Wind regimes above and below a dense oil palm canopy: Detection of decoupling and its implications on CO₂ flux estimates

AsiaFlux Online Conference 2021, 21 Dec. 2021

Christian Stiegler¹, Tania June², Christian Markwitz¹, Nicoló Camarretta¹, Ashehad Ashween Ali¹, Alexander Knohl^{1,3}

¹Bioclimatology, University of Göttingen, Göttingen, Germany ²Department of Geophysics and Meteorology, Bogor Agricultural University, Bogor, Indonesia ³Centre of Biodiversity and Sustainable Land Use (CBL), University of Götting

³Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany

Decoupling

- Especially during night, calm weather conditions in tall vegetation canopies, such as forest or oil palm, may result in the formation of an isolated layer near the surface, which is decoupled from the above-canopy air layer.
- When decoupling occurs, there is a high potential that above-canopy measured carbon dioxide (CO_2) based on eddy covariance (*EC*) measurements might not represent the true ecosystem CO_2 flux as below-canopy respiration might be undetected by the *EC* system.

Schematic representation of air mixing within tall vegetation canopies

Adapted from Freundorfer et al., 2019, *Agricultural and Forest Meteorology* 279.

- Investigate wind dynamics of a mature oil palm (*Elaeis guineensis* Jacq.) plantation in tropical lowland Jambi Province (Sumatra, Indonesia).
- Assess the strength of turbulent mixing as an estimator for the degree of above- and below-canopy coupling by using eddy covariance (*EC*) measurements.
- **Explore** the potential **implications of decoupling** and horizontal below-canopy flow on the above-canopy derived net ecosystem exchange (*NEE*).
- Explore the characteristics of vertical CO₂ concentration in the oil palm plantation.

EC-tower within the studied oil palm plantation.

Study site

Our study has been conducted in a mature commercial oil palm plantation in tropical lowland Jambi Province (Sumatra, Indonesia). Palms were planted in 2002, with 156 palms per hectare, and reach an average height of 12 meters.

Stiegler et al., 2019, *Biogeosciences* 16. Drescher et al., 2016, *Phil. Trans. R. Soc. B* 371. Clough et al., 2016, *Nature Communications* 7.

Video of oil palm plantation and measurement tower

Data collection & processing; Identification of decoupling & flux filtering

- Flux data were obtained from August 2017 to July 2020 by two eddy covariance (*EC*) systems
- Three approaches based on *EC* derived wind measurements to identify decoupling:
 - 1. Threshold based on friction velocity (u^*)
 - 2. Threshold based on the correlation between the standard deviation of below vs. above-canopy vertical wind speed (σ_w)
 - 3. Threshold based on dynamic stability of the atmosphere (bulk Richardson number, Ri_b)
- Thresholds were derived with R-package "strucchange". Filtered EC-data was gapfilled using REddyProc (MPI Jena, Germany) to derive cumulative CO₂ fluxes
- Meteorological parameters and CO₂ concentration were measured at various heights along the tower

Wind speed

Probability density function of above- and below-canopy wind speed

- Wind speed is generally low in the oil palm plantation. Winds peak around noon and reach their minima shortly before sunrise
- Below the oil palm canopy, calm conditions strikingly dominate, especially during night

Diel horizontal

Friction velocity (u*)

• At higher nocturnal above-canopy turbulence strength ($u^* > 0.15 \text{ m s}^{-1}$) nocturnal above-canopy CO₂ flux levels off, indicating transition from decoupling to coupling at this threshold

Correlation between the standard deviation of below- vs. above-canopy vertical wind speed (σ_{w})

The correlation between above- and below-canopy σ_w breaks down at thresholds of ~0.21 m s⁻¹ and ٠ ~0.09 m s⁻¹, respectively, indicating possible transition between decoupling to coupling between the two measurement heights at these thresholds

7

Dynamic stability of the atmosphere (bulk Richardson number, *Ri_b*)

- Based on the bulk Richardson number (*Ri_b*) and its relationship between nocturnal CO₂ net ecosystem exchange (*NEE*) and temperature flux (kinematic heat flux) we found three distinct stable boundary-layer regimes in our data set
- Fluxes decrease rapidly with increasing *Ri_b* and non-turbulent flow becomes increasingly important, with decoupling occurring at very stable conditions

Overview CO₂ flux filtering approaches (non-gapfilled)

- On average, ~45% of CO_2 fluxes were removed due to filtering, most of them during night
- The σ_w filtering approach yielded highest daytime NEE (CO₂ uptake) while the *u**-filtering approach yielded highest nocturnal respiration

Filtering approach	Decoupling threshold	Percentage of CO ₂ fluxes removed compared to unfiltered data (prior to gap filling)	CO ₂ flux ± standard deviation [µmol m ⁻² s ⁻¹]			Coupling between above- and below-canopy air layer [%]	
			Average	Day	Night	Day	Night
Original data	-	-	$\textbf{-3.92} \pm \textbf{14.66}$	-13. 21 ± 13.15	6.05 ± 8.24	-	-
u* (friction velocity), above-canopy	u* < 0.15 m s ⁻¹	33.5	$\textbf{-7.40} \pm \textbf{15.73}$	-14.74 ± 12.61	8.12 ± 8.93	86.0	43.0
σ _w (standard deviation of above- and below- canopy vertical wind speed)	Above-canopy: $\sigma_w < 0.214 \text{ m s}^{-1}$ (day) & <0.211 m s^{-1} (night) Below-canopy: $\sigma_w < 0.087 \text{ m s}^{-1}$ (day) & 0.09 m s^{-1} (night)	41.3	-9.19 ± 15.42	-16.43 ± 11.70	7.11 ± 9.05	93 (above- canopy), 80 (below-canopy	68 (above- canopy), 44 (below- canopy)
Ri_b (bulk Richardson number)	Weakly stable: Ri _b < 0.07 <i>Stable regime:</i> Ri _b > 0.46	59.8	-2.66 ± 14.63	-12.60 ± 13.50	6.52 ± 8.23	86.0	85.0

Overview CO₂ flux filtering approaches.

Diel characteristics of decoupling and CO₂ fluxes, accumulated carbon

• The short periods after sunrise and before sunset are crucial for the breakdown and development of decoupling or coupling between above- and below-canopy air layers. They are also those times of the day (together with night conditions), when differences in *NEE* between the different flux filtering approaches are most apparent

10

Diel characteristics of decoupling and CO₂ fluxes, accumulated carbon

- The short periods after sunrise and before sunset are crucial for the breakdown and development of decoupling or coupling between above- and below-canopy air layers. They are also those times of the day (together with night conditions), when differences in *NEE* between the different flux filtering approaches are most apparent
- In 2019, σ_w filtered data yielded highest accumulated carbon while Ri_b filtered data yielded lowest accumulated carbon. Differences in accumulated carbon are up to 251.5 gC m⁻²

Is the below-canopy flow topically induced?

- A preferential wind sector from northwest (~315°) for below-canopy wind and buoyancy forcing is clearly visible
- Lowering terrain (from the tower's perspective in ~90° to ~150°) and a slope of 3° within the footprint area of the EC-tower, may already be enough to create thermally-induced drainage flow

Tower location 50% footprint 90% footprint

200 m

Hillshade map (from DEM) and EC footprint areas

Buoyancy forcing in dependency of below-canopy wind direction

Wind roses for low abovecanopy wind conditions and *Ri_b* >0.07

Vertical structure of the air layer

Canopy height [m]

9

S

0

- The oil palm canopy marks a clear boundary for the behavior of CO₂ concentration and wind
- The canopy is nearly always stably stratified, expressed by the temperature increase in the upper parts of the canopy. Under low-wind conditions, such stably stratified atmosphere potentially stimulates decoupling

Vertical profiles of CO₂ concentration and meteorological parameters

Summary & conclusion

- Wind speeds above and below the oil palm canopy are generally low
- Threshold analyses showed that during night, decoupling may occur frequently and up to 48% of measured nocturnal CO₂ fluxes fall within such decoupling periods
- Sensitivity in detection of decoupling is highly dependent on the applied method, with σ_w filter being most sensitive in the detection of decoupling
- CO₂ flux filtering approaches yield substantial differences in accumulated carbon
- A slope of 3° within the footprint area of the *EC*-tower, may already be enough to create thermally-induced drainage flow
- The canopy is nearly always stably stratified, expressed by the temperature increase in the upper parts of the canopy. Under low-wind conditions, such stably stratified atmosphere potentially may stimulate decoupling

Take-home message

 Decoupling of above- and below-canopy air layers needs to be investigated and considered, especially in such low-wind tropical ecosystems and when eddy covariance data is used as reference for fluxes of tall vegetation or for modelling approaches

THANK YOU FOR YOUR ATTENTION!

QUESTIONS?

CO_2 vertical advection (F_{VA}) and storage fluxes (F_S)

- The magnitude of F_{VA} and F_S peaks shortly before dawn, when CO₂ concentration reaches its diel maximum, and both vertical and horizontal wind speed approach their diel minima
- At low σw , F_{VA} and F_S show a decreasing trend with increasing above-canopy σ_w
- Below the canopy, an initial increase of F_{VA} and F_S at $\sigma_w < \sigma_{w \ threshold}$ may be linked to increasing, but still decoupled, below-canopy turbulent transport

Overview CO₂ flux filtering approaches (gapfilled)

- On average, ~45% of CO_2 fluxes were removed due to filtering, most of them during night
- The σ_w filtering approach yielded highest daytime NEE (CO₂ uptake) while the *u**-filtering approach yielded highest nocturnal respiration

Filtering approach	Decoupling threshold	Percentage of CO ₂ fluxes removed compared to unfiltered data (prior to gap filling)	CO ₂ flux ± standard deviation [µmol m ⁻² s ⁻¹]			Coupling between above- and below-canopy air layer [%]	
			Average	Day	Night	Day	Night
u* (friction velocity), above-canopy	u* < 0.15 m s ⁻¹	33.5	$\textbf{-2.48} \pm \textbf{14.17}$	-12.96 ± 12.32	8.02 ± 5.40	86.0	43.0
σ _w (standard deviation of above- and below- canopy vertical wind speed)	Above-canopy: $\sigma_w < 0.214 \text{ m s}^{-1}$ (day) & <0.211 m s^{-1} (night) Below-canopy: $\sigma_w < 0.087 \text{ m s}^{-1}$ (day) & 0.09 m s^{-1} (night)	41.3	-2.94 ± 14.11	-13.64 ± 11.89	7.77 ± 5.27	93 (above- canopy), 80 (below-canopy	68 (above- canopy), 44 (below- canopy)
Ri_b (bulk Richardson number)	Weakly stable: Ri _b < 0.07 <i>Stable regime:</i> Ri _b > 0.46	59.8	-2.19 ± 13.91	-12.45 ± 12.20	8.08 ± 5.26	86.0	85.0

Overview CO₂ flux filtering approaches.

CO₂ concentration, 8 – 12 May 2019

CO₂ concentration profile during the period 8 May 2019 (12 h) to 12 May 2019, (12 h)

CO₂ concentration & micrometeorological conditions, 8 – 12 May 2019

- Nights with high CO₂ concentration:
 - Calm conditions dominate in all vertical profiles
 - Air temperature is lower and air humidity is higher compared to nights with lower CO₂ concentration

 CO_2 concentration, air temperature, air relative humidity, and wind speed profile during the period 8 May 2019 (12 h) to 12 May 2019, (12 h).