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The problem of highly nonlinear photoemission from a metal surface is considered using analytical and
numerical approaches. Descriptions are found which cover both the weak-field and the strong-field regimes and
the transition between them. The results of a time-dependent perturbation theory are in very good agreement
with those from more numerically involved schemes, including a variational version of the Floquet method and
a Crank-Nicolson-like numerical scheme. The implemented Crank-Nicolson variant uses transparent boundary
conditions and an incident plane-wave state in the metal. Both numerical approaches give very similar results
for weak and intermediate fields, while in the strong-field regime the Crank-Nicolson scheme is more effective
than the Floquet method. We find an enhancement in the effective nonlinearity in the weak-field regime, which
is caused by surface scattering of the final state. The presented theory also covers angular emission probabilities
as a function of light intensity and explains an increase toward forward emission with growing field strength.
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I. INTRODUCTION

The study of atoms exposed to optical fields that greatly
exceed the electronic binding fields has become increasingly
important in the past two decades. With the availability
of intense, ultrashort laser pulses, this has resulted in a
rapid progress of strong-field atomic physics and led to a
multitude of technological advances, for example, in the
area of attosecond physics.1 High-harmonic generation and
photoelectron emission are two of the principal phenomena
carrying signatures of strong-field interactions of light with
bound electrons. While these effects are mostly studied in
the gas phase, the interest in extending strong-field physics to
surfaces and nanostructures is continually growing.

In terms of high harmonic generation, the solid state offers
various promising alternatives, either in the form of plasma
generation at surfaces2 or, more recently, by using optical-field
enhancements in nanostructures.3 In the case of photoelectron
emission from surfaces, some works study effects beyond
threshold multiphoton photoemission,4–10 although both opti-
cal damage and space-charge effects complicate observations.
Single metallic nanotips have proven useful to study localized,
nonlinear photoemission in a very controlled manner,11–15 in
part because they offer the possibility to tailor, enhance, and
confine optical fields. The process of localized nonlinear pho-
toelectron emission at nanostructures is attracting considerable
interest, due to its relevance for high-brilliance, pulsed electron
sources. Recent studies have illustrated the possibility to
observe above-threshold and strong-field photoemission at
such tips.15,16 Despite this experimental progress in strong-
field photoemission from nanostructures and surfaces, a
unified description of the underlying mechanisms and the
transition from the perturbative to the strong-field regimes
is still missing. Because of the predominance of gas phase
studies, the majority of theoretical works treat strong-field
ionization from electrons bound to single-atom potentials.

Early theoretical works are mostly concerned with the con-
ventional (i.e., linear) photoemission process.17–19 One of the
first physically motivated multiphoton considerations is found
in Ref. 20, where a generalization of the Fowler-DuBridge

theory21 is presented. This generalization assumes that the
photoemission is a linear combination of partial currents,
each following a power-law dependence on the incident light
intensity,22 a result known from perturbation theory. A first
nonperturbative treatment is carried out by Keldysh23 in the
context of atomic ionization, further developed in Refs. 24 and
25 and extended to the case of metals in Ref. 26. In principle,
the Keldysh approach applies to cases where the photon energy
is much lower than the electron binding energy and, therefore,
requires the minimum number of absorbed photons to be large.
Yet, the approach often produces accurate results also for
relatively small absorbed photon numbers.27 The large photon
number condition was overcome by Reiss in Ref. 28, where
generalized Bessel functions initially proposed in Ref. 29
are applied in the context of electron-positron pair creation.
Recently, other approaches based on a Floquet analysis30–32

and a direct numerical integration of the Schrödinger equation
were presented.33–37

Here, we present a comprehensive theoretical treatment
of weak-field (perturbative) and strong-field (tunneling) pho-
toemission from surfaces and the transition between the two
regimes, including several key aspects that differ from their
gas phase counterparts. This includes surface effects, such as
electron reflection and backscattering, as well as the use of
delocalized initial states. Several theoretical methods which
require varying degrees of analytical and numerical effort are
examined, and their results are compared.

In the physical model considered, electrons are treated as
free independent particles in the conduction band, and electron
excitation takes place in the vicinity of the metal surface.38–40

The induced time-dependent electric potential is taken in the
dipole approximation and in the length gauge. The length
gauge is known to be well suited for the description of above-
threshold ionization in a perturbation-theory framework. In
particular, for a short-range potential this was previously
justified by comparisons with a numerical solution of the
time-dependent Schrödinger equation48 and with experimental
findings.49 We will see in Sec. IV that in the strong-field limit
the length-gauge calculation reproduces the known static-field
tunneling result. The manuscript is structured as follows.
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Section II presents a time-dependent perturbation theory
considering dipole transitions between initial plane-wave
states in the solid and linear combinations of final Volkov
states.41 Here, we employ a modified strong-field approxi-
mation which takes into account electron reflection from the
surface via a Green’s function, which is constructed following
an approach from Ref. 42. The Green’s function describes the
propagation of an electron in a time-periodic optical field. It
is represented as an infinite sum over equally spaced energies
(sidebands separated by the photon energy) and allows for a
natural interpretation in terms of multiphoton absorption of
different orders.

The total photoemission current and the angular distribution
of the emitted electrons for a three-dimensional planar metal
surface are analyzed in Sec. III. Section IV contains a
derivation of the strong-field limit for oscillatory fields. In
Sec. V, a variational approach based on the Floquet method
is discussed, which matches wave functions at the interface
between the solid and the vacuum.

An explicit integration of the Schrödinger equation in the
Crank-Nicolson scheme is covered in Sec. VI for pulsed
excitation. The special feature here is the use of transparent
boundary conditions44,45 that permit us to treat photoemission
from delocalized initial conduction band states.

In Sec. VII, the numerical results and analysis of
the developed approximations are presented and discussed.
Section VIII concludes the paper. The three appendices provide
details of the formulations: Appendix A gives insight into
the Green’s function calculation; Appendix B covers the
details of the integration of a rapidly oscillating function;
Appendix C provides the formulas of the variational approach
in a form suitable for numerical evaluation. Atomic units are
used throughout the paper unless indicated otherwise.

II. TIME-DEPENDENT PERTURBATION THEORY

First, consider photoelectron emission from metals by a
light field with a single carrier frequency, characterized by the
electric field F (t) = F cos ωt . The electric field is taken to be
perpendicular to the metal surface and parallel to the z axis,
aiming toward the vacuum region. We assume that electrons in
the metal move freely, with an effective mass being identical
to the rest mass in vacuum. The metal is characterized by the
surface potential U = −(EF + W ) with the Fermi energy EF

and the work function W . The surface interaction between
the electron and the metal as well as the interaction with
the electric field outside the metal, in the length gauge, are
given by

V = −
{

zeF (t), z � 0

EF + W, z < 0,
(1)

where e = −1 for the electron. Presently, we do not consider
the field penetration into the metal and the image potential,46 so
we neglect the Schottky effect (barrier reduction). The dipole
approximation is justified because the distances essential for
the photoemission process47 are much smaller than typical
optical wavelengths.

We begin our consideration of the photoemission process
within a one-dimensional model. The relation to a three-
dimensional treatment including experimentally observable

quantities is discussed in Sec. III. The initial unperturbed state
in the absence of the driving field is described by the wave
function

ψ0(z,t) = exp(−iEt)

⎧⎨
⎩

exp(ikz)+R0 exp(−ikz), z < 0

2ik
ik−α

exp(−αz), z � 0,

(2)

where k denotes the initial momentum of the electron, E =
(1/2)k2 + U is the energy of the initial state, α = √−2E

denotes the decay length of the state in the vacuum region,
and R0 is the reflection amplitude. To calculate the emission
probability in the presence of the time-periodic external field
F (t) one must solve the time-dependent Schrödinger equation

i
∂ψ

∂t
=

(
− 1

2

∂2

∂z2
+ V

)
ψ. (3)

The eigenstates of Eq. (3) at positive z are known as Volkov
states.41 The Volkov state for a time-periodic potential is
characterized by a quasienergy (Floquet eigenenergy), which
is the sum of a drift kinetic energy and ponderomotive energy
shift (electron quiver energy). The latter has a simple physical
interpretation: when an electron is ejected in the presence
of an intense optical field, the field accelerates the electron.
If the interaction occurs continuously over several optical
cycles, the electron undergoes oscillations. The ponderomotive
energy shift is defined as the averaged energy over the electron
oscillations.

In the length gauge, the Volkov states ψV
p with drift

momentum p are given by

ψV
p = exp

{
i[p + pcl(t)]z − i

2

∫ t

0
[p + pcl(τ )]2dτ

}
. (4)

The classical momentum pcl of the electron oscillation in the
electric field is given by

pcl(t) = eF

ω
sin ωt. (5)

The lower limit of the integral in Eq. (4) introduces a constant
phase factor and can therefore be chosen arbitrarily.

A. Analytical expression for time-periodic Green’s function

In order to solve Eq. (3), we employ the Green’s function
approach. First, we introduce the time-periodic Green’s func-
tion as a solution of the equation(

i
∂

∂t
+ 1

2

∂2

∂z2
− V

)
G(z,t ; z′,t ′) = δ(z − z′)δp(t − t ′), (6)

where δp(t) denotes the periodic array of delta functions with
the singularities at tm = mT , m ∈ Z, and T is the period of
the field oscillations. Note that the required time-periodic,
outgoing Green’s function can be obtained within the strong-
field approximation (SFA)23–25,28 as described in Ref. 42.
Finally, the Green’s function can be represented as the infinite
sum over sidebands (see Appendix A):

GSFA(z,t ; z′,t ′) =
∑
n∈Z

1

ipnT
exp[i�n(t,t ′)]

× exp[ipn|s(z,t) − s(z′,t ′)|], (7)
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in terms of the classical trajectory

s(z,t) = z − zcl(t), zcl(t) =
∫ t

0
pcl(τ )dτ (8)

of the electron in the electric field F (t) and the time-dependent
phase:

�n(t,t ′) = zpcl(t) − z′pcl(t
′) − 1

2

∫ t

t ′

[
p2

n + p2
cl(τ )

]
dτ. (9)

Note that a similar phase expression was also considered in
Ref. 43, Eq. (2.10), in the context of a zero-range potential.
To take into account photoemission as well as below-threshold
excitation of electrons and emission of photons, we sum over
positive and negative integers n. The drift momentum pn

(Re pn �0) is determined by the quasienergy condition

1
2p2

n + Up = E + nω, (10)

where Up denotes the ponderomotive energy:

Up = 1

2

〈
p2

cl

〉 = e2F 2

4ω2
. (11)

Two comments regarding the strong-field approximation can
be made now: first, GSFA in Eq. (7) is an exact solution
of Eq. (6) at positive z. Secondly, although this Green’s
function satisfies the outgoing-wave boundary condition at
minus infinity, the approximation neglects the influence of the
potential well, which is especially important in the weak-field
regime.

In order to develop a more general quantitative theory em-
bracing both tunneling and perturbative regimes, we propose
the following analytic approximation for the time-periodic
Green’s function:

G(z,t ; z′,t ′) =
∑
n∈Z

1

ipnT
exp[i�n(t,t ′)]

× exp(ipns>
)ψ (−)

pn
(s

<
), (12)

where s
>

and s
<

denote maximum and minimum values of
s(z,t) and s(z′,t ′), respectively. The function ψ (−)

pn
(s) is a

linear combination of plane waves (the minus superscript in-
dicates that this function controls the left boundary condition)
given by

ψ (−)
pn

(s) = exp(−ipns) + R(1)
n R(2)

n exp(ipns), (13)

with

R(1)
n = −kn − pn

kn + pn

, R(2)
n = J0

(
2pneF

ω2

)
, (14)

and the momentum

kn =
√

p2
n + 2(Up − U ), (15)

where U = −(EF + W ) denotes the potential step at the
surface. J0(x) is a Bessel function of zeroth order. Figure 1
shows a schematic of the Green’s function containing outgoing
and surface-reflected waves from a perturbation at s ′. The
most notable aspect of this Green’s function is the reflection
coefficient R(1)

n R(2)
n , which contains two components: R(1)

n

plays the role of an elastic reflection amplitude in analogy
with the one for a step-down potential, with momenta pn and

vacuummetal

Ωi+ipse

= 0)t(s

′s′s < s ′s > s

E

Ωie
)

ipse(2)R(1)R+ips−e

FIG. 1. (Color online) Sketch of the plane-wave components of
the Green’s function (perturbation at s ′), taking into account a finite
reflection amplitude at the metal-vacuum interface.

kn on the upper and lower potential levels, respectively; R(2)
n

represents the influence of the oscillatory field on the reflection,
giving the amplitude of an elastic flip-flop transition.50–52

The reflection coefficients with (solid green) and without
(dashed red) R(2)

n are shown in Fig. 2 for different field
strengths as a function of momentum pn, comparing them
with a more involved (and slower) computation of field-
dependent reflection coefficients in a Floquet method (dotted
blue). Interestingly, the inclusion of R(2)

n gives a drastic
improvement over the more simplified picture with only R(1)

n

and deviates from the numerical approach only at very high
fields [Fig. 2(d)], where reflection is suppressed in any case.

Three observations regarding Eq. (13) can be made. First,
in the limit of the zero field, this approximation is compatible
with the outgoing boundary condition in the metal (minus
infinity). Second, while we approximately satisfy the boundary
condition at minus infinity, we still have an exact solution of
Eq. (6) at positive z. Thirdly, the proposed approximation goes
beyond the strong-field approximation, because it incorporates
the effect of a potential well. As we will show later,

-1.0

-0.5

0.0

0.0 0.5 1.0 1.5
-1.0

-0.5

0.0

0.0 0.5 1.0 1.5 2.0

 num. appr.

 R
(1)

R
(2)

 R
(1)

F = 30 V/nmF = 10 V/nm

F = 3 V/nm

(a)

F = 0.2 V/nm

(d)(c)

(b)

re
fl

ec
ti

on
 c

oe
ff

ic
ie

nt

p
n

FIG. 2. (Color online) The reflection coefficients as functions of
momentum pn from analytical [dashed red: R(1) only; solid green:
R(1)R(2)] and numerical (dotted blue) computations for different
field strengths (a) F = 0.2 V/nm, (b) 3 V/nm, (c) 10 V/nm, and
(d) 30 V/nm.
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this approximation yields good quantitative agreement with
numerical results of a direct integration of the Schrödinger
equation.

B. Formula for photoemission probability

Having constructed the Green’s function, we can now
calculate the solution of Eq. (3) from the integral representation

ψ(z,t) = ψ0(z,t)

+
∫ T

0

∫ ∞

0
G(z,t ; z′,t ′)VF (z′,t ′)ψ0(z′,t ′)dz′dt ′, (16)

where VF (z,t) = −zeF cos ωt . The momentum-dependent
transmission probability w(k) through a time-dependent trian-
gular barrier is defined as the ratio of transmitted and incident
current densities. After some algebra we obtain the following
expression from Eq. (16):

w(k) =
∑

n�N(k)

1

kpn

∣∣∣∣ 1

T

∫ T

0

〈
ψmV

pn
(z,t)

∣∣VF

∣∣ψ0(z,t)
〉
dt

∣∣∣∣
2

, (17)

where

ψmV∗
pn

(z,t) = ψ (−)
pn

[s(z,t)]e−i�n(t,0), (18)

and we sum over all open channels. N (k) denotes the minimum
number of photons necessary for the photoemission process,
according to Eq. (10). The functions ψ0, �n, and ψ (−)

pn
(s) in

Eq. (17) are given by Eqs. (2), (9), and (13), respectively. We
employ the 〈 · · · 〉 notation to represent the integration over the
spatial variable z ∈ [0,∞). In an analogy with above-threshold
ionization in atoms,53–56 each term of the sum in Eq. (17) can
be interpreted as an n-photon contribution:

w(k) =
∑

n�N(k)

wn(k). (19)

The terms with n larger than N (k) correspond to above-
threshold photoemission channels. Furthermore, we have to
sum over all occupied states of electrons in the metal, which
leads to the total current emitted by a unit surface.

Equation (17) corresponds to the transition probability in a
strong-field approximation,23,28 except for the replacement of
the final states for each n-photon transition amplitude. Instead
of final Volkov states, we use the mixed Volkov states ψmV

pn
,

which are superpositions of waves with opposite momenta.
These final states take into account the major contribution of
rescattering on the potential well, which is especially important
in the weak-field regime. Using the following properties of the
initial states and the Volkov states,

VF ψV∗
pn

(z,t) =
{

− i
∂

∂t
− 1

2
[pn + pcl(t)]

2

}
ψV∗

pn
(z,t), (20)

i
∂

∂t
ψ0 = Eψ0, (21)

we can evaluate the matrix element in Eq. (17). Equation (20)
follows from the time-dependent Schrödinger equation for
Volkov wave functions, and Eq. (21) follows from the
assumption of a stationary initial state. After some algebra, we
obtain the following final formula for the emission probability:

wn(k) = k

α2 + k2

1

pn

∣∣In(pn) + R(1)
n R(2)

n In(−pn)
∣∣2

, (22)

where we introduced the integral

In(p) = 1

2π

∫ 2π

0

(
iα + p + eF

ω
sin q

)
exp[iS(q)]dq, (23)

S(q) = nq − peF

ω2
cos q − e2F 2

8ω3
sin 2q. (24)

Equations (22) and (23) present the main result of this
subsection. These formulas describe the simple picture of the
photoemission process as consisting of two actions: first, the
electron absorbs n photons and becomes free; the electron then
scatters elastically on the potential well. This physical picture
is supplemented by a very simple way to evaluate the integrals
(see Appendix B).

III. TOTAL CURRENT DENSITY AND ANGULAR
DISTRIBUTION OF EMITTED ELECTRONS

In the previous section, we derived expressions for the
emission probability in the one-dimensional case. A number
of experimentally observable quantities, such as the angular
distribution of emitted electrons, require a three-dimensional
treatment. Considering the translational symmetry parallel to
the surface and the associated conservation of the parallel
momenta kx,ky of the initial momentum 	k = (kx,ky,kz), the
results of the one-dimensional treatment also apply to a
three-dimensional planar surface. For the corresponding three-
dimensional expressions, the one-dimensional momentum k in
Eq. (22) merely has to be replaced by the projection kz related
to the motion perpendicular to the surface.

Next, we employ the formula for the current incident on the
metal surface of the unit area:57,58

J0 = g

∫
d3k

(2π )3

kz

eβ[(k2
x+k2

y+k2
z )/2−EF ] + 1

. (25)

Here, g = 2 is the spin multiplicity of the electron, β denotes
the inverse thermal energy, and d3k is the three-dimensional
volume element in momentum space. The exponential in the
integrand in Eq. (25) originates from the equilibrium Fermi-
Dirac distribution.

By multiplication with the probability wn(kz) of the n-
photon process found in Sec. II B, an expression for the
n-photon contribution of the total current emitted by a unit
surface is obtained:

J = 2
∫

d3k

(2π )3

∑
n�N(kz)

kzwn(kz)

eβ[(k2
x+k2

y+k2
z )/2−EF ] + 1

.

(26)

Since kx , ky are conserved quantum numbers we may write

kx = pn tan θ cos ϕ, ky = pn tan θ sin ϕ , (27)

where pn denotes the vector projection of the final momentum
on the z axis and θ and ϕ are the polar and azimuthal angles
of the final momentum, associated with a spherical coordinate
system. Combining Eqs. (26) and (27) and using the formula

dkxdky = p2
n

cos3 θ
d�, (28)
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we obtain for the angular distribution of the total current

dJ

d�
= 2

(2π )3

1

cos3 θ

∫ ∞

0

∑
n�N(kz)

p2
nkzwn(kz)dkz

eβ[(k2
z +p2

n tan2 θ)/2−EF ] + 1
.

(29)

The angular distribution does not depend on the azimuthal
angle ϕ because of the cylindrical symmetry of the problem.
The total current emitted by a unit surface can be calculated
by integration over the solid angle �. The integration yields

J =
∫ ∞

0

∑
n�N(kz)

kzwn(kz)F (kz)dkz, (30)

where F (kz) is the momentum distribution of free electrons
projected on the z axis:

F (kz) = 2

(2π )2

1

β
ln

[
1 + eβ(EF −k2

z /2)
]
. (31)

Similar expressions can also be obtained by using material-
specific band structures and density of states. Furthermore,
note that in an analogy with the generalized Fowler-DuBridge
theory each term of the sum in Eq. (30) can be interpreted as
a partial current.22 In the low-temperature limit, we may write
Eq. (29) as

lim
β→∞

dJ

d�
= 1

(2π )3

1

cos3 θ

∫ kmax(θ)

0

∑
n�N(kz)

p2
nkzwn(kz)dkz,

(32)

where the final momentum pn is defined by Eq. (10), and
the upper limit of the integration in Eq. (32) is given by the
condition

1
2k2

max(θ ) = EF − (nω − W − Up) sin2 θ. (33)

The upper integration limit in Eq. (32) follows from the expo-
nential term in Eq. (29). Physically, the quantity kmax(θ ) is the
angle-dependent perpendicular component of the momentum
at the Fermi energy. Thus, it gives the maximum perpendicular
momentum at any emission angle. Since the expression in
brackets in Eq. (33) is positive for open channels, kmax(θ )
decreases with an increasing emission angle. Equations (29),
(30), and (32) are the main results of this subsection.

IV. TUNNELING APPROXIMATION

In this section we use the perturbation theory to derive
simplified expressions in the strong-field limit. It will be
shown that in this regime the well-known tunneling formula is
obtained.

For the photoemission process, the integral over phase in
Eq. (23) contains a rapidly oscillating function exp[iS(q)],
where S(q) is the coordinate-independent part of the classical
action, given by Eq. (24). This fact allows us to employ the
saddle-point method,27,59 which is known to work very well
for sufficiently strong fields. First, we exclude n from Eq. (24)
by using Eq. (10) and then introduce the effective frequency
of the oscillations as

S ′(q) = 1

2ω

(
p + eF

ω
sin q

)2

+ α2

2ω
. (34)

The positions of the saddle points are given by the equa-
tion S ′(q) = 0, which yields for the points in the upper complex
half plane

sin q = ω

eF
(iα − p). (35)

This equation has many solutions, but only one of them,
the point approaching the maximum of the electric force
eF cos(q) at p = 0, contributes to integral (23) at sufficiently
strong fields. According to the general theory of adiabatic
transitions,60 this point can be interpreted as an “instant of
emission.”

For the second derivative we obtain

S ′′(q) = iαF

ω2
cos q. (36)

Now the integral, defined by Eq. (23), can be approximately
calculated by the formula

In(p) = iα

π

[
2πi

S ′′(q)

]1/2

exp[iS(q)], (37)

where q is a suitable solution of Eq. (35). Combining Eq. (37)
and the definition of w(k) from Eq. (22), one obtains the
expression for the total probability:

w(k) = 2ω

π

αk

α2 + k2

∫ ∞

0

1

|F cos q| exp[−2Im S(q)]dp, (38)

where the summation over n absorbed photons is carried out
using

∑
n�N(k)

υ(pn) = 1

ω

∫ ∞

0
pυ(p)dp. (39)

Since q defined by Eq. (35) is a function of p, the integrand
in Eq. (38) can be treated as a momentum distribution of the
ejected electrons in the strong-field regime. An evaluation of
Eq. (38) yields the total emission probability from a single
energy level in the metal.

To obtain the tunneling approximation we propose the
following analytic approximation for the imaginary part of
the classical action S(q):

Im S(q) = α3

3F

[
1 − 1

10

(
ωα

eF

)2]/√
1 −

(
ωp

eF

)2

. (40)

Using a Taylor expansion over the field variable, it can be
seen that in the strong-field limit, this expression correctly
reproduces the explicit imaginary part of Eq. (24) up to F−3.

We substitute Eq. (40) in Eq. (38) and introduce the variable
of integration q0 by the substitution

p = −eF

ω
sin q0. (41)

The physical motivation for this substitution follows from the
connection of the drift momentum p with the phase of emission
q0 in an electric field eF cos q. The right-hand side of Eq. (41)
then gives the drift momentum for zero initial velocity. Since
q0 ∈ [ 1

2π,π ] is a real variable, the substitution introduces also
a maximum kinetic energy, which is the classical cutoff energy
2Up.71–73
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Finally, we obtain the leading contribution to the total
probability:

w(k) = 1

π

2αk

α2 + k2

∫ π

π/2
exp

(
− 2α3

3|F cos q0|
)

dq0. (42)

The exponential term in the integrand coincides with the
known expression for the Wentzel-Kramers-Brillouin (WKB)
approximation of the tunneling probability through a static
triangular barrier:61

w(k) = 4αk

α2 + k2
exp

(
− 2α3

3F

)
. (43)

Thus, we have shown that the approach developed in Sec. II
is consistent with the general idea that, for very high fields,
the photoemission process can be described by a plain cycle
averaging of the tunneling probability for stationary fields
(the Fowler-Nordheim formula). Note however that a cycle
averaging of Eq. (43) gives two times bigger values than
Eq. (42). This discrepancy most likely arises from the fact
that Eq. (43) was derived in Ref. 61 in a weak-field limit and
tends to overestimate the explicit result at strong fields (see
Fig. 3). Instead, our tunneling approximation was obtained for
sufficiently strong laser fields. The total probability in Eq. (42)
does not exceed 0.5 because the ejection of the electrons is
possible only when the electric force eF cos q is positive.

In order to obtain the total current J emitted by a unit
surface, we have to sum over all occupied electronic states in
the metal, according to Sec. III. The leading contribution of
the integration is given by

J = 1

16π2

√
EF

W

F 2

W + EF

exp

(
− 4

√
2W 3/2

3F

)
, (44)

where EF denotes the Fermi energy and W is the work function
of the metal. Equation (44) is similar to the known Fowler-
Nordheim formula for the emission current density in the static
electric field F .61,62 Equations (38) and (42) are the main
results of this subsection.

FIG. 3. (Color online) Tunneling probability for a triangular
barrier as a function of the static electric field: exact result (cyan
line), WKB approximation (red dashed line), and Crank-Nicolson
scheme (triangles). Work function and Fermi energy are 5.5 and
4.5 eV, respectively.

V. VARIATIONAL FORMULATION OF
FLOQUET METHOD

The method of matching wave functions at an interface
joining two media with differing properties is widely used in
quantum theory. Recently, this method was discussed within
the context of a photoemission process.30 Here, we present the
variational version of this approach.

In order to employ the variational method for Eq. (3),
we first introduce a trial solution satisfying the appropriate
radiation conditions for this problem. For later convenience,
we omit the phase factor exp(−iEt), where E is the energy of
the initial state [cf. Eq. (2)]. The trial solution for negative z is
given by

ψ (−)(z,t) = exp(ikz) +
Nmax∑

n=−Nmax

Rn exp(−iknz − inωt). (45)

The wave internally reflected from the surface contains both
an elastic reflection and a superposition of waves with energies
changed by integer multiples of the photon energy. The corre-
sponding momenta of the reflected plane-wave components are
given by kn = √

k2 + 2nω with initial momentum k, Rn denote
the reflection amplitudes, and n is the number of absorbed
photons. The minus superscript on ψ (−) indicates that the trial
function solves Eq. (3) at negative z. For positive z, the trial
function ψ (+) is given by the following linear combination of
Volkov solutions:

ψ (+)(z,t) =
Nmax∑

n=−Nmax

Tn exp

[
i

(
pn + eF

ω
sin ωt

)
z

]

× exp

(
ipneF

ω2
cos ωt + ie2F 2

8ω3
sin 2ωt − inωt

)
, (46)

where pn are the momenta of the transmitted modes, given
by Eq. (10), and Tn are the transmission amplitudes. Next, we
introduce the functional

I =
∫ T

0
[ψ (+)(0,t) − ψ (−)(0,t)]2dt

+ s

∫ T

0

[
∂ψ (+)

∂z
(0,t) − ∂ψ (−)

∂z
(0,t)

]2

dt, (47)

where the parameter s = k−2 in front of the second integral
was introduced from dimensional considerations. The quantity
I is then a function of Rn and Tn. The matching conditions,
requiring both the wave function and its first derivative to
be continuous at z = 0, are obtained by minimizing I with
respect to each of these parameters. Selecting a sufficiently
large number Nmax, we obtain an approximation very close
to the exact matching conditions. Minimizing the functional
yields the following system of linear equations:

Nmax∑
m=−Nmax

(
As

nmTm + Bs
nmRm

) = −B−s
n0 ,

(48)
Nmax∑

m=−Nmax

[(
Bs

mn

)∗
Tm + Ds

nmRm

] = −D−s
n0 .
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Formulas for the matrix elements As
nm, Bs

nm, and Ds
nm are given

explicitly in Appendix C. Equations (48) allow us to determine
the transmission amplitudes Tn and to subsequently calculate
the photoemission probability as

w(k) =
∑

n�N(k)

wn(k), wn(k) = pn

k
|Tn|2, (49)

where wn(k) describes the n-photon contribution.
Note that, although our approach is also based on the

matching condition and is therefore similar to the procedure
implemented in Ref. 30, there is an important difference: we
use the variational method rather than a Fourier expansion
for time-periodic functions. According to the variational
theorem, our approach guarantees the best approximation of
the matching conditions for a given number Nmax.

Finally, the results of the Floquet approach also serve as
a good approximation not only to continuous-wave excitation
but also to time-varying or pulsed fields, as long as the optical
frequency is much bigger than the bandwidth of the driving
field. We will see in Sec. VII that the Floquet computations
for a continuous-wave excitation are in quite good agreement
with the results for 10-cycle pulses obtained within the Crank-
Nicolson method [compare Figs. 4 and 7(b)].

VI. MODIFIED CRANK-NICOLSON SCHEME

Strictly speaking, the Floquet method is only applicable
to continuous wave, i.e., time-periodic, fields. Nevertheless,
it can be extended to consider pulses within the applicability
of a slowly varying envelope approximation. For even shorter
pulses, e.g., in the few-cycle range and to describe carrier-
envelope effects, a direct integration of the Schrödinger
equation is desirable. The Crank-Nicolson method is one
numerical scheme for the integration of the Schrödinger
equation and has been used for nonlinear photoemission from
localized initial states.63 Here, we present an extension of the
numerical scheme, taking into account the delocalized nature
of initial states, which has important consequences for the
photoemission yield in the strong-field regime.

In the numerical implementation we will solve Eq. (3) for
a bounded spatial domain [a,b]. A weak formulation of this
problem is obtained by multiplying Eq. (3) with a so-called
test function ϕ(z) ∈ L2[a,b] and integrating by parts:∫ b

a

ϕ

(
i
∂ψ

∂t
− V ψ

)
dz − 1

2

∫ b

a

∂ϕ

∂z

∂ψ

∂z
dz + 1

2
ϕ

∂ψ

∂z

∣∣∣∣
b

a

= 0,

(50)

where ψ(z,t) is the solution of the time-dependent Schrödinger
equation with the potential V = VW + VF [Eq. (1)]. VW

denotes the potential well and VF = −zeF (t)η(z) is the
induced time-dependent potential with the Heaviside function
η(z). We now focus on the derivation of a fully discrete
approximation to Eq. (50). For this reason, we introduce
the uniform time discretization ψ (m)(z) = ψ(z,t (m)), where
t (m) = m� t , m ∈ N with time step size � t . We use the
implicit midpoint rule for the time derivative.

To treat the boundaries, transparent boundary conditions
are imposed.44,45 These boundary conditions are nonlocal in
time and can formally be written in terms of a fractional time

derivative, which is explicitly given in Ref. 44. However, it is
more important for us that these boundary conditions can be
written in the temporally discrete form

∂ψ (m)

∂z
= ∂ψ̃

(m)
0

∂z

±2g

m∑
k=1

βm−k exp{ i[V (k) − V (m)]}[ψ (k) − ψ̃
(k)
0

]
, (51)

where plus and minus correspond to the right and left
boundaries, respectively. The coefficients βm−k are given
explicitly in Ref. 45:

β2n = (2n)!

(2nn!)2
, β2n+1 = −β2n. (52)

The V (m) are given by

V (m) = VW t (m) + V (m)
F , V (m)

F =
m∑

k=1

V
(k)
F �t, (53)

where V
(k)
F is the temporally discrete representation of the

induced potential VF . Note that V (m) and V (m)
F in Eqs. (53) are

still functions of the spatial variable z. The “dressed” initial
state is given by ψ̃

(m)
0 (z) = exp[−iV (m)

F ]ψ (m)
0 (z), where ψ

(m)
0 (z)

is the temporally discrete representation of the initial state
given by Eq. (2). The constant g is defined as

g = − 1√�t
exp

(
− iπ

4

)
. (54)

Substituting the spatial derivative ψ (m)
z from Eq. (51) in

Eq. (50), we obtain the weak formulation in the presence of
the boundary conditions. To obtain a fully discrete formulation
of our problem, we follow the Petrov-Galerkin method64 and
employ the expansion

ψ (m)(z) =
N∑

j=1

c
(m)
j ϕj (z), (55)

where ϕj (z) denote the basis functions, which are chosen
as cubic B-splines with compact support. The elements c

(m)
j

are the fully discrete approximations to the exact solution of
Eq. (3). Finally, the fully discrete approximation to Eq. (50) is
written as

(I − H(m+1))c(m+1) = (I + H(m))c(m) + b(m) + b(m+1), (56)

where the column vector c(m) is defined by the elements c
(m)
j .

The square matrix H(m) in Eq. (56) is described by

H
(m)
ij = 1

2

∫ b

a

dϕi

dz

dϕj

dz
dz +

∫ b

a

ϕiV
(m)(z)ϕjdz

− gϕiϕj

∣∣∣∣
z=a

− gϕiϕj

∣∣∣∣
z=b

, (57)

and the overlap matrix I originating from nonorthogonal basis
functions is given by

Iij = 2i

�t

∫ b

a

ϕiϕjdz. (58)
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Note that the difference between the presented numerical
scheme and the Crank-Nicolson scheme from Ref. 65 origi-
nates from the column vectors b(m) on the right side of Eq. (56).
These vectors are defined by the elements

b
(m)
j = −1

2
ϕj

(
∂ψ (m)

∂z
∓ 2gψ (m)

)∣∣∣∣
b

a

, (59)

where the spatial derivative should be taken from Eq. (51).
The time iteration is performed in two steps. First, we

evaluate the right part of Eq. (56). This is simply a matrix vector
multiplication and a sum with the vectors b(m) and b(m+1),
which includes boundary effects. The second step requires
solving a linear system of equations involving the matrix
Hamiltonian H(m) with the time-dependent potential given by
Eq. (1). This is the main computational difficulty. Inasmuch
as the spatial discretization based on B-splines yields banded
matrices with bands close to the main diagonal, this difficulty
can be efficiently solved by direct methods.66 For instance, the
numerical procedure used here is based on a factorization into
lower and upper triangular sparse matrices (LU factorization
routine).

Although the approach involves computational difficulties,
it has been proven that this scheme is unconditionally stable.67

Thus, it can be successfully used for the determination of
important physical properties related to photoemission by
ultrashort laser pulses from an initially delocalized state, given
by Eq. (2).

A good reference check for the numerical accuracy of the
developed Crank-Nicolson variant is obtained by calculating
the emission probability for a static electric field. Figure 3
shows the tunneling current through a static barrier as a
function of applied field strength. Except for very strong fields,
the WKB approximation given by Eq. (43), and an exact
solution based on Airy functions [see, for instance Eq. (20)
in Ref. 68] give very similar results for a wide range of
field values. Truncation errors (from the double precision used
numerically) are only encountered at emission probabilities
below 10−15 (not shown).

VII. NUMERICAL RESULTS AND DISCUSSION

A. Yield dependence of different models

In order to assess the developed methodology, we compare
the results derived in the different approaches.

In Fig. 4, we present the results for surface photoemission
derived obtained with our Crank-Nicolson calculations (solid
green), perturbation theory (dotted orange), and the Floquet
method (dot-dashed and dashed blue). The excitation wave
length was chosen as 800 nm, corresponding to a photon
energy of h̄ω = 1.55 eV. The Fermi energy and the work
function were taken to be 4.5 and 5.5 eV, respectively.
Similar to the case of multiphoton ionization of atoms by an
intense light field, the photoemission from metals is usually
characterized by the Keldysh parameter γ =√

W/2Up.26,69

Figure 4 illustrates the transition between the perturbative
(γ >1) and the tunneling regimes (γ <1). For the transition
region (γ ≈ 1), one finds F ≈ 18 V/nm. This transition from
multiphoton to tunneling emission was observed experimen-
tally on metal nanotips by Bormann et al.15 The oscillatory

FIG. 4. (Color online) Emission probability, defined as the ratio
of (time-averaged) outgoing and incoming current densities, as a
function of the peak electric field of the incident light: results of
continuous-wave Crank-Nicolson computations with the delocalized
initial-state (solid green) and perturbative approach [Eq. (22)] (dotted
orange). Results of the variational approach showing the contributions
from four-photon (dashed blue) and five-photon (dot-dashed blue)
absorption. Work function and initial-state energy (Fermi energy) are
5.5 and 4.5 eV, respectively.

structure in Fig. 4 can be explained by channel closing effects
of different multiphoton orders,28 close to fields where p = 0
in Eq. (10). The emission probabilities computed within the
Crank-Nicolson and perturbative approaches show rather good
agreement, except for a small deviation at the closing of the
lowest-order channel (n = 4).

The two lowest individual channel contributions derived
from the variational approach based on matching conditions
(Floquet method) are shown as blue lines in Fig. 4. The
predominant contribution in the weak-field regime stems from
four-photon absorption, consistent with the work function and
photon energy used. Also, this approach gives very good
agreement with the other two methods. However, it should
be noted that the Floquet method becomes less stable at
larger field strengths, so its recommended use is primarily
in the weak- and intermediate-field regimes, where it yields
excellent results. We conclude that all three approaches are
generally very accurate for continuous-wave excitation. Using
a slowly varying envelope approximation, the results for the
Floquet method and the perturbation theory can be extended to
pulsed excitation in a straightforward way,15 while the Crank-
Nicolson approach is of course valid for all time-varying fields.

B. Surface current: Crank-Nicolson approach

To obtain some additional insight, we use the adapted
Crank-Nicolson scheme to calculate the time-resolved current
through a metal surface illuminated by a continuous wave,
shown in Fig. 5. As shown in Fig. 5(b), the maximum of
the surface current is found at ωt ≈ π/2 in the weak-field
regime (γ >1); i.e., the driving field and surface current are
out of phase. The maximum surface current is approximately
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FIG. 5. (Color online) (a) Normalized time-resolved surface
current as a function of both the peak electric field and temporal
coordinate. Dashed line indicates electric force. Work function and
Fermi energy are 5.5 and 4.5 eV, respectively. Lower panel: exemplary
curves for Keldysh parameters (b) γ = 6, (c) γ = 3.6, (d) γ = 0.6,
and (e) γ = 0.3.

10−2kF , while the averaged emission current, as seen in Fig. 4,
is only about 10−8kF . This indicates that the vast majority of
electrons transiently excited near the surface are not emitted.
This situation changes dramatically with increasing field
strength [cf. Fig. 5(e)]. Here, the instantaneous surface current
becomes rapidly oscillating, except for ωt ≈ π . Thus, the
major contribution to the time-averaged current is generated
in phase with the driving force. Also, the maximum emission
current and the corresponding averaged current in Fig. 4 are
of the same order of magnitude. The time-dependence of the
emission current and its relative phase to the driving force
should be relevant for the application and interpretation of
nonlinear photoemission in the detection of carrier envelope
phases.63,70 Figure 5(a) provides a more complete illustration
of the transition between the weak-field and strong-field
regimes, in which also the channel closings are apparent as
weak horizontal features.
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FIG. 6. (Color online) Magnitude of [(a), (b)] wave function
|ψ(z,t)| and [(c), (d)] current density as a function of time and space.
Dashed lines indicate electric force for reference. Solid white lines
show corresponding classical trajectories. Parameters: W = 5.5 eV
and EF = 4.5 eV.

In order to study the photocurrent in more detail, we
plot the space and time dependence of the absolute value
of the computed wave function |ψ(z,t)| in Figs. 6(a) and
6(b) and the instantaneous current density in Figs. 6(c)
and 6(d). Here, the time axis covers two optical cycles,
and the spatial domain shows the vacuum region with the
metal surface at z = 0. Figures 6(a) and 6(b) can be formally
split into two regions: a near region (z < 10 a.u.) and a far
region (z > 10 a.u.). In the near region, the exponential tail
of the initial state mainly undergoes oscillations in phase
with the electric force eF cos ωt , schematically represented
by the dashed line. These oscillations can be described
in terms of a simple harmonic oscillator picture with its
resonance frequency being the work function and the system
driven at a much lower frequency (below resonance). At
low field strength, and because the driving frequency is
substantially lower than the work function, the state bound
to the metal oscillates in phase with the driving force. The
surface current corresponds to a time derivative of this wobble
motion and results in the antisymmetric curve shown in
Figs. 5(b) and 5(c).

At higher field strengths, this symmetry is broken, because
the surface current no longer consists mostly of wobble motion
but contains a substantial contribution from the tunnel current,
which has its maximum at the phase of maximum of the driving
force, i.e., at ωt = π . For comparison, the solid white lines
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show the corresponding classical motion.71–73 For a cosine
electric field, the classical trajectories are given by

z(t) =
(

v0 − eF

ω
sin ωt0

)
(t − t0) + eF

ω2
(cos ωt0 − cos ωt),

(60)

where the first brackets contain the drift momentum, v0

denotes the initial velocity, and t0 is the time of emission.
It is usually assumed that the electron is born around the
maximum of the electric force with zero initial velocity.
However, in comparing classical trajectories with the quantum
mechanically computed probability densities, we have found
that much better agreement in the weak-field regime is
obtained for a small positive velocity v0 <

√
2ω. The small

initial velocity v0 is obviously the result of excess energy
in the quantum mechanical transition, which becomes a less
important contribution at strong fields. Because of the initial
nonzero velocity, in contrast to the usual treatment, classical
trajectories starting even slightly after the maximum of the
electric force escape the surface, while later trajectories return
to and scatter at the surface. The fast oscillations in the near
region [shown in Figs. 5(d), 5(e), and 6(d)] thus stem from the
interference of various wave-function components, consisting
of the initial state, emitted, returning, and rescattered ampli-
tudes. The frequency of the oscillations increases with the
field strength due to the additional kinetic energy accumulated
in the far region. The maximum kinetic energy of returning
electrons for v0 = 0 is well known as approximately 3.2Up.71

Figure 6(d) also shows that the rescattered amplitude back into
the vacuum is relatively small.

C. Pulsed excitation: Crank-Nicolson approach

In the following, we apply the modified Crank-Nicolson
scheme to evaluate the surface photoemission probability by
short and ultrashort pulses, using the same parameters as
before (with Fermi energy EF = 4.5 eV and work function
W = 5.5 eV). We study the emitted charge as a function
of the peak field strength for a Gaussian pulse of the form
F (t) = −F0e

−2 ln 2(t/τ )2
cos ωt , where F0 is the peak field

strength and τ denotes the full width at half maximum of the
intensity envelope. Symmetric pulses are assumed throughout
this paper. An analysis of carrier-envelope effects will be the
subject of future study.

Figure 7 displays the emitted charge (normalized to the
pulse duration τ ) for incident pulse lengths between one
and ten optical cycles at a center wavelength of 800 nm,
corresponding to durations between 2.7 and 27 fs. Generally,
similar yield dependencies on the incident field strength as in
continuous-wave excitation are observed (cf. Fig. 4), which
also justifies the use of the perturbation theory for moderate
pulse lengths. Modifications mainly appear in a decrease of the
oscillatory structure near the channel closings, which becomes
increasingly evident for shorter pulse durations. The two
effects responsible for this observation are: (i) the continuous
distribution of field strengths within the pulse envelope and,
more importantly, (ii) the finite frequency bandwidth in pulsed
excitation, which causes channel closings at different spectral
components to occur at different peak field strengths.

FIG. 7. (Color online) (a) Crank-Nicolson computations for
photoemission as a function of the peak electric field F0 for single-
(dashed) and two-cycle (solid) pulses and tunneling approximation
(dot-dashed cyan). (b) Comparison of Crank-Nicolson photoemission
yield for localized (dashed) and delocalized (solid) initial-state com-
putations (the dashed curve is fit to agree with the solid curve for weak
fields). The inset schematically depicts the metal-vacuum interface
(spatial coordinate z = 0) for (c) localized and (d) delocalized initial
states.

In the strong-field regime, the charge emitted from the
Fermi level is proportional to the pulse duration and can
be estimated as kF w(kF )τ , where kF denotes the Fermi
momentum and w(kF ) is the tunneling probability (at the
Fermi level) given by Eq. (42) for a continuous wave. The
Crank-Nicolson computations approach this limit for large
field strengths [cyan line in Fig. 7(a)].

In Figure 7(b), the emitted charges from localized (dashed)
and delocalized (solid) initial states are compared for incident
ten-cycle pulses. It is evident that deviations occur at field
strengths beyond a Keldysh parameter of unity (corresponding
to a field of 18 V/nm), where depletion of the localized initial
state results in a current saturation.

D. Angular distribution: perturbation theory

A particular advantage of the perturbative approach de-
veloped in Sec. II is its straightforward extension from
a one-dimensional formulation to a problem in which the
angular emission characteristics in three-dimensional-space
can be described (Sec. III). We now discuss the results
of these computations. The polar plot in Fig. 8 displays
the angular distributions for different Keldysh parameters,
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FIG. 8. (Color online) Normalized angular distributions of emit-
ted electrons in the low-temperature limit [Eq. (32)] for field strengths
of F = 1 V/nm (γ = 18, dotted), F = 12 V/nm (γ = 1.5, dashed),
and F = 30 V/nm (γ = 0.6, solid), derived from perturbation theory.
The angles denote the emission direction perpendicular to the metal
surface.

each normalized to the angular maximum. The simulation
parameters are the same as previously.

In the weak-field regime, a relatively broad emission cone
with an opening angle of about 60◦ is found (dotted), which
narrows substantially for increasing field strengths (dashed
and solid), down to approximately 15◦ at γ = 0.6. Angular
oscillations at weak and intermediate fields stem from the
oscillatory dependence of the emission probability on the
initial energy, which, via Eq. (33), couples to the total angular
current. A rather narrow emission cone at strong light fields
was also theoretically predicted in Ref. 74, as well as solid
angle reduction in large static fields.75 Experimentally, we
have previously found a reduction in the solid angle of
emission from metal nanotips in the transition from the
weak- to the strong-field regime.15 In that experiment, the
emission was induced from a highly curved surface, whereas
Eq. (32) is derived for a flat surface. This explains why the
solid angle reduction in the experiment was less pronounced.
Quantitative agreement with the experimental data could be
obtained by integrating the local current density over the
curved surface.76,77

E. Effective nonlinearity: Floquet method and
perturbation theory

While the Crank-Nicolson approach can be considered
as being the most versatile, the computations within the
Floquet method discussed below are appealing because of their
numerical simplicity and accuracy for weak and intermediate
fields. Figures 9(a) and 9(b) show double logarithmic plots
of the total emission yield as well as the four- and five-
photon contributions for work functions of W = 5.2 and
5.5 eV, respectively. In both cases, the threshold multiphoton
process is four-photon photoemission, so that from conven-
tional multiphoton descriptions (e.g., Fowler-DuBridge-type
generalizations) an effective nonlinearity of 4 is expected
throughout the weak-field regime, and the emission probability
is assumed to scale with the fourth power of the intensity
(∝F 2). However, the present theoretical treatment shows that
the effective nonlinearity—even at fields for which the four-
photon contribution is dominant—may substantially differ

FIG. 9. (Color online) (a)–(c) Emission probability and effective
nonlinearity computed with the Floquet method. Four-photon con-
tribution (dashed), five-photon contribution (dot-dashed), and total
emission probability (solid) for work functions of (a) W = 5.2 eV
and (b) W = 5.5 eV. (c) Effective nonlinearity for W = 5.2 eV
(dot-dashed), W = 5.5 eV (solid), and W = 7.1 eV (dashed). (d)–(e)
perturbation-theory computations, illustrating the role of reflection
in the enhancement of the effective nonlinearity (W = 5.5 eV).
(d) Effective nonlinearity with (solid) and without (dashed) inclusion
of surface reflection. (e) Field-dependent reflection coefficients (four-
photon process) from Eqs. (14).

from the value of 4, is dependent on field strength, and is
highly sensitive to the work function.

Figure 9(c) displays the effective nonlinearity of the
photoemission process as a function of the field strength. Note
that while the photoemission yields are plotted as a function
of field throughout this paper, the effective nonlinearity refers
to a power-law scaling of the current with the intensity. At
a work function of 5.2 eV, the effective nonlinearity remains
close to four up to fields of 4 V/nm (dash-dotted), before it
increases to a value above five and subsequently drops (near a
local maximum of the yield). At a work function of 5.5 eV, a
similar but more gradual slope variation is observed (dashed).
Virtually the same behavior is found also for higher work
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functions (and multiphoton orders), as evident from the curve
for W = 7.1 eV (solid), for which the dependency is simply
shifted up by the energy of one photon.

The affine nature of the curves for W = 5.5 eV (and the
four-photon process) and 7.1 eV (and the five-photon process)
suggests that the nonlinearity enhancement effect is related to
the field-dependent momentum, which is identical in these two
cases. A quantity directly connected to the momentum is the
reflection coefficient (cf. Fig. 2), so that one may presume
that surface reflection is responsible for the nonlinearity
enhancement. In order to investigate this hypothesis, we
perform computations in the perturbative approach because
(in contrast to the Floquet method) it allows for the selective
inclusion or exclusion of surface reflection. Figure 9(d) shows
the effective nonlinearity obtained from these computations,
both with (solid) and without (dashed) surface reflection.
Despite small deviations from the corresponding Floquet
calculations, it is apparent that the nonlinearity enhancement
is only pronounced in the presence of surface reflection.
In the absence of reflection, the effective nonlinearity stays
nearly constant at a value of 4, except for a singularity
very close to the channel closing, which is intrinsic to the
perturbative approach [cf. Eq. (17)]. The origin of this behavior
is found by plotting the field-dependent reflection coefficient
[Fig. 9(e)]. The reflection coefficient R(1)R(2) (solid), which is
negative throughout the range, varies slowly at low fields, then
decreases in magnitude, before it approaches −1 at the channel
closing. The reduced surface reflectivity at fields of several
volts per nanometer, caused by elastic flip-flop transitions,
leads to an additional growth of the transition probability
with intensity, compared with the bare four-photon scaling,
and thus enhances the observed effective nonlinearity. For
comparison, also the bare reflection coefficient R(1) excluding
elastic flip-flop transitions is plotted (dash-dotted), which
shows a monotonic behavior.

To reiterate, the effective nonlinearity of multiphoton
photoemission need not scale with the respective order,
even at field strengths where only the lowest-order channel
contributes to the emission. It should be noted that deviations
from the expected nonlinearity have been frequently observed
experimentally,15,78–81 for example in the context of strong-
field photoemission from metal nanotips.15 To our knowledge,
such slope variations are still not fully understood. In some
cases, the effect was qualitatively explained by electron gas
heating in the metal.78,82 The calculations presented in Fig. 9
suggest field-dependent reflection as an alternative explanation
of the modified effective nonlinearity under certain conditions.

VIII. CONCLUSION

In this paper, we have theoretically treated multiphoton
and strong-field photoelectron emission from a metal surface.
Suitable analytical approximations and efficient numerical
schemes were developed, focusing on surface-specific aspects.
For example, in perturbation theory surface reflection was
incorporated via a new Green’s function, which describes
the photoemission final state as a linear combination of
Volkov states. To this end, an analytical approximation to
the reflection coefficient in the presence of large fields is
presented. We believe that the procedures and numerical

evaluations should be readily applicable by others. The results
obtained within the perturbative and Floquet approximations
demonstrate very good agreement with more sophisticated
numerical computations within a Crank-Nicolson method.

The computations have shown that the employed variational
version of the Floquet method, being very effective at weak
fields, becomes less accurate in the strong-field regime,
because it requires the inclusion of many channels and
quadruple precision in the calculations. This observation
agrees with the results of Faisal et al.30 In contrast, both
the perturbative approach and the Crank-Nicolson scheme
presented here demonstrate very high efficiency in the weak-
field and strong-field regimes and in the transition region.

We have found that in the weak-field regime the effective
nonlinearity of (threshold) multiphoton processes may be sub-
stantially larger than the expected value in Fowler-DuBridge-
type generalizations, based on the ratio of work function and
photon energy. The behavior, which strongly depends on the
work function, is caused by surface reflection of the final
state. We believe that this finding provides an explanation for
frequently observed enhanced nonlinearities in experimental
multiphoton emission. Finally, the theory considered in this
paper also reproduces the experimentally found reduction of
the solid angle of photoemission with increasing field strength.

In the present discussion, we have not considered the image
potential in any of the treatments, in order to demonstrate the
good correspondence between various computational models.
In the Crank-Nicolson scheme, the image potential is easily
implemented, and this will be considered in the future. Also
the effects of field penetration into the metal may be included,
although nonlinear bulk absorption will be greatly suppressed
for metals with high reflectivity. Moreover, the presented
approaches also allow for the extraction of a number of
additional physical dependencies such as carrier envelope
effects, wavelength dependencies, and kinetic energy spectra.
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APPENDIX A: PROOF OF Eq. (7) FOR GSFA

One may simply substitute GSFA from Eq. (7) in the
Schrödinger Equation (3) to verify that it is indeed a proper
solution at positive z,z′. Substituting and using Eqs. (5), (8),
and (9) we obtain(

i
∂

∂t
+ 1

2

∂2

∂z2
+ zeF cos ωt

)
GSFA

= 1

T

∑
n∈Z

exp[i�(t,t ′)]δ[s(z,t) − s(z′,t ′)]. (A1)

Noting from Eq. (9) and Eq. (10) that

�n(t,t ′) = zpcl(t) − z′pcl(t
′) + (Up − E − nω)(t − t ′)
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− 1

2

∫ t

t ′
p2

cl(τ )dτ, (A2)

and using the identity∑
n∈Z

1

T
exp[iωn(t − t ′)] = δp(t − t ′), (A3)

we obtain finally

1

T

∑
n∈Z

exp[i�n(t,t ′)]δ[s(z,t) − s(z′,t ′)] = δ(z − z′)δp(t − t ′).

(A4)

APPENDIX B: NUMERICAL INTEGRATION OF
RAPIDLY OSCILLATING FUNCTIONS

Here we describe the numerical procedure used in the paper
for calculating the integral

I = 1

2π

∫ 2π

0
g(q) exp[iS(q)]dq. (B1)

Let us assume that this integral contains a slowly varying
function g(q) and a rapidly oscillating one exp[iS(q)]. In
order to evaluate this integral, we first divide the interval of
integration into several smaller subintervals with the central
points qm and expand S(q) in a Taylor series:

S(q) ≈ S(qm) + S ′(qm)(q − qm). (B2)

Using Eq. (B2) and the identity∫ qm+h

qm−h

exp[iS ′(qm)(q − qm)] = 2
sin[S ′(qm)h]

S ′(qm)
, (B3)

we can approximately compute the integral, defined by
Eq. (B1), applying the N -point quadrature formula

I =
N∑

m=1

g(qm) exp[iS(qm)]
sin[πS ′(qm)/N ]

πS ′(qm)
. (B4)

APPENDIX C: FORMULAS FOR MATRIX
ELEMENTS IN EQS. (48)

In the applications presented in this paper we solve Eqs. (48)
numerically to evaluate the photoemission probability. Here,
we present formulas for the matrix elements in Eqs. (48) in a
form suitable for numerical evaluation.

The matrix elements Ds
nm = Ds

nnδnm, where Ds
nn = 1 +

s|kn|2. The matrix elements As
nm are expressed in terms of

Bessel functions of integer order as

As
nm = im−n

{
sUp[Jm−n+2(a) + Jm−n−2(a)]

− seF

2ω
(pm + p∗

n)[Jm−n+1(a) + Jm−n−1(a)]

+ (1 + sp∗
npm + 2sUp)Jm−n(a)

}
, (C1)

where Up denotes the ponderomotive potential [Eq. (11)],
and

a = eF

ω2
(pm − p∗

n). (C2)

The elements Bs
nm are given by the formula

Bs
nm = − 1

2π

∫ 2π

0

[
1 − skm

(
p∗

n + eF

ω
sin q

)]

× exp

[
i(n − m)q − ip∗

neF

ω2
cos q − ie2F 2

8ω3
sin 2q

]
dq.

(C3)

This integral can be numerically evaluated as was described
in Appendix B. Note in conclusion that the elements Bs

nm can
be alternatively expressed also in terms of generalized Bessel
functions.
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