefore, the user can easily choose whether just to have a quick glance
at the extended image, or open the page in a external browser to directly interact with
the monitoring system.
The action bar of the monitoring tab contains on the left side a gear icon, which opens
the settings view, and on the right side a circular arrow which reloads all the data inside
DataModel and afterwards rebuilds the user interface of the tab.

4.4.2. Analyzer Tab

The second tab from the left of the smartphone application is the analyzer tab. Following
the working path of the modules (as in Section 4.2) this tab is intended to help the user to
analyse and delimit a problem once it has been found in the monitoring tab. To delimit
and hopefully identify the problem, the analyzer tab contains many different tools.
At the top, the view contains the same status card as the monitoring tab which displays
the status level and status text as well as the smiley icon, which changes according to the
status. A tap on the status card will also start the readout of the status text.
Instead of the history dropdown menu below the status card, the dropdown menu in the
analyzer tab contains the various functions to identify the problem:

• Status analysis The first function in the dropdown menu is called “Status Analy-
sis”, visible in Figure 4.2(a). In the status analysis function, for each module from
the monitoring tab, a plot is displayed which shows the stability of the module over
time. This plot can be enlarged by a tap, while a tap on the name opens the cor-

21

4. Smartphone application

responding page in an external browser. The modules are separated into the same
groups as in the monitoring tab to be easy to find.

• Info pathway The second function in the dropdown menu is called “Info Pathway”,
shown in Figure 4.2(b). Again, individually for each module, it shows on which other
modules this module depends. Since many errors in certain modules tend to stop
the output of the module and many modules are interdependent on the output
of others, a single error in the right (or wrong) module can lead to a cascade of
errors in other modules. This function helps to backtrace the origin of errors to the
module it originated in. Also the dependency image can be enlarged by a tap on
the thumbnail.

• Overall info pathway To further identify the origin of the error, especially in
modules which are dependent on a lot of other modules, the dependency plots may
become confusing. They also become laborious once the user wants to backtrace an
error over a lot of stations. To solve these issues, the overall info pathway contains
the complete diagram of the dependencies, so that the path of failed dependencies
can easily be found. An example of the interface is visible in Figure 4.2(c)

• HappyFace classical rating Since this new HappyFace mobile application breaks
with the standard HappyFace design to implement new functions, many administra-
tors may at first find it unfamiliar and confusing. To help those with their transfer
process, a new implementation of the user interface of the old HappyFace mobile
application was inserted in the analyzer tab under the name “HappyFace classical
rating” as shown in Figure 4.2(d). This interface also serves as a backup system
in case the HappyFace modules MadAnalyzer and MadBrowser have failed and no
JSON files where produced, since the old interface does not depend on them. Fur-
ther details on the functions and implementation of HappyFace classical rating can
be found in Section 4.5.3.

• Happy Forecast The last function in the analyzer tab is called Happy Forecast.
This system shows plots from the HappyFace MadAnalyzer module which displays
the response time of various systems in the instance, as shown in Figure 4.2(e). As
it was shown in [19], an increasing response time indicates the beginning of a failure,
therefore these plots can help to predict errors in the future. Additionally, using the
prediction system described in [19], the plots even show a predicted response time for
the future (the blue part of the graph), to indicate possible failures. However these
are assumptions, so there is no guarantee for them to predict the future correctly.

22

4.4. Graphical user interface

The action bar of the analyzer tab contains the name “Happy Monitoring Analyzer” and
a circular arrow button which starts the reload and update process. Since the (re-)loading
of data is centrally in DataModel.ts , a tap on the button will reload all data and rebuild
the complete user interface, not only for this tab.

4.4.3. Controller Tab

Once a problem is identified, the user needs to react and execute repairs. To give him/her
the opportunity to do that without having to start an external program on a computer,
the controller tab provides an entry point for repairs on the system, as one can see in
Figure 4.3(a). The view in the tab is a list containing an entry for every accessible system.
The systems are stated in the list via their names, a short description, and a thumbnail
icon.
Apart from the list, the controller tab holds a circular arrow button in the actionbar,

which initiates a reload in DataModel.ts , therefore reloading the list of available systems,
and an ssh button which will open the ssh modal, an overlay page to connect to any
given instance via ssh and perform more complex repairs. A detailed description of the
ssh modal and its abilities can be found in Subsection 4.5.2.
Once a list entry is tapped on, it opens the controller details page, illustrated for the AGIS
system visible in Figure 4.3(b), on which certain repairs can be executed. The controller
details page therefore lists the name of the system as well showing the associated icon
and a list of buttons to perform simple tasks. Even though these tasks are defined by the
systems.json file and can be easily changed, common tasks are (as displayed in Figure
4.3(b)):

• E-mail This function opens the smartphone default email program to write a new
email to the administrator responsible for this system. Everyone is highly encour-
aged to use this function first, before trying to repair anything.

• Ticket As an alternative to sending an email, one can also open a ticket in the ticket
system by using this button. Depending on the administrator and the system, this
might be answered faster or slower than the email. Again, before trying any repairs,
the user is strongly encouraged to notify the administrators about the problem via
ticket or email, and wait for their response.

• Start This button will send a command to the instance via ssh to start the cor-
responding system if it is not working. For security reasons the user will have to
authenticate with a username and a password.

23

4. Smartphone application

(a) Status Analysis. (b) Info pathway. (c) Overall pathway.

(d)
HappyFace Classical Rating.

(e) HappyFace forecast.

Figure 4.2.: The analyzer tab.

• Restart If the system has failed, the user can send a shutdown and reboot command
via ssh by using this button. This function also requires an authentication with
username and password.

24

4.4. Graphical user interface

(a) The systems list view. (b) The systems detail view.

Figure 4.3.: The controller tab.

Further details on the ssh connection system and its authentication are available in
section 4.5.2.

4.4.4. Visualizer Tab

This tab is not primarily intended to be used for monitoring/repairing purposes of the
individual modules and systems, but for displaying overall information about the moni-
tored instance. This could be diagrams of the Atlas luminosity, plots of the successful
and failed Grid jobs and so on. To do this, the visualizer tab displays the images from
the links stored in visualizers.json selectable via a dropdown menu (shown in Figure
4.4(a)). The action bar for this tab hosts only a circular arrow to initiate a reload in
DataModel.ts and subsequently reprint the images.

4.4.5. Logs Tab

Sometimes the displayed information in the overview pages of the different monitoring
systems might be misleading or wrong because the error had an impact there too. In
that case, it is a good idea to have a direct look into the log files produced by the various
software packages in the instance. These logs are displayed in the logs tab as shown in
Figure 4.4(b).

25

4. Smartphone application

The desired log is selectable via a dropdown menu on top of the view. In the action
bar the logs tab contains a circular arrow to reload the list of the logs. It is important
to note that, due to the fact that some of them are relatively large, the logs are loaded
independently after they are selected, to not jam up the reload process of other tabs.

(a) The visualizer tab. (b) The logs tab.

Figure 4.4.: The visualizer and logs tabs.

4.4.6. Home Tab

The rightmost tab in the tab-bar is called the home tab. The task of this tab is to provide
the widget system to the user.
The widget system is intended to display the most important information from the data
in a compressed and user-defined way, so that the user gets an overview of the instance
that fits precisely to his/her workflow. To do that, the idea of the home tab is to display
small independent views, so-called widgets, which are interchangeable, to fit the work-
flow of the user. Two example widgets are visible in Figure 4.5(a). Each widget displays
certain, well-defined, information to the user and is totally independent of the others to
provide a maximum of stability. The widgets are programmed as independent angular
components in their own .ts files with their own user interfaces in their own .html
files. These files are then loaded using a dynamic loading system during the runtime of
the application and are displayed on the home tab. To modify the widgets, the user has

26

4.4. Graphical user interface

to start the widget modification mode via the tools button in the action bar of the home
tab (shown in Figure 4.5(b)). In this mode, every widget displays a light blue header bar
which states the name of the widget and a cross button which closes it. To add a new
widget, the user can press the floating add button (plus sign) in the bottom left corner,
which will then search for any available widgets in one of the applications widget folders
(src/assets/widgets and src/pages/home/loader/static-widgets) and display a
list of available widgets. These widgets can be selected using check boxes and the OK
button below the list will end the adding mode and display them. Which of the folders is
checked for widgets depends on if the current browser version for progressive web applica-
tions (or the cordova webkit version in the case of the smartphone application) supports
the JavaScript dynamic import statement. In this case the folder src/assets/widgets
is used, otherwise the src/pages/home/loader/static-widgets folder is used. Note
that in case the dynamic import is not supported, the widgets need to be added in
src/pages/home/loader/StaticLoader.ts and the application needs to be recom-
piled for the widget to appear in the new widget list. Further information on how to
write/compile/deploy a widget can be found in Appendix A. All widgets currently devel-
oped, and their behaviour, are described in Subsection 4.5.5.

(a) In normal mode. (b) In modify mode.

Figure 4.5.: The home tab.

27

4. Smartphone application

4.4.7. Settings page

By using the gear button on the monitoring tab the settings page can be opened. The
settings page is displayed as a modal, meaning that if the screen is big enough it is
displayed as a small quadratic overlay window, which can be closed with a Windows-like
cross button in the top right corner. If the screen is not big enough, the modal will take
up the whole screen, but will still be closable via the cross button.
The contents of the settings page are shown in Figure 4.6(a). It is important to note that
this is not always the active layout. If the source code is executed as a progressive web
application inside a browser, the first page of the settings looks as shown in Figure 4.6(c)
and the “normal” settings are shown under “Advanced settings”. The reason for this layout
difference is that, since browsers support tabs that open different webpages at once, users
of the progressive web application may want to open HappyFace monitoring applications
for different instances in different tabs. To support this behaviour, the settings page in a
progressive web application contains, on its first page, the list of available subinstances as
links which open directly in another browser tab and the application settings are moved
to “Advanced settings”. Additionally the web settings page also contains a direct link to
the HappyFace web instance.
As shown in Figure 4.6(a), the settings page contains a list with various entries:

• Choose instance The first entry is a link which opens the instance chooser. This
view is described in great detail in Subsection 4.5.1.

• Automatic fetch The automatic fetch switch controls the automatic reload process
in DataModel.ts . Once activated, the application will reload all data after a
discrete time interval. The time interval is defined by the user in a slider menu just
below the automatic fetch switch (shown in Figure 4.6(b)) which becomes visible
after the switch is set to active. This behaviour is useful when the user wants the
app to monitor the instance while he/she performs another task.

• Enable Text speech The enable text speech switch activates or deactivates the
voice readout initiated by a tap on the status card on the monitoring tab or the
analyzer tab, or by the timed automatic readout. Selecting to deactivate the voice
readout might be preferable for situations, such as during meetings or presentations,
where a unintended tap on the status card should not lead to a disruptive voice
readout.

• Enable automatic voice readout If the voice readout in the previous setting is
enabled, it can be initiated automatically by this setting. Once activated a slider

28

4.4. Graphical user interface

(a) The settings page on a mo-
bile phone.

(b) The settings page on a mo-
bile phone with opened menus.

(c) The settings page in a browser.

Figure 4.6.: The settings page

menu below the switch is visible to set the time interval in which the automatic
reload is executed.

• HappyFace compatible The HappyFace compatible switch selects the http
server, which is used to download the necessary JSON files. If HappyFace com-
patible is disabled, the ionic server, which also provides the progressive web ap-
plications, is used for distributing the JSON file while, if HappyFace compatible is

29

4. Smartphone application

enabled, an apache http server residing on the same machine is used. The reason
for this redundancy is to have a backup system in case one server breaks and to
have, during development, a second system to check for development failures.

• Tour The application tour is a fullscreen overlay which is displayed once the user
starts the application for the first time. Presented as a slide show, the tour explains
the different features of the app and the configurations the user can take and where
to find them. This basic explanation should help the user to orient himself/herself
and to get to know the application. After the user finishes the tour, it will be
deactivated so that the user will not be disturbed with it every time he/she opens
the app. If something is still unclear or the tour is skipped, the tour link in the
settings page will reopen it.

• About For legal reasons, every smartphone application and every webpage needs
to have a declaration on who is responsible for its content. In this application, this
is done in the legal notice reachable with the about link in the settings page. This
legal notice contains all information about the developers, maintainers and legally
responsible people, as well as the data protection statement.

• Contact Even though the application has an impressum containing contact infor-
mation about responsible people for legal purposes, anyone who has technical prob-
lems or questions about the application should use the contact link in the settings
page. It will open the mail client with the email address of the group responsible for
maintaining the application, since they might not be the ones legally responsible.

4.5. Special Functions

Apart from the regular views described in Section 4.4, the application contains some views
and functionality which only appear under certain conditions. These will be described in
this section.

4.5.1. The instance chooser

A key feature of the smartphone application, in comparison to the webpage of HappyFace,
is the ability to easily switch between instances to monitor from inside the application
without having to remember the correct URLs. To realise this is the responsibility of the
instance chooser, which is available under the choose instance link in the settings page.

30

4.5. Special Functions

The instance chooser, as seen in Figure 4.7(a), consists of two large sections, each con-
taining a list of instances to be chosen. The bottom section in Figure 4.7(a), with the
headline “Cloud”, contains all the instances available in the current level. A tap on one of
them will set the selected instance as the current one for the whole application and initiate
a complete reload in DataModel.ts , now from the new instance. The contents of this
list are thereby not hard-coded inside the application, but rather downloaded when the
instance chooser starts from a remote server (the concrete URL is available in Appendix
A). If the user does not tap on the name of the list entry but on the small arrow on the
right side, the subinstances inside this instance are downloaded from the server and this
list will display them. This accommodates to the “tree-like” structure the instances are
supposed to have, as shown in Section 4.1. These subinstances could have subinstances
themselves, marked again by a small arrow on the right side of the list entry which can
be tapped to get another level down. To get back a level, and display the instances one
level above, an arrow to the other side is displayed next to the headline of the list if the
user is not on the top level (shown in Figure 4.7(b)).

(a) The top level. (b) A sub level. (c) Favoring an instance.

Figure 4.7.: The instance chooser.

The top section, with the headline “Favorites” as shown in Figure 4.7(a), is intended
to help users, who mostly want to switch fast between certain instances. Since these
instances could be hidden deeply in the tree structure, changing between these instances
could become a tedious task. Therefore, every instance in the bottom list can be favoured

31

4. Smartphone application

by swiping it to the right. This displays a button with a white star on blue background
(visible in Figure 4.7(c)) and a tap on this button will add the instance to the favourites,
displayed in the favourites list in the top section. The favourites are saved between
startups, so a restart of the app will keep the favourites. To remove one of the favourites,
the red trashcan button can be revealed by swiping it to the right. This button will
remove the instance from the favourites list. Favourites can be selected just as instances
in the bottom list, but will not display their subinstances with an arrow button, since
this behaviour would spoil the intended usage of the favourites list.

4.5.2. The ssh terminal

As already stated in Section 4.4.3, it is important that the user has the ability to react
once an error occurs. To do that, the user most likely needs to have access to the terminal
of the monitored instance to apply possible repairs (change configurations, shift data or
reboot in extreme cases). For this purpose, the controller tab provides a set of buttons
for each system, which can execute functions in the system.
However, occationally the repair is more complex than just the execution of a predefined
function, or needs a command which is not in the list of functions available in the controller
page of the system. For these cases, the ssh terminal was implemented. It is based on
the xterm.js terminal emulation system [20] and displays a Unix-like terminal (visible
in Figure 4.8(a)) to connect via ssh to the server of the instance to perform repairs.
To help administrators who are already experienced in Linux the terminal also supports
colour-coding, but unfortunately it does not yet support bash-history, reverse-i-search or
pseudo-terminals (used for example by multiplexers like tmux).
The ssh terminal is initialised using the SSH button in the action bar of the controller
tab, which loads and activates the terminal emulation. To start the connection, the user
needs to write the command ssh and press enter. Note that this is not the original ssh
command from OpenSSL [21] but simply the name of the service the user intents to start,
therefore it does not take any arguments. Instead the hostname, port, username and
password should be entered using the authentication modal (Figure 4.8(b)) which opens
automatically when ssh is entered. This modal will ask for different connection settings:

• host and port The host and port of the server of the monitored instance. The host
can be a URL or directly an IP-address while the port has to be a number between
1 and 65535. Both of these pieces of information need to be inserted manually, since
they might be too sensitive to be stored in the publicly readable JSON files.

• username The username to connect via ssh to the server. It, as well as the host and

32

4.5. Special Functions

port, will be stored in the applications memory when the switch "save configuration"
is activated.

• password The password for the given username to log in into the server. Since this
information is highly sensitive it is neither stored in the applications memory nor
is it visible while typing. Even though the underlying ssh-connection system would
support it, limitations on the cordova file plugin make it impossible to use keyfiles
instead of passwords to connect (at least for now).

• gateway A tap on the gateway button opens two new fields asking for the gateway
host and the gateway port. These two are set by default and only need changes
once the gateway server is moved to a different location.
This gateway server is a transmitter server, which is necessary because an application
written in HTML and TypeScript/JavaScript does not have direct access to the
TCP Sockets which would be necessary to establish a ssh connection to a remote
server. Instead, the application uses a gateway server, to which it connects by using
a WebSocket (a TCP-Socket-like two-way connection using the http protocol) and
which then itself establishes a ssh connection to the desired target using a TCP
Socket. To protect the sensitive data transmitted over this WebSocket connection,
the application uses the ECDH key exchange protocol to produce a unique session
key and uses it to encrypt the sent data using a 256 bit AES algorithm in its cipher
block chaining mode. The gateway server decrypts the data and sends it to the
target using the ssh connection provided by the Node.js module ssh2 [22] [23] [24].

Once the ssh connection is established, the user input from the terminal emulation is
transmitted via the gateway server to the target and the responses are displayed in the
terminal. The command exit ends the connection and the cross button on the top right
closes the terminal emulation.

4.5.3. The HappyFace classical view

As already stated in Subsection 4.4.2, the new HappyFace smartphone application breaks
with the usual design of the HappyFace web instance and the old HappyFace smartphone
application, which can be an obstacle for any user who is familiar with the old HappyFace
mobile application. To help such users to use the new smartphone application and provide
an easy entry for them, the new HappyFace smartphone application contains a rewrite
of the classical user interface in the analyzer tab under the function name “HappyFace
classical rating”.

33

4. Smartphone application

(a) The terminal emulation (b) The Login modal

Figure 4.8.: The ssh terminal.

The “HappyFace classical rating” is furthermore based on its own DataModel, the Clas-
sicalDataModel, available under src/pages/analyzer/hf-classical/ClassicalData
Model.ts . This DataModel downloads the XML file from the current instance saved in
DataModel.ts , which can be selected via the instance chooser in the settings page, but is
in any other meaning independent of the usual DataModel of the application. Therefore
the “HappyFace classical rating” also serves as a backup system if the MadAnalyzer and
MadBrowser modules in HappyFace fail and no JSON files are produced. Like the old
HappyFace smartphone application, it contains an overview on its first page of all cate-
gories of the HappyFace instance (visible in Figure 4.9(a)). In the categories page, every
category the HappyFace instance contains is displayed in a card with its name and an
icon, which indicates the overall status of the category. The status is saved as a number
in the XML file and is translated into a status using Table 4.1.

status number status icon
1.0 normal
0.5 warning
0.0 critical

else error

Table 4.1.: The status codes and their meanings.

34

4.5. Special Functions

Usually the error status is coded in the XML file with the status number −1.0, but
the application displays the error icon for every status code which is not in the table,
therefore a wrong or missing status code for a category is also noted with the error icon.
A tap on one of the categories opens its module page. This page, visible in Figure 4.9(b),

(a) The categories page. (b) The modules page.

Figure 4.9.: The classical view.

contains all modules of the category in a list, each with its name and an icon showing
its status. The status is again saved as a number in the XML file and again Table 4.1 is
used to set the icon. Once the time elapsed since the download of the XML file reaches
20 minutes, the categories and the modules page will display an overlay stating that the
data is outdated. This overlay prevents further interaction and requires the user to reload
the data using the reload button in the action bar of the analyzer tab.
If the user taps a module, the webpage of this module will be opened either in a new tab (if
the app is a progressive web application displayed in a browser) or using the inAppBrowser
cordova plugin [25] (in the mobile phone application) which produces an overlay with the
webpage displayed. This new implementation no longer displays the parsed table as the
old application did, because the necessary service db_backend is largely disabled.

35

4. Smartphone application

4.5.4. The connection error modal

Figure 4.10.: The
connection error modal.

Due to non-optimal mobile network connection, server connec-
tion issues or bugs in the application it might not be possible
for the DataModel to download the necessary JSON files as
mentioned in Section 4.2. In that case, the user gets notified
of the issue by the connection error modal, as shown in the ex-
ample in Figure 4.10. The connection error modal tries to give
the skilled user the ability to identify and repair the error, if
possible, by providing the current host and ports to which the
application tried to connect to, to download the JSON files.
Mobile port in that case means the port of the ionic server
and web port is the port of the apache server. Switching
between those ports is possible by activating/deactivating the
HappyFace compatible switch in the settings menu. The host
and ports can be changed in the connection error modal be-
fore pressing the “Retry” button to try to download the files
again. In case further information on the errors is needed,
below the ports the files that resulted in errors are listed. These errors are also dis-
played using their http error code. This code is extracted from the status property
of the XMLHttpRequest , therefore an error code of 0 means the application was unable
to connect to the server for some reason, which could not be determined further. If all
corrections where applied and the error has (hopefully) been resolved, the user can choose
below the status code if he/she wants to save the new configuration for the future (it will
be overwritten the next time he/she switches the instances in the instances chooser) and
can then retry to download the JSON files with the “Retry” button in the bottom right.
Alternatively, the user can decide not to reload the files (maybe he/she wants to switch
instances anyway or does not know how to solve the issue) and close the connection error
modal with the cross button in the top right.

4.5.5. Widgets

As stated in Subsection 4.4.6, the home tab provides a widget system to the user, which
enables him/her to modify the user interface based on his/her own workflow and thereby
get a personalised graphical user interface which speeds up the monitoring work. For this
purpose widgets are required, which provide parts of the user interface together with the
underlying logic. While this thesis was written, two widgets where implemented and are

36

4.5. Special Functions

shipped with the application (as well as four search widgets which are necessary for the
search function from Subsection 4.5.6) and are described there in detail). These widgets
are:

• Example Widget Intended as a proof-of-concept, this widget displays the current
status icon in an enlarged form. The example widget is visible in Figure 4.11(a).

• Critical urls widget The critical urls widget is designed to speed up the process
of identifying the modules which have failed. Instead of searching for them in the
monitoring tab or the search function, the critical urls widget will display all failed
modules as well as the current status level. The critical urls widget is visible in
Figure 4.11(b).

(a) The exam-
ple widget.

(b) The critical
urls widget.

Figure 4.11.: The two current widgets.

The widgets do not have direct access to the data stored in DataModel . Therefore, all
widgets extend the BaseWidget class which can provide this access and some additional
functions, for example to display an enlarged image. Furthermore, by extending it, the
new widget needs to provide important information for the loading system, such as the
name to be displayed in the header overlay, the preferred size (which will be rendered
down if the preferred size is bigger than the screen) and its HTML template. A complete
guide on how to write/compile/deploy a widget can be found in the appendix under A.

4.5.6. The search function

If specific information about concrete modules is needed, it might be tedious work to find
all associated plots in the monitoring and analyzer tab. To simplify that, and to display
the information in one central place, the home tab provides a search function.
The search bar of the search function becomes visible when the user tabs on the magnifying
glass button in the action bar of the home tab. If it is visible, a second tap on the
button will make the search bar disappear again. In the search bar the user can enter

37

4. Smartphone application

the name of the module he/she would like to have information about, together with a
statement indicating the kind of information he/she desires (further on called “action”).
It is important that the action is placed in front of the name of the module for the
search system to understand it. Additional words in the search bar are filtered out if they
are contained in a stop word list, which contains the most common words of the English
language, thereby eliminating all unnecessary words ([26]), so that the search function can
also react to human-like questions in addition to simple commands, for example: “What is
the status of Kibana Frontier?”. This is a valid command for the search bar as it contains
the action (“status”) and the name of the module (“Kibana Frontier”). All other words
are ignored as irrelevant. The case of the letters in the command is also ignored, so that
the module name “Kibana Frontier” is equal to the module names “kibana frontier” and
“KIBANA FRONTIER”. To make the search even more intuitive to use, each action name
also has different synonyms to which the search function will react in the same way.
Currently the search function knows four different actions:

• status This action will result in the current status of the named module, so it will
display its latest available browser screenshot.
Its synonyms are: state, situation and condition

• history History is designed to show the output of the module over time, so the his-
tory function will display the browser screenshots from all times which are available
in summary.json.
Its synonyms are: chronic, past, annals and record

• dependency The dependency action will show the dependency plot of the named
module. Thereby it shows the modules on which the named module depends.
Its synonyms are: dependence and depend

• analysis This action will display the plot of the named modules stability over time.
Its synonyms are: graph, time, plot and stability

Since the search function is part of the home tab, the results of searches are displayed
in the form of widgets. Currently each action has its own widget to display its results.
This concept has the advantage that multiple searches can be executed one after another
but the results from all of them are still visible. Also the results are bundled in one widget
of a certain size, meaning that actions with very large results (for example the history
action, which displays all available old status images at once) do not block the whole
screen. The results of searches, therefore, need to be deleted in the widget modification
mode of the home tab, which is available with the tool box button in the action bar.

38

5. Outlook and Conclusion

5.1. Outlook

During the time of development of this application, some ideas emerged for which there
was not enough time to implement. A future extension of this application could therefore
implement them to increase the functionality and usability of the application. These
ideas include a movable and modifiable dependency network in the analyzer tab, which
could provide a better readability of the currently often small and narrow lying network
components. This idea was tried during the development phase with a network generator
called vis.js [27] but was abandoned due to the highly computationally intensive network
building process in vis.js. A future work on the application could potentially find a better
working library for networks or optimise the building process in vis.js.
Furthermore the capabilities of progressive web applications have not been fully used.
While ionic supports them, this application uses its deployment as a progressive web
application solely to display the same interface on the browser. If the current trend from
native to web based smartphone applications continues, the application can focus more
on this deployment method by modifying the interface and functionality to fit its needs.
Finally the application currently does not have a notification system. This system could
automatically check the status in the background and notify the phone user if any changes
occur. However, such a system of background tasks is not ideally implemented in ionic
and would need two custom cordova plugins specifically optimized for this task each for
iOS and Android.

5.2. Conclusion

The HappyFace smartphone application was developed to extend the capabilities of mon-
itoring grid clusters and to simplify its workflow. It allows users to check the status
either of the complete cluster or a single module from wherever they are, requiring only
a smartphone with a mobile network or WLAN connection. It also provides the ability
to perform simple repairs, thereby minimising the instances where a user requires access

39

5. Outlook and Conclusion

to a notebook or desktop computer.
The development of the application had its focus on the WLCG Atlas Tier-2 centre
GoeGrid but is easily extendible for other WLCG centres and Tiers. After finishing the
implementation of the new application, it has been uploaded to the Apple App Store
for iOS and the Google Play Store for Android. From there it is freely available to all
interested users. The source code of the HappyFace smartphone application and its back
end modules for HappyFace have also been submitted to GitHub, a free repository for
open-source code. This will enable developers to extend its functionality in the future in
order to accommodate the ever growing needs of the WLCG.

40

A. List of links

• The complete source code of the HappyFace smartphone application is publicly
available in a GitHub code repository:
https://github.com/HappyFaceGoettingen/HappyFace-MadMask/tree/master/
HappyFaceMobileDevelopment

• When the instance chooser starts, it downloads a specific file which serves as an
entry point and provides the top level entries in the instances list. From then on,
the list of subinstances of a specific instance is saved in the meta-meta.json file
on the server of that instance, but the top level file does not have a server backend.
Therefore, and for the best availability, it is also saved in the GitHub repository of
the application:
https://raw.githubusercontent.com/HappyFaceGoettingen/HappyFace-MadMask/
master/HappyFaceMobile/sites/top.json

• To customize the workflow, the home tab provides a widget system. Using this sys-
tem, it is possible to develop a custom widget and deploy it to the application. A
helpful guide on how to develop/compile/deploy a widget is available in the GitHub
repository:
https://github.com/HappyFaceGoettingen/HappyFace-MadMask/blob/master/
HappyFaceMobileDevelopment/docs/widget-guide/GUIDE.md

41

https://github.com/HappyFaceGoettingen/HappyFace-MadMask/tree/master/HappyFaceMobileDevelopment
https://github.com/HappyFaceGoettingen/HappyFace-MadMask/tree/master/HappyFaceMobileDevelopment
https://raw.githubusercontent.com/HappyFaceGoettingen/HappyFace-MadMask/master/HappyFaceMobile/sites/top.json
https://raw.githubusercontent.com/HappyFaceGoettingen/HappyFace-MadMask/master/HappyFaceMobile/sites/top.json
https://github.com/HappyFaceGoettingen/HappyFace-MadMask/blob/master/HappyFaceMobileDevelopment/docs/widget-guide/GUIDE.md
https://github.com/HappyFaceGoettingen/HappyFace-MadMask/blob/master/HappyFaceMobileDevelopment/docs/widget-guide/GUIDE.md

Bibliography

[1] G. Apollinari, et al., High Luminosity Large Hadron Collider HL-LHC, CERN Yellow
Report (5), 1 (2015), 1705.08830

[2] C. Lefevre, LHC: the guide (English version), Technical report (2009)

[3] The ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron
Collider (2008)

[4] CERN: Education, Communications and Outreach Group, The Grid: A system of
tiers (2012), URL https://cds.cern.ch/record/1997396

[5] C. G. Wehrberger, HappyFace Meta-Monitoring for ATLAS in the Worldwide LHC
Computing Grid, Master’s thesis (2013), II.Physik-UniGö-MSc-2013/07

[6] C. Borrego, et al., Aggregated monitoring and automatic site exclusion of the ATLAS
computing activities: the ATLAS Site Status Board, Technical report (2011)

[7] Atlas Collaboration, Rucio–The next generation of large scale distributed system for
ATLAS Data Management, J. Phys. Conf. Ser. 513(4), 042021 (2014)

[8] T. Maeno, et al., Evolution of the ATLAS PanDA workload management system for
exascale computational science, J. Phys. Conf. Ser.

[9] E. Imamagic, D. Dobrenic, Grid infrastructure monitoring system based on nagios,
in Proceedings of the 2007 workshop on Grid monitoring, pages 23–28, ACM (2007)

[10] M. L. Massie, B. N. Chun, D. E. Culler, The ganglia distributed monitoring system:
design, implementation, and experience, Parallel Computing 30(7), 817 (2004)

[11] V. Buge, et al., Site specific monitoring of multiple information systems: The Hap-
pyFace project, J. Phys. Conf. Ser. 219, 062057 (2010)

[12] F. Kukuck, Creating and Publishing a new Smart Phone Application for the Happy-
Face Meta-Monitoring-Tool, Bachelor’s thesis (2014), II.Physik-UniGö-BSc-2014/09

43

1705.08830
https://cds.cern.ch/record/1997396

Bibliography

[13] T. Berners-Lee, Uniform Resource Locators (URL) A Syntax for the Expression of
Access Information of Objects on the Network (1994), URL https://www.w3.org/
Addressing/URL/url-spec.txt

[14] V. Mauch, et al., The HappyFace project, J. Phys. Conf. Ser. 331, 082011 (2011)

[15] The angular documentation, accessed: 05.07.2018 12:45, URL https://angular.io/
docs

[16] The ionic documentation, accessed: 05.07.2018 12:47, URL https:
//ionicframework.com/docs/

[17] The cordova documentation, accessed: 05.07.2018 12:48, URL https://cordova.
apache.org/docs/en/latest/

[18] J. Deacon, Model-view-controller (mvc) architecture (2009)

[19] E. Magradze, Monitoring and Optimization of ATLAS Tier 2 Center GoeGrid, Ph.D.
thesis, Georg-August University School of Science (2015), DISS 2017 B 9618

[20] Xterm.js, accessed: 05.07.2018 12:50, URL https://xtermjs.org/

[21] OpenSSL, accessed: 05.07.2018 12:52, URL https://www.openssl.org/

[22] SSH2, accessed: 05.07.2018 12:54, URL https://www.npmjs.com/package/ssh2

[23] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, Recommendation for Pair-
Wise Key-Establishment Schemes Using Discrete Logarithm Cryptography, NIST Spe-
cial Publication 800-56A Rev. 3 (2018)

[24] National Institute of Standards and Techonology, Advanced Encryption Standard
(AES), Federal Information Processing Standards Publication (FIPS) 197 (2001)

[25] inAppBrowser cordova plugin, accessed: 05.07.2018 12:58, URL https://www.
npmjs.com/package/cordova-plugin-inappbrowser

[26] English stopword list, accessed: 05.07.2018 13:01, URL https://www.ranks.nl/
stopwords

[27] Vis.js, accessed: 05.07.2018 12:59, URL http://visjs.org/

44

https://www.w3.org/Addressing/URL/url-spec.txt
https://www.w3.org/Addressing/URL/url-spec.txt
https://angular.io/docs
https://angular.io/docs
https://ionicframework.com/docs/
https://ionicframework.com/docs/
https://cordova.apache.org/docs/en/latest/
https://cordova.apache.org/docs/en/latest/
https://xtermjs.org/
https://www.openssl.org/
https://www.npmjs.com/package/ssh2
https://www.npmjs.com/package/cordova-plugin-inappbrowser
https://www.npmjs.com/package/cordova-plugin-inappbrowser
https://www.ranks.nl/stopwords
https://www.ranks.nl/stopwords
http://visjs.org/

Danksagung

Firstly, I would like to express my gratitude to Prof. Dr. Arnulf Quadt for giving me the
chance to write this thesis and for the warm welcome he offered me in his research group.
Also I would like to thank him and Priv.-Doz. Dr. Jörn Große-Knetter for being referees
for this thesis.
I would also like to express my gratitude to Dr. Gen Kawamura for his indispensable
support during the work on my thesis.
Lastly, I am very grateful to my family for their immeasurable motivation and support
during my work.

45

Erklärung nach §13(9) der Prüfungsordnung für den Bachelor-Studiengang Phy-
sik und den Master-Studiengang Physik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig ver-
fasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus veröf-
fentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe.
Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch
nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an
dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 29. Oktober 2018

(Timon Vogt)

	1 Introduction
	2 Background
	2.1 The LHC
	2.2 The Atlas detector
	2.3 Acquiring data
	2.4 The WLCG
	2.5 Monitoring

	3 The HappyFace Project
	3.1 Concepts of HappyFace
	3.2 HappyFace Mobile version 1.0
	3.2.1 The user interface
	3.2.2 The applications background

	4 Smartphone application
	4.1 Motivation for writing a new app
	4.1.1 ionic
	4.1.2 cordova

	4.2 Background Software
	4.3 Architecture
	4.4 Graphical user interface
	4.4.1 Monitoring Tab
	4.4.2 Analyzer Tab
	4.4.3 Controller Tab
	4.4.4 Visualizer Tab
	4.4.5 Logs Tab
	4.4.6 Home Tab
	4.4.7 Settings page

	4.5 Special Functions
	4.5.1 The instance chooser
	4.5.2 The ssh terminal
	4.5.3 The HappyFace classical view
	4.5.4 The connection error modal
	4.5.5 Widgets
	4.5.6 The search function

	5 Outlook and Conclusion
	5.1 Outlook
	5.2 Conclusion

	Appendix A List of links

