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Abstract Prey from the decomposer subsystem may help
sustain predator populations in arable Welds. Adding
organic residues to agricultural systems may therefore
enhance pest control. We investigated whether resource
addition (maize mulch) strengthens aboveground trophic
cascades in winter wheat Welds. Evaluating the Xux of the
maize-borne carbon into the food web after 9 months via
stable isotope analysis allowed diVerentiating between prey
in predator diets originating from the above- and below-
ground subsystems. Furthermore, we recorded aphid popu-
lations in predator-reduced and control plots of no-mulch
and mulch addition treatments. All analyzed soil dwelling
species incorporated maize-borne carbon. In contrast, only
2 out of 13 aboveground predator species incorporated
maize carbon, suggesting that these 2 predators forage on
prey from the above- and belowground systems. Supporting
this conclusion, densities of these two predator species
were increased in the mulch addition Welds. Nitrogen iso-
tope signatures suggested that these generalist predators in
part fed on Collembola thereby beneWting indirectly from
detrital resources. Increased density of these two predator

species was associated by increased aphid control but the
identity of predators responsible for aphid control varied in
space. One of the three wheat Welds studied even lacked
aphid control despite of mulch-mediated increased density
of generalist predators. The results suggest that detrital sub-
sidies quickly enter belowground food webs but only a few
aboveground predator species include prey out of the
decomposer system into their diet. Variation in the identity
of predator species beneWting from detrital resources
between sites suggest that, depending on locality, diVerent
predator species are subsidised by prey out of the decom-
poser system and that these predators contribute to aphid
control. Therefore, by engineering the decomposer subsys-
tem via detrital subsidies, biological control by generalist
predators may be strengthened.

Keywords Food web · Energy subsidy · Pest control · 
Aphids · Stable isotopes

Introduction

Generalist predators, including carabids, staphylinids and
spiders, are among the most important predators in terres-
trial arthropod systems. They eVectively decrease prey pop-
ulations including agricultural pest species (Wise 1993;
Lövei and Sunderland 1996; Symondson et al. 2002). Due
to their catholic feeding, they may lack attributes of the
ideal biological control agent such as prey specialisation.
However, including non-pest prey in their diet may sustain
generalist predator populations in Welds when pest prey is
scarce (Symondson et al. 2002), an important feature lack-
ing in specialists. Periodic feeding by generalist predators
on alternative prey from the detrital subsystem may
strengthen herbivore control through apparent competition
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(Polis 1994; Polis and Strong 1996; Scheu 2001; Bell et al.
2008). Decomposer organisms generally appear to be lim-
ited by the availability of dead organic matter (Hairston
et al. 1960; Hairston 1989; Scheu and Schaefer 1998), and
therefore the detrital food web may be manipulated through
application of allochthonous resources.

There is evidence that fostering the decomposer subsys-
tem through detrital subsidies may increase densities of
generalist predators in rice (Settle et al. 1996) and vegeta-
ble garden systems (Halaj and Wise 2002). However,
increased densities of generalist predators may also
enhance intraguild predation and cannibalism. Both are
common in terrestrial food webs (Polis et al. 1989; 1991)
and have been suggested to dampen biological control
(Snyder and Wise 2001; Lang 2003; Wise 2006). Further,
generalist predators may not switch to pest species if alter-
native prey is in ample supply (Birkhofer et al. 2008).
Especially aphids are of low food quality or even toxic for
generalist predators (Toft 2005; Oelbermann and Scheu
2002), possibly preventing generalist predators from
including these pest species in their diet. For a better under-
standing of the factors aVecting pest suppression, informa-
tion on trophic links and food web structure above- as well
as belowground of arable systems is needed.

The analysis of natural variations in stable isotope ratios
is a promising tool to investigate trophic interrelationships,
especially in food webs where generalist predators domi-
nate (Ponsard and Arditi 2000; Scheu and Falca 2000;
Scheu 2002). The concentration of 15N in consumers
increases at higher trophic levels and this allows determin-
ing the trophic position of species in food webs (DeNiro
and Epstein 1981; Minagawa and Wada 1984; Post 2002).
In contrast to 15N, carbon isotopes are little fractionated in
consumers (Peterson and Fry 1987; Post 2002) and allow
the determining of food resources of consumers. DiVer-
ences in carbon isotope ratios of resources have been used
to trace carbon Xuxes and determine the fractions of diVer-
ent food sources in animal diets (Fry et al. 1978; Martin
et al. 1992; Pollierer et al. 2007). C4 and C3 plants mark-
edly diVer in their 13C/12C ratio and maize (C4 plant) as a
food resource for the decomposer subsystem has been used
before to trace carbon Xuxes into the soil food web of ara-
ble systems (Albers et al. 2006). They found the maize car-
bon to be rapidly incorporated into the decomposer system;
however, further carbon Xuxes into the aboveground sub-
system were not evaluated.

In the present study, we investigated the eVect of detrital
subsidies (maize mulch) on the decomposer subsystem and
its feedbacks on the aboveground generalist predator–
herbivore system in winter wheat. To consider variations in
predator–prey relationships in space three wheat Welds
embedded in diVerent landscapes were investigated. We
hypothesised that (1) an allochthonous resource (maize

mulch) boosts decomposer densities with eVects propagat-
ing into the next growing season; (2) generalist predators
feed on prey from the decomposer subsystem, resulting in
increased predator densities in mulched Welds and as a
consequence, (3) to increased suppression of herbivore
populations.

Materials and methods

Study site

The experiment was conducted between September 2003
and August 2004 in three winter wheat Welds managed by
the Reinshof research farm of the University of Göttingen
(Lower Saxony, Germany). Two of the three investigated
Welds were located near the River Leine at 150 m above sea
level. Field 1 was surrounded by cereal and root crop Welds;
Weld 2 was close to the city of Göttingen, adjacent to a gar-
den colony. At these sites, loamy Xood-plain soils estab-
lished on clayey silt predominate. Field 3 was located in the
north of Göttingen at 320 m above sea level; the soil at this
site was shallow (Rendzina) and formed on shell limestone.
It was surrounded by hedgerows and groves, embedded in a
diverse landscape of a mixture of forests, hedgerows, and
pastures. The mean annual temperature in Göttingen is
8.7°C, and the mean annual precipitation is 645 mm. Mean
temperature was higher than average during both years of
the study, mean rainfall was lower in 2003 and higher in
2004 than average (9.4°C and 550 mm in 2003, 9.1°C and
718 mm in 2004).

Experimental setup and sampling

In each Weld, two randomly chosen areas of 1 ha each
received 15 t (fresh weight) of maize chaV in September
2003. The maize chaV was equally distributed within the
1 ha areas and homogenised with the upper soil layer by
grubbing. Subsequently, all three Welds including the
mulched areas were sown with winter wheat. In May 2004,
experimental treatments were established in a 2 £ 2 £ 2
factorial design with the factors ‘mulch’ (with and without),
‘soil dwelling predators’ (SP, reduced and open control)
and ‘Xying predators’ (FP, reduced and open control) with
two replicates per Weld. To reduce soil dwelling predators,
plastic barriers were installed reaching 10 cm into the soil
and 40 cm above the ground enclosing a circular area of
2 m2. Four ‘live’ pitfall traps (without trapping liquid) situ-
ated at the inner edge of the barriers were established in a
cross design. Pitfalls were cleared daily over a period of
19 days throughout June. All predators, i.e. carabid and
staphylinid beetles, and lycosid spiders, were visually
identiWed, counted and released outside the plots. All other
123



Oecologia (2010) 163:1033–1042 1035
animals were returned to the plots. To reduce Xying aphid
predators and parasitoids, wire cages (mesh size 8 mm)
were set over the plots at the end of June. Cages were
sprayed with non-toxic glue (Soveurode Aerosol, Witasek,
Austria) to capture Xying arthropods.

In each plot, one pot (diameter 25 cm, height 25 cm)
planted with wheat of the same variety as in the Welds was
buried with the edging of the pot at ground level enabling
access by surface-active arthropods. The pots were estab-
lished to test for indirect mulch eVects on aphid population
development via changing predator control; direct eVects
due to mulch-mediated changes in nutrient availability
were excluded by Wlling the pots uniformly with soil from
the respective non-mulch Welds. Aphids were counted visu-
ally on 25 wheat shoots inside and outside the pot at milk
ripening in mid-July.

To determine the densities of soil dwelling arthropods,
including generalist predators and surface active Collem-
bola, plastic barriers as described above were installed in
each of the three Welds in both the mulch and no-mulch
treatments and replicated four times. Four pitfall traps con-
taining an oversaturated saltwater solution were established
in a cross design at the inner edge of the barriers. Placing
pitfall traps inside the fenced plots allowed taking the
catches as density measures as the specimens were caught
from a Wxed area. However, the catches also reXect the
activity of the species caught and more active species there-
fore may be over-represented. The pitfall traps operated for
2 weeks on three dates, respectively (May 26–June 9, June
23–July 7, July 21–August 4). When pitfall traps were not
operating they were closed and the plastic barriers were
lifted 15 cm above ground to enable recolonisation by
arthropods. Additionally, one soil core (diameter 21 cm)
adjacent to each of the plots was taken at the same dates pit-
fall traps were opened. Soil animals were extracted from
the upper 10 cm of the soil cores by heat (Kempson et al.
1963). Invertebrates from the pitfall traps as well as from
the soil cores were determined to genus or species level,
counted, and stored in oversaturated saltwater solution
at ¡10°C until they were processed for stable isotope
analysis.

13C and 15N analysis

Wheat plants from the experimental plots as well as maize
chaV were dried at 60°C for 2 days, ground and dried again
at 60°C for 1 day. Samples of »2.6 mg dry mass were pre-
pared for 13C and 15N analysis. Animals were washed in
distilled water and dried at 60°C for 6 days. Either homoge-
nised animal tissue or whole animals (80–1,660 �g) were
used for stable isotope analysis. In mesofauna species, two
or more specimens were bulked per sample to reach

appropriate sample weight. Samples were kept in a desicca-
tor until mass spectrometer analysis.

Samples were analysed by a coupled system consisting
of an elemental analyser (NA 1500; Carlo Erba, Milan,
Italy) and a gas isotope mass spectrometer (MAT 251;
Finnigan, Bremen, Germany). The system is computer con-
trolled allowing online measurement of 13C and 15N (Reine-
king et al. 1993). As primary standards for the isotope
values of carbon and nitrogen, Pee Dee Belemnite (PDB)
limestone and atmospheric air were used, respectively.
Acetanilide (Merck, Darmstadt, Germany) was used for
internal calibration. Isotope natural ratios were expressed
using the delta notation with �13C or �15N (‰) = (Rsample ¡
Rstandard)/(Rstandard £ 1,000), where Rsample and Rstandard rep-
resent the 13C-to-12C or 15N-to-14N ratio in samples and
standard, respectively. Incorporated maize-borne carbon in
animals tissue (xm) was calculated by a two-source mixing
model with xm (%) = (�am ¡ �aw)/(�pm ¡ �pw) £ 100; �am

and �aw refer to the �13C signature of an animal species in
the plots with and without maize-mulch, respectively, and
�pm and �pw to the �13C signature of the maize-mulch and
the wheat plants, respectively.

Statistical analysis

Data on densities of soil dwelling predator and Collembola
species were analyzed by repeated measures (RM)
ANOVA with the Wxed factors ‘Weld’ (1, 2, 3) and ‘mulch’
(with, without), and the three consecutive sampling dates as
repeated factor. Univariate analyses were performed to
inspect interactions if signiWcant in RM-MANOVA and
because RM-MANOVA is less powerful than the univari-
ate counterpart for small sample size (Cole and Grizzle
1966; Potvin et al. 1990). Within-subject probabilities were
Huynh–Feldt corrected as this adjustment performs well in
terms of type I error and power (Stiger et al. 1998) and is
recommended by Potvin et al. (1990). In case of signiWcant
interactions between one or both of the Wxed factors and
sampling date, two-factor ANOVA was used to analyse the
eVects of ‘Weld’ and/or ‘mulch’ at separate sampling dates.
Where appropriate, Bonferroni-corrected post hoc tests
were performed to identify diVerences between treatments.

Data on aphid densities were analysed by analysis of
variance (ANOVA) with the dependent variable ‘aphids’
(numbers per shoot) and the independent variables ‘pot’
(yes, no), ‘Weld’ (1, 2, 3), ‘mulch’ (with, without), ‘soil
dwelling predators’ (SP, reduced and control) and ‘Xying
predators’ (FP, reduced and control). Data were square root
transformed prior to the analyses.

Data on �15N and �13C signatures were analysed by sin-
gle factor ANOVAs with the independent variable ‘mulch’
using the GLM procedure to account for unequal cell sizes.
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Statistical analyses were performed using Statistica 7.1
(StatSoft, Tulsa, USA).

Results

Soil animals

From soil cores, the following species were extracted: Per-
gamasus sp. Berlese (Mesostigmata); Blaniulus guttulatus
F. (1798), Brachyiulus pusillus Leach (1815), Polydesmus
inconstans Latzel (1884) (Diplopoda); Lithobius microps
Meinert (1868), Necrophloeophagus longicornis Leach
(1858) (Chilopoda); Symphyla; Onychiurus spp. Gervais
(1841) (Collembola); elaterid larvae (Coleoptera); sciarid
larvae and tipulid larvae (Diptera). Densities of all these
taxa were too low for statistical analysis, therefore individ-
uals from the diVerent sampling dates were pooled and used
for stable isotope analysis.

Predators

With the ‘live’ pitfall traps, 728 staphylinids, 376 carabids
and 87 lycosids were removed from the reduced soil-dwell-
ing predator and the reduced Xying- and soil-dwelling pred-
ator treatments during 19 days in June. On average, ratios
between predator numbers removed from mulch and
no-mulch plots were 64:36 for rove beetles, 60:40 for cara-
bid beetles and 31:69 for lycosids.

With the saltwater-Wlled pitfall traps, 1,094 carabids (34
species), 180 carabid larvae, 509 staphylinids (12 genera)
and 353 staphylinid larvae (5 subfamilies) were captured.
As staphylinids were aVected by sampling date, Weld and
mulch (RM-ANOVA; F4,36 = 3.34, P = 0.019 for date £
Weld £ mulch) and carabids by sampling date and Weld
(RM-ANOVA; F4,36 = 11.09, P < 0.001 for date £ Weld),
RM-ANOVAs were calculated for the most abundant
staphylinid and carabid species.

In staphylinids densities of Philonthus spp. (mainly P.
fuscipennis) were signiWcantly higher in the mulch treat-
ment in Weld 1 at all three sampling dates (RM-ANOVA;
F2,18 = 7.20, P = 0.005 for Weld £ mulch; Fig. 1a). Densi-
ties of Oxytelus inustus were signiWcantly higher in the
mulch treatment in Welds 2 and 3 at the Wrst sampling date
and in the mulch treatment in Weld 3 at the second sampling
date (RM-ANOVA; F2,36 = 5.47, P = 0.008 for date £
mulch; Fig. 1b). Densities of staphylinid larvae were sig-
niWcantly increased in the mulch treatment in each of the
Welds at the second sampling date (RM-ANOVA; F4,36 = 7.36,
P < 0.001 for date £ Weld; Fig. 1c).

In carabids, densities of Trechus quadristriatus were sig-
niWcantly higher in the mulch treatments in all Welds at the
Wrst and second sampling date (RM-ANOVA; F4,36 = 2.73,
P = 0.044 for date £ Weld £ mulch; Fig. 1d); at the third
sampling date, densities were still signiWcantly higher in the
mulch treatment but only in Weld 2. Densities of Notiophi-
lus biguttatus, Notiophilus palustris, Loricera pilicornis
(Carabidae) and Stenus sp. (Staphylinidae) were pooled as

Fig. 1 Mean population densi-
ties [(numbers + 1) § SE per 
2 m2; note log-scale] of soil sur-
face-dwelling generalist preda-
tors (a–f) and epigeic 
Collembola captured by pitfall 
traps (g–i) in no-mulch (open 
circle with lines) and mulch 
(Wlled circle with lines) treat-
ments in the three diVerent Welds 
at three consecutive sampling 
dates (June 9, July 7, August 4). 
SigniWcant diVerences between 
means of no-mulch and mulch 
treatments are marked by 
asterisks (*P < 0.05, 
**P < 0. 01, ***P < 0.001; 
one-way ANOVAs following 
RM-ANOVAs, see text for 
details)
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‘Collembola feeders’ (Weinreich 1968; Thiele 1977).
These were enhanced signiWcantly in the mulch treatment
in Weld 3 (RM-ANOVA; F2,36 = 3.61, P = 0.037 for
date £ mulch; Fig 1e). Abundances of carabid larvae were
signiWcantly higher in mulch plots in all three Welds at the
Wrst sampling date (RM-ANOVA; F4,36 = 2.69, P = 0.046
for date £ Weld; Fig. 1f).

Collembola

With pitfall traps, 29,447 Lepidocyrtus cyaneus, 25,011
Isotoma viridis and 2,516 Entomobrya lanuginosa were
captured in all three Welds during the three consecutive
trapping periods. The abundance of L. cyaneus was lower
in mulch plots in Weld 2 at the Wrst, second and third sam-
pling date (RM-ANOVA; F2,36 = 6.32, P = 0.004 for
date £ mulch); however, only the latter was signiWcant
(Fig. 1g). Abundances of I. viridis were signiWcantly higher
in mulch plots in Weld 1 at the Wrst sampling date but sig-
niWcantly lower in mulch plots in Weld 2 at the second and
third sampling dates (RM-ANOVA; F4,36 = 4.89, P = 0.003
for date £ Weld £ mulch; Fig. 1h). Abundances of E. lanu-
ginosa were signiWcantly higher in Weld 1 but lower in Weld
2 at the Wrst sampling date (RM-ANOVA; F4,36 = 7.86,
P < 0.001 for date £ Weld; Fig. 1i).

13C and 15N analysis

The �15N signatures of the 13 soil-dwelling species cap-
tured by heat extraction spanned over two trophic levels in
the mulch treatment (Fig. 2). The Wrst trophic level
comprised decomposers such as the diplopods P. incon-
stans, B. pusillus and B. guttulatus, as well as the Collembola

Onychiurus spp. and sciarid larvae. �15N signatures of
decomposers formed a continuum from 1.0 to 3.1‰. The
carabid species T. quadristriatus was also placed in the
decomposer trophic level, with similar �15N signatures to
the diplopod B. guttulatus. The upper trophic level con-
sisted of predators such as the centipedes L. microps and
N. longicornis and the gamasid mite Pergamasus sp., the
Symphyla and the carabid O. inustus. Also, �15N signatures
of elaterid larvae were similar to those of predators. In con-
trast, the sampled elaterid larvae in the no-mulch treatment
had a �15N signature of only 2.9 ‰.

The incorporated maize-borne carbon ranged between
15% in the Symphyla and 65% in the diplopod B. pusillus
(Fig. 2). The range of percentages of incorporated maize-
borne carbon in decomposer species (20–65%) was similar
to that in predator species (15–56%).

The �15N signatures of soil surface species captured by
pitfall traps spanned over 6.7 and 7.2 ‰ in the mulch and
no-mulch treatment, respectively (Fig. 3). Assuming
enrichment in 15N of about 3‰ per trophic level (Minagawa
and Wada 1984; Post 2002), the 18 species studied in the
no-mulch and the mulch treatments spanned over three
trophic levels. In the no-mulch treatment, the two Collem-
bola species E. lanuginosa and I. viridis had similar �15N
signatures to the carabids T. quadristriatus and Bembi-
dion obtusum. In the mulch treatment, �15N signatures of
the Collembola E. lanuginosa and I. viridis were 1.1‰
(F1,3 = 4.82, P = 0.11) and 1.4‰ (F1,4 = 9.03, P = 0.040)
lower compared to the no-mulch treatment, thereby build-
ing a distinct group with L. cyaneus between the two
aphid species and the predators. Generally, �15N signa-
tures of predators were similar in mulch and no-mulch
treatments.

Fig. 2 Mean �15N values and 
fraction of maize-borne carbon 
in the body tissue (% of total, 
black pie) of soil dwelling taxa 
captured by heat extraction 
which incorporated maize 
carbon (means with SD given 
below taxon name). The lower 
dashed line represents the �15N 
value of maize, the upper dashed 
line the assumed threshold of the 
second trophic level
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Only 2 of the 18 species of the pitfall catches signiW-
cantly diVered in their �13C signatures between the mulch
and the no-mulch treatments. The body of the carabid T.
quadristriatus (F1,4 = 26.08, P = 0.0070) and the staphyli-
nid O. inustus (F1,4 = 33.00, P = 0.0046) contained 50 and
49% of maize-borne carbon, respectively. Interestingly,
only these two species were found in both the pitfall traps
and the soil cores.

Aphids

The dominant aphid species in all three Welds was Sitobion
avenae, representing 91.1% of total aphid numbers, fol-
lowed by Rhopalosiphum padi (6.3%) and Metopolophium
dirhodum (2.6%). Aphid infestations averaged 19.8 indi-
viduals per shoot, being markedly above the threshold level
of economic damage (5 aphids per shoot; Giller et al.
1995). Aphid numbers on wheat plants growing in the pots
and wheat plants growing in the Weld did not diVer, nor
were there any signiWcant interactions between the factor
‘pot’ and any of the other factors; the factor ‘pot’ therefore
was eliminated from the statistical model (Table 1).

Total aphid numbers diVered signiWcantly between the
three Welds, with 6- and 22-fold higher aphid numbers in
Weld 1 compared to Weld 2 and Weld 3 (Table 1, Fig. 4a).
However, predator eVects diVered signiWcantly between
Welds. In Weld 1, aphid numbers were only decreased in
plots with both soil-dwelling and Xying predators (¡34%).
In Weld 3, soil-dwelling and Xying predators signiWcantly
decreased aphid numbers by 80 and 85%, respectively,
whereas in Weld 2 there were no eVects on aphid popula-
tions in any of the predator treatments. Further, the eVect of
soil-dwelling and Xying predators diVered signiWcantly
between the mulch and the no-mulch treatments, with the
reduction in aphid numbers being restricted to the mulch
plots (Table 1, Fig. 4b). In these plots, presence of each

soil-dwelling and Xying predators decreased aphid numbers
with the eVect being most pronounced in the combined
treatment (¡54%).

Discussion

Soil food web—maize-borne carbon incorporation

About 9 months after the application of the maize chaV,
maize-borne carbon could be detected in all taxa of the
sampled soil fauna, indicating ubiquitous utilisation of the
mulch material. The percentages of incorporated maize

Fig. 3 Mean �15N values and 
SD of soil surface dwelling spe-
cies captured by pitfall traps in 
the no-mulch (a) and mulch (b) 
treatments
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Table 1 ANOVA table of F values for the eVect of Weld (1, 2, 3),
mulch (yes/no), soil dwelling predators (SP; reduced, control) and Xy-
ing predators (FP; reduced, control) on numbers of aphids per shoot in
mid July

SigniWcant eVects are marked in bold (dferror = 72)

Factor df F value P value

Field 2 371.00 <0.0001

Mulch 1 11.63 0.0011

SP 1 5.36 0.0234

FP 1 14.40 0.0003

Field £ mulch 2 27.42 <0.0001

Field £ SP 2 0.20 0.8161

Mulch £ SP 1 7.87 0.0065

Field £ FP 2 7.67 0.0009

Mulch £ FP 1 0.80 0.3751

SP £ FP 1 2.18 0.1445

Field £ mulch £ SP 2 2.12 0.1272

Field £ mulch £ FP 2 2.28 0.1094

Field £ SP £ FP 2 3.32 0.0418

Mulch £ SP £ FP 1 8.99 0.0037

Field £ mulch £ SP £ FP 2 0.59 0.5600
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carbon in soil fauna species varied between 15 and 65%,
and diVered between predators and decomposers. In
decomposers, the maize-borne carbon contributed on aver-
age 43% to animal tissue carbon, whereas predators on
average contained 34% maize-borne carbon. This diVer-
ence in incorporation of maize carbon between trophic
groups is similar to that found previously (Albers et al.
2006), and presumably reXects the time lag in carbon incor-
poration in higher trophic levels.

Assuming a trophic level shift in �15N signatures of 3‰
(Minagawa and Wada 1984; Post 2002), the soil food web
consisted of three trophic levels. Soil food webs in agricul-
tural Welds investigated by Moore (1994) varied between
2.3 and 4.2 trophic levels, and Albers et al. (2006) also
found three trophic levels in their agricultural soil food
web. The �15N signatures of the species analysed formed a
gradient rather than discrete trophic levels. However, the
�15N signatures of the predators spanned only 1.5 �15N
units and did not diVer between large and small predators,
suggesting that predator species consisted of a single tro-
phic level with little evidence for intraguild predation and
cannibalism. In contrast, �15N signatures of decomposers
spanned 4.5 �15N units, suggesting that decomposers con-
sist of two trophic levels, i.e. primary and secondary
decomposers as indicated earlier (Scheu and Falca 2000;
Albers et al. 2006).

Combining the �15N and �13C signatures may allow
identiWcation of trophic links. With similar contents of
maize carbon and about 2.5 �15N units higher than the Col-
lembola Onychiurus spp., Symphyla, L. microps and Per-
gamasus sp. presumably fed on this species; similarly,
Albers et al. (2006) assumed Symphyla and Gamasina to
prey on Onychiurus spp. As the �15N signature of elaterid
larvae was similar to that of the predatory mite Pergamasus
sp. and the centipede N. longicornis, they presumably live
as predators; recent studies suggest that this is widespread
in elaterid larvae (Traugott et al. 2007). Interestingly, �15N
signatures of the diplopod B. guttulatus exceeded those of

the other two diplopod species, being similar to the �15N
values of the centipede L. microps. As suggested previ-
ously, B. guttulatus presumably at least partly lives on an
animal diet, e.g. by feeding on carcasses (HoVman and
Payne 1969).

Aboveground food web—maize-borne carbon 
incorporation

Only two of the sampled species in our study, the carabid
T. quadristriatus and the staphylinid O. inustus, were abun-
dant below- and aboveground as indicated by trapped indi-
viduals in both the soil cores and the pitfall traps.
Interestingly, only these 2 species incorporated maize-
borne carbon, whereas in none of the other 16 species stud-
ied, including 13 predators and 3 Collembola species, could
maize-borne carbon be detected. This suggests that most
predators but also major decomposer taxa such as Collem-
bola did not beneWt from increased supply of litter
resources. C4 plants, such as maize, represent low quality
food for herbivores and detritivores due to low nitrogen and
high Wbre content (Caswell and Reed 1976; Boutton et al.
1978; Ehleringer et al. 2001). Omnivory is probably the
prevailing feeding strategy in Collembola (Filser 2002);
depending on the resources available they ingest bacteria,
fungi, algae, plant litter, or other soil animals, such as pro-
tozoa, nematodes, rotifers, and enchytraeids (Parkinson
1988; Scheu 2002; Chahartaghi et al. 2005). Potentially, the
three epigeic Collembola predominantly fed on algae; at
least, they were not linked trophically to the maize carbon
pool.

Consistent with the fact that maize-borne carbon did not
enter the majority of species of the aboveground food web,
the maize mulch aVected their �15N signatures only a little.
However, �15N signatures of the two Collembola species,
I. viridis and E. lanuginosa, decreased in the mulch plots,
thereby placing them between the two aphid herbivores
and the predators. Presumably, the Collembola species

Fig. 4 Aphid populations (given as aphid numbers per shoot) as
aVected by Xying (FP) and soil dwelling predators (SP) in the three
diVerent Welds (a) and in the no-mulch and mulch treatments (b);

0 = SP+SF removal, FP = SP removal, SP = FP removal, FP/SP =
control without predator removal. Error bars indicate SE, signiWcant
diVerences between means are marked (*P < 0.05, ***P < 0.001)
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increased feeding on more basal food sources, potentially
algae with low �15N signatures. Some predator taxa showed
similar decreases in their �15N signatures, but not signiW-
cantly; still, this suggests that these predators mainly feed
on Collembola. Further, �15N signatures of all predator spe-
cies in both the no-mulch (except for the Tachyporinae lar-
vae) and the mulch treatments more than 3‰ higher than
those of the two aphid species is consistent with a mixed
diet consisting of Collembola and aphids. Including Col-
lembola and aphids in mixed diets improves development,
survival and egg production of generalist predators (Toft
1995; Borg and Toft 1999; Bilde et al. 2000; Oelbermann
and Scheu 2002), and complementary predation on aphids
and Collembola was previously shown in a Weld experiment
in winter wheat (von Berg et al. 2009).

EVects of mulch on predator densities and feedbacks on 
aphid suppression

Of the 34 carabid beetle species identiWed, only 1 species
(T. quadristriatus) was signiWcantly increased in density in
the mulch treatment. Furthermore, out of the 12 sampled
staphylinid genera, the density of only 2 species (P. fusci-
pennis and O. inustus) were signiWcantly increased in the
mulch treatment. Except P. fuscipennis, these species incor-
porated maize-borne carbon, suggesting that they in fact
beneWted from the maize resource, presumably through
feeding on decomposer prey, most importantly Collembola.
Additionally, the densities of carabid and staphylinid lar-
vae, and ‘Collembola feeders’, were increased in the mulch
treatment. However, the eVect of mulch on these taxa as
well as on the staphylinid P. fuscipennis likely was indirect
rather than through predation on decomposer prey as no
maize-borne carbon was detected in these taxa. Thomas
et al. (2002) suggested that mobile species are able to
respond rapidly to changing environmental conditions and
food availability, and diVerent soil textures likely inXuence
oviposition, larval development and survival. Furthermore,
enhanced prey availability triggers predator aggregation
(Niemela et al. 1986; Kielty et al. 1996; Bohan et al. 2000),
and our mulch application presumably increased prey spe-
cies, as maize carbon was used as additional resource by
decomposer soil invertebrates. Therefore, enhanced densi-
ties in larvae of staphylinid and carabid beetles in our
mulch treatment indicate that these taxa had been attracted
to these sites and may have contributed to the observed
reduction in aphid populations. Addition of mulch may
therefore also enhance the control of pest species by attract-
ing predators; once attracted, they may contribute to pest
control without beneWting from prey out of the decomposer
system. In fact, generalist predators in arable Welds such as
carabid beetles are highly mobile and shift habitats from
one generation to the next (Thomas et al. 1998).

Despite the apparently minor eVect of maize mulch on
predator densities, aphid numbers were signiWcantly
reduced by generalist predators in the mulch treatment.
Reducing aphid numbers may have been due to generalist
predators climbing the plants and also by feeding on aphids
dislocated by rain onto the soil surface (von Berg et al.
2009). As only a  few predator species were aVected by
maize mulch, control of aphid populations were likely due
to these predators, i.e. P. fuscipennis, O. inustus and
T. quadristriatus, as well as to carabid and staphylinid larvae.
Interestingly, eVects of maize mulch on densities of these
predators diVered signiWcantly between Welds. Moreover,
only in two (Weld 1 and 3) out of the three investigated
Welds, aphid populations were signiWcantly decreased by
generalist predators. Lack of aphid control in Weld 2 may
have been due to less pronounced colonisation of this Weld
by P. fuscipennis from adjacent Welds as Weld 2 was closer
to the city of Göttingen with fewer Welds in its surroundings
as compared to Welds 1 and 3.

By combining the data of Weld-speciWc eVects of mulch
on predator densities and predator eVects on aphid popula-
tions, single predator species can be identiWed as most
eVective control agents. With signiWcant predator eVects on
aphid populations in mulch plots in Weld 1 and simulta-
neously increased densities of the staphylinid P. fuscipennis
exclusively in mulch plots in this Weld, this species most
likely contributed to the signiWcant aphid suppression in
this Weld. Using molecular gut content analyses, P. fusci-
pennis is known to consume aphids at high rates (K. von
Berg, unpublished data). Furthermore, this species may
eVectively control aphid populations as indicated in previ-
ous Weld studies (Sopp and Wratten 1986; Dennis and
Wratten 1991). In the other Weld (Weld 3) where soil dwell-
ing predators eVectively suppressed aphid populations in
mulch plots (¡80%), densities of P. fuscipennis were negli-
gible. In this Weld, densities of T. quadristriatus and O. inu-
stus likely contributed to aphid control, as their densities
were signiWcantly increased in the mulch plots. T. quadri-
striatus preys on aphids (Sunderland et al. 1987; Mundy
et al. 2000), and O. inustus, a species which is very com-
mon in agricultural Welds (Krooss and Schaefer 1998;
Markgraf and Basedow 2002), is carnivorous (Eghtedar
1970). Interestingly, densities of these two species were
also increased in Weld 2; however, no eVects on aphid popu-
lations were observed. Failure in aphid suppression has
been recorded in some Weld studies (Holland et al. 1996;
Holland and Thomas 1997; Collins et al. 2002). Generally,
aphid control is assumed to be most eVective early in the
season (Edwards et al. 1979; Chiverton 1986) and densities
of T. quadristriatus in Weld 2 were most increased at the
second and third sampling dates when aphid populations
may have escaped predator control. The eVect of carabid
and staphylinid larvae is diYcult to predict as they were not
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determined to species level and likely constitute of a num-
ber of species. Several carabid and staphylinid larvae have
been documented to prey on aphids (Sunderland et al.
1987; Dennis et al. 1991; Kollat-Palenga and Basedow
2000; Kyneb and Toft 2004) and, therefore, the increased
density of these larvae likely contributed to aphid suppres-
sion in our study.

Conclusions

The present study demonstrated the incorporation of detri-
tal food resources (maize chaV) into an agricultural soil
food web. Certain predator species of the aboveground sys-
tem incorporated maize-borne carbon via prey out of the
decomposer system thereby signiWcantly increasing in den-
sity in the mulch treatment. EVects of the added detritus
propagated via generalist predators into the herbivore sys-
tem, as predators signiWcantly decreased aphid populations
in mulch Welds. Predator and herbivore densities as well as
eVects of mulch addition varied strongly between Welds
emphasising the necessity to investigate multitrophic inter-
actions in a landscape context. Further, the results suggest
that single generalist predator species can signiWcantly con-
tribute to herbivore suppression in agricultural systems, and
these eVects may be fostered by residue management prac-
tices. Knowledge on the factors driving the population
dynamics of these species therefore allows development of
management practices which improve conservation biolog-
ical control.
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