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Introduction

The availability of high-density single nucleotide

polymorphism (SNP) genotyping in farm animals has

generated a need for novel tools in statistical genet-

ics, especially for efficient and robust fine mapping

of quantitative trait loci (QTL). The traditional map-

ping designs, i.e. the F2-designs in multiparous spe-

cies like pig or chicken, or (grand-)daughter designs

in species with large paternal half-sib groups like cat-

tle, are limited because the number of recombina-

tions in the observed pedigree is low and thus the

positional resolution is insufficient. Higher resolution

can be achieved with approaches that capitalize on

linkage disequilibrium (LD), which has been gener-

ated in the studied populations over longer time

periods. Owing to factors like population subdivi-

sions, large family structures caused by the extensive

use of artificial insemination, smaller and continu-

ously decreasing effective population size (Hayes

et al. 2003), and intensive selection, LD in farm ani-

mal populations was found to be on a higher level

than LD in large outbred populations such as the

human population (Andersson 2001).
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Summary

In many farm animal populations, high-density single nucleotide poly-

morphism (SNP) genotypes are becoming available on a large scale, and

routine estimation of breeding values is implemented for a multiplicity

of traits. We propose to apply the basic principle of the quantitative

transmission disequilibrium test (QTDT) to estimated Mendelian sam-

pling terms. A two-step procedure is suggested, where in the first step

additive breeding values are estimated with a mixed linear model and

the Mendelian sampling terms are calculated from the estimated breed-

ing values. In the second step, the QTDT is applied to these estimated

Mendelian sampling terms. The resulting test is expected to yield signifi-

cant results if the SNP is in sufficient linkage disequilibrium and linkage

with quantitative trait loci (QTL). This principle is illustrated with a sim-

ulated data set comprising 4665 individuals genotyped for 6000 SNP and

15 true QTL. Thirteen of the fifteen QTL were significant on a genome-

wide 0.1% error level. Results for the empirical power are derived from

repeated samples of 1000 and 3000 genotyped individuals, respectively.

General properties and potential extensions of the methodology are

indicated. Owing to its computational simplicity and speed, the sug-

gested procedure is well suited to scan whole genomes with high-

density SNP coverage in samples of substantial size and for a multiplicity

of different traits.
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In association studies based on historic LD, high

statistical power exists only in the immediate vicinity

of the QTL, so that high marker densities are

required. Pure association tests are known to be

highly sensitive to population stratification and

admixtures (Freedman et al. 2004). The situation in

farm animal study is expected to be similar or worse

as in this case sporadic appearances of high LD were

even reported for non-syntenic loci, caused by selec-

tion, population stratification or admixture and other

mechanisms (Farnir et al. 2000).

To increase robustness of LD-based association

tests, Spielman et al. (1993) proposed the transmis-

sion disequilibrium test (TDT), which tests the null

hypothesis that a marker and a dichotomous pheno-

type (e.g. a disease incident) are both in linkage and

in LD. In the original approach, this is achieved by

considering the contrast between the transmitted ver-

sus the non-transmitted allele at a given locus in

nuclear families (one affected offspring and its par-

ents). The test is fully non-parametric and model-

free, the only assumption made is that of Mendelian

inheritance. The basic principle of the TDT has been

extended to various more general cases like the use

of haplotypes (Clayton 1999), general pedigrees

(Rabinowitz & Laird 2000) or analysis of quantitative

traits (Abecasis et al. 2000), the latter termed as quan-

titative TDT (QTDT). For a comprehensive review of

the TDT methodology, see Laird & Lange (2006).

A general feature of the quantitative TDT is that it

avoids false-positive results in the case of population

stratification. The price for this robustness seems to

be a reduced power compared with the straight asso-

ciation mapping approaches (Ewens et al. 2008).

Applications of the QTDT to candidate gene regions

are numerous in human genetics but can also be

found for cattle (Kunej et al. 2007; Jiang et al. 2008)

and pigs (Bink et al. 2000; Hernández-Sánchez et al.

2003; Wimmers et al. 2004). Aulchenko et al. (2007)

compared different pedigree-based QTL association

analysis methods in three different data structures,

one of them reflecting an idealized pig population

family structure. They also report a lack of power of

different QTDT implementations compared with the

competing approaches.

Meuwissen et al. (2002) suggested a population-

based fine mapping approach that combines recom-

bination fractions in the observed pedigree with LD

information derived from earlier generations. This

approach was shown to provide a high mapping res-

olution in the demonstrated example (twinning rate

in cattle), but is computationally demanding as it

involves the construction of a matrix of pair-wise

identity by descent (IBD) probabilities between all

haplotypes at the putative position of the QTL. It

also requires the specification of typically unknown

quantities, like the effective population size or the

‘age’ of the population. However, the approach was

shown to be robust against misspecifications of those

parameters (Meuwissen et al. 2002).

Data structures in farm animal studies differ from

those in human genetics. Often large numbers of

reliable phenotypes are routinely recorded, deep

pedigrees are widely available, large families

(e.g. half-sib groups) exist and targeted genotyping

of informative individuals is possible. In many farm

animal species, sophisticated polygenic breeding

value estimation is routinely conducted for many

economically and functionally important traits.

In this study, we suggest a two-step procedure for

fine mapping of QTL, capitalizing on these structural

advantages. In the first step, the complete phenotypic

and pedigree information is used to estimate breeding

values for the studied trait. From the estimated

breeding values, estimates of the Mendelian sampling

term of all animals are derived, which are readily

corrected for all relevant non-genetic effects and

reflect the deviation of an offspring from the parent

mean owing to the sampling of parental alleles.

In the second step, the basic idea of the TDT is

applied to all genotyped parent–offspring pairs or

triplets, and a combined test of all contrasts of the

average Mendelian sampling between transmitted

and non-transmitted alleles is suggested. As Mende-

lian sampling terms between individuals are inde-

pendent, the test statistic is easily accumulated over

related and non-related pairs and triplets, and a sim-

ple statistic based on the t-test is suggested. The

resulting approach is shown to produce robust sig-

nals of LD and linkage, and at the same time it is

fast and easy to implement.

The structure of this paper is as follows. First, we

present the methodology and specify the necessary

computations in different scenarios. The method

then is illustrated with a simulated data set to dem-

onstrate its resolution and numerical feasibility, and

the empirical power is studied by analysing repeated

sub-samples of the simulated data set of different

sizes. In the Discussion, the general properties of the

suggested approach are discussed and potential

extensions of the methodology are indicated.

Methods

We consider a population in which a quantitative

trait y (like milk yield or daily gain) is routinely
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recorded for many individuals. Additive breeding

values are estimated for all individuals in the pedi-

gree using best linear unbiased prediction (BLUP;

Henderson 1973). The estimated breeding value âi

of an individual i with parents j and k can be

decomposed in

âi ¼ 0:5ðâj þ âkÞ þ m̂i; ð1Þ

where âj and âk are the estimated parental breeding

values and m̂i is the estimated Mendelian sampling

term of individual i; m̂i represents the deviation of

an individual’s additive polygenic effect from the

expectation, after correction for all environmental

effects and given the parents’ genotype. Note that m̂i

is independent of information of possible half- or

full-sibs of individual i. m̂i is expected to be > 0 if

the average of the parental QTL alleles obtained was

greater than the parental average, and E(m̂i) < 0

otherwise. Following the concept of Avendano et al.

(2005), the accuracy of the Mendelian sampling

term of individual i is expressed as correlation

between the true and the estimated Mendelian

sampling terms 0 £ qi £ 1. According to the selection

index theory, qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðm̂iÞ=VarðmiÞ

p
, where Varðm̂iÞ

andVar(mi) are the variances of the estimated and

the true Mendelian sampling terms. VarðmiÞ ¼
ð0:5� 0:25ðFj þ FkÞÞr2

a , where Fj and Fk are the

inbreeding coefficients of the parents j and k. Hence,

VarðmiÞ ¼ 0:5r2
a only if the parents are not inbred.

Varðm̂iÞ can be calculated from the breeding value

estimation. It follows from Equation (1) that

Varðm̂iÞ ¼ VarðâiÞ þ 0:25ðVarðâjÞ þ VarðâkÞÞ
� Covðâi; âjÞ � Covðâi; âkÞ þ 0:5Covðâj; âkÞ:

The variances and covariances of the estimated

breeding values can be extracted from the variance–

covariance matrix

VCVðâÞ ¼ G� C22;

where â is the vector of all estimated breeding

values, G is the additive-genetic variance–

covariance matrix and C22 is the lower right part of

the inverted coefficient matrix of the mixed model

equations (Henderson 1984), pertaining to the ran-

dom breeding values. If the exact inverse coefficient

matrix is not available, the required elements of the

covariance matrix can be derived by approximate

approaches as suggested, e.g. by Tier & Meyer

(2004). If no information on the offspring or its

progeny is available, qi = 0. In this case, the esti-

mated breeding value of an offspring is the average

of the breeding values of its parents and hence the

estimated Mendelian sampling term is invariably 0.

If an offspring has a very reliable estimated breeding

value, e.g. if its progeny is tested, then qi approaches

1. We now assume that individuals i, j and k are

genotyped for a biallelic SNP, with alleles coded as

‘1’ or ‘2’. We adopt the idea of TDT by contrasting

average Mendelian sampling terms of individuals

that have obtained opposite paternal alleles across

the population. The basic concept is illustrated with

the following example: consider a heterozygous sire

j with genotype 1; 2f g . The offspring of this sire can

be grouped in a transmission class that has inherited

allele 1 but not allele 2 (indicated as 1n2, read ‘one

and not two’), with average Mendelian sampling

�m1n2;j and a second transmission class that has inheri-

ted allele 2 and not 1 (indicated as 2n1), with aver-

age Mendelian sampling �m2n1;j. We now accumulate

the contrast over all J heterozygous sires

d ¼
PJ
j¼1

ð�m1n2;j � �m2n1;jÞ. Under the null hypothesis that

the marker is not linked to a QTL affecting the trait

or the marker and the QTL are in linkage equilib-

rium, d is expected to be zero. If the marker is

linked to the QTL, but not in LD, we will find

non-zero contrasts within sires, but they will

average out over all sire families, because in some

families the positive allele is associated with marker

allele 1, while in other families the positive allele

is associated with marker allele 2. If, on the other

hand, LD exists without linkage, we will not find

any contrast within the sire families. Only if the

marker is linked to the QTL, and marker and QTL

are in LD, we expect to find a non-random devia-

tion of d from zero. This principle is now extended

to the more general case of trios. Given complete

genotypes of the sire, the dam and the offspring, it

can in all but one case be fully determined which

parental alleles are transmitted to the offspring and

which ones are not (Table 1). Only in the case

where all three individuals are heterozygous 1; 2f g;
transmission is ambiguous and cannot be included

in the statistic.

Using the order of the 15 possible constellations

of unordered genotypes as given in Table 1, it

should be noted that the transmission 1n2 is

observed on the paternal (maternal) side in cases

5, 7, 10 (2, 7, 13), while 2n1 is observed in cases

6, 9, 11 (3, 9, 14). Note that in cases 7 and 9,

informative transmissions are observed both on the

paternal and the maternal sides, so these cases

need to be counted twice. If �mc is the mean Men-

delian sampling in case c based on nc observations,

the contrast reflects the mean difference of all
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cases 1n2 versus 2n1 over all genotyped triplets and

both on the paternal and maternal sides.

d ¼ n2 �m2 þ n5 �m5 þ 2n7 �m7 þ n10 �m10 þ n13 �m13

n2 þ n5 þ 2n7 þ n10 þ n13

� n3 �m3 þ n6 �m6 þ 2n9 �m9 þ n11 �m11 þ n14 �m14

n3 þ n6 þ 2n9 þ n11 þ n14

ð2Þ

In real data, only a subset of all individuals is

genotyped. Starting from a genotyped individual

(note that only complete genotypes are considered,

i.e. animals with just one allele known are ignored),

the following four cases are relevant: (i) both parents

are not genotyped; (ii) only the sire is genotyped;

(iii) only the dam is genotyped; and (iv) both par-

ents are genotyped. Case (i) is non-informative and

can be discarded and case (iv) is the triplet situation

described previously. Cases (ii) and (iii), however,

contain relevant information and can be included in

the analysis. Consider case (ii) that only the sire is

genotyped and has genotype 1; 2f g. In this case, we

can only infer the allele transmission pattern if the

offspring is homozygous. If, say, the offspring geno-

type is 1; 1f g, transmission is clearly 1n2 , and the

information content of this observation is equivalent

to case 5 in the triplet situation. The four different

informative single parent–offspring cases are listed in

Table 1. We suggest merging case s1 with the triplet

case 5, s2 with triplet case 11, d1 with triplet case 2

and d2 with triplet case 14. As d is a contrast of sam-

ple means, we apply the t-test (Snedecor & Cochran

1956), using

r̂d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn1n2 � 1Þr̂2

1n2 þ ðn2n1 � 1Þr̂2
2n1

ðn1n2 � 1Þ þ ðn2n1 � 1Þ
1

n1n2
þ 1

n2n1

� �s
;

where

n1n2 ¼ n2 þ n5 þ 2n7 þ n10 þ n13

n2n1 ¼ n3 þ n6 þ 2n9 þ n11 þ n14

and r̂2
1n2 and r̂2

2n1 are the estimated variances of the

Mendelian sampling terms in the two transmission

groups that can be computed from the observed

data. Under the null hypothesis, the test statistic

t ¼ d=r̂d

approximately follows a t-distribution with n1n2þ
n2n1 � 2 degrees of freedom. In many cases, the num-

ber of degrees of freedom will exceed 50, so that the

standard normal distribution can be used as a suffi-

cient approximation to the null distribution.

Simulated data

To study the properties of the suggested methodo-

logy, we used a simulated data set that was distrib-

uted for the 12th QTL-MAS Workshop in May 2008

in Uppsala, Sweden (Crooks et al. 2009). A genome

Table 1 Fifteen possible combinations of unordered genotype triplets (cases 1–15) and pairs (sire-offspring cases, s1 and s2; dam-offspring cases,

d1 and d2) with transmitted and non-transmitted parental alleles and weight of the observation ki

Case

Unordered genotype Paternal allele Maternal allele

kiSire Dam Offspring Transmitted

Not

transmitted

Transmitted Not

transmitted

1 {1,1} {1,1} {1,1} 1 1 1 1 0

2 {1,1} {1,2} {1,1} 1 1 1 2 1

3 {1,1} {1,2} {1,2} 1 1 2 1 )1

4 {1,1} {2,2} {1,2} 1 1 2 2 0

5 {1,2} {1,1} {1,1} 1 2 1 1 1

6 {1,2} {1,1} {1,2} 2 1 1 1 )1

7 {1,2} {1,2} {1,1} 1 2 1 2 2

8 {1,2} {1,2} {1,2} Unknown 0

9 {1,2} {1,2} {2,2} 2 1 2 1 )2

10 {1,2} {2,2} {1,2} 1 2 2 2 1

11 {1,2} {2,2} {2,2} 2 1 2 2 )1

12 {2,2} {1,1} {1,2} 2 2 1 1 0

13 {2,2} {1,2} {1,2} 2 2 1 2 1

14 {2,2} {1,2} {2,2} 2 2 2 1 )1

15 {2,2} {2,2} {2,2} 2 2 2 2 0

s1 {1,2} – {1,1} 1 2 1 Unknown 1

s2 {1,2} – {2,2} 2 1 2 Unknown )1

d1 – {1,2} {1,1} 1 Unknown 1 2 1

d2 – {1,2} {2,2} 2 Unknown 2 1 )1
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of six chromosomes each 1 M (M indicates Morgan)

long was generated. In the base population, 6000

SNP were generated uniformly spaced at 0.1 cM. For

convenience, SNP are numbered across the genome,

so that SNP 4215 is on chromosome four at position

21.5 cM from the start. In addition to the SNP, 48

QTL of variable sizes were assigned to chromosomes

one to five. All QTL were fully additive and one pair

of QTL (positioned at 30 cM on chromosome 1 and

positioned at 60 cM on chromosome 2) interacted

epistatically.

Fifty males and fifty females were generated in

the base population, and subsequently 50 genera-

tions of random mating were performed. In

generation 51, 15 males and 150 females were

sampled at random as parents. Each female was

mated to a random male and produced 10 offspring,

so that generation 52 encompassed 1500 individuals.

From these, again 165 animals were selected at ran-

dom and mated to produce generation 53, and gen-

eration 54 was produced similarly. All 4665

individuals in generations 51–54 were fully geno-

typed and had phenotypes. The phenotype of an

animal was generated by summing up the additive

and epistatic effects over all QTL and adding a

random noise e � Nð0; r2
eÞ , where r2

e ¼ 4:2. This

resulted in an approximate true heritability of 0.3.

In generations 51–54, only 15 of the simulated 48

QTL explained more than 1% of the additive genetic

variance (Table 2).

Results

We applied the method suggested before to test for

the presence of QTL based on genotypes at 6000

SNP and phenotypes of the 4665 animals in genera-

tions 51–54. For these animals, the full pedigree

information was available.

First, a polygenic animal model was used to esti-

mate variance components, breeding values and ulti-

mately the Mendelian sampling terms. The statistical

model was:

yi ¼ lþ ai þ ei;

where yi is the phenotype of individual i; l is the

overall fixed mean; ai is the random additive genetic

effect (or breeding value) of individual i; and ei is

the random residual term of individual i.

The random variables are distributed as a � N

ð0; Ar2
aÞ and e � Nð0; Ir2

e Þ , where r2
a and r2

e are the

additive genetic and the residual variance, I is the

identity matrix and A is the numerator relationship

matrix (Henderson 1975). First, residual maximum

likelihood (REML; Patterson & Thompson 1971) esti-

mates of the variance components were obtained

using the program VCE 4.2.5 (Groeneveld 1998),

resulting in r̂2
a ¼ 1:36 and r̂2

e ¼ 3:12 giving the herita-

bility ĥ2 ¼ 0:304 . Using these variance components

and the same statistical model, BLUP breeding values

âi were calculated for all i = 1, ... , 4665 animals.

Then, for each animal i with known parents j and k

(i.e. the 4500 animals in generations 52–54) the

estimated Mendelian sampling term m̂i was com-

puted as:

m̂i ¼ âi � 0:5ðâj þ âkÞ: ð3Þ

Using these estimates of the Mendelian sampling

terms, the contrast dl was calculated for all loci

l ¼ 1; :::; 6000 using Equation (2). Note that a com-

plete triplet was available for all 4500 offspring

belonging to generations 52–54. From the resulting

t-values and the degrees of freedom, the error proba-

bility was calculated. In Figure 1, the logarithm to

the base 10 of the error probabilities is plotted over

the entire simulated genome. Significance was tested

on the genome-wide 0.1% error level using a Bon-

ferroni correction. As it is a two-sided t-test, the crit-

ical error probability was set to pc = 0.0005 ⁄ 6000

with log10(pc) = )7.079.

In the lower part of Figure 1, the chromosome

segments in which the test statistic exceeds the criti-

cal threshold are indicated together with the posi-

tions of those 15 true QTL explaining more than 1%

of the additive genetic variance. We define a QTL to

Table 2 Simulated quantitative trait loci that explain more than 1% of

the total additive genetic variance

Position

Allele substitution

effect

(absolute value)

Minor allele

frequency

Percentage of

additive genetic

variance explained

200 0.62 0.28 11.8

400 0.56 0.07 3.1

772 0.37 0.29 4.3

1274 0.35 0.44 4.6

1300 0.33 0.21 2.8

1486 0.37 0.40 5.0

1749 0.50 0.18 5.6

1935 0.25 0.32 2.1

2149 0.30 0.40 3.3

2600 0.68 0.07 4.6

3032 0.61 0.39 13.5

3369 0.34 0.24 3.2

3761 0.58 0.41 12.4

3965 0.29 0.19 2.0

4935 0.75 0.26 16.5
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be successfully mapped if there is a significant signal

within �1 cM of the true position. According to this

criterion, 13 of the 15 QTL were successfully

mapped. One QTL at position 3369 has a peak in the

neighbourhood at position 3341, which is 2.8 cM

away. The QTL at position 2600 is completely

missed. No QTL was mapped on the last chromo-

some, which did not carry any true QTL. There are

only spurious false-positives, and these effects may

reflect some of the simulated QTL of minor effect

(<1% of the additive genetic variance). This was

tested by considering the 13 QTL explaining between

0.1% and 0.8% of the genetic variance (positions

indicated in Figure 1). While at these positions the

average error probability was significantly lower

than in the regions carrying no QTL [average

log10(p) = )1.27 at 13 minor QTL versus average

log10(p) = )0.41 in the QTL-free regions], there was

no association between QTL size and significance

level within the group of minor alleles. In fact,

minor alleles explaining a very low proportion of

genetic variance tended to have the higher peaks

in the test statistic. Therefore, we conclude that

spurious signals are more likely because of random

noise than caused by minor alleles.

For the 13 successfully mapped QTL, the mean

absolute deviation of the true position and the adja-

cent highest peak of the test statistic was 0.89 cM. In

general, the positional deviation decreased with

increasing true QTL effects (results not shown).

We also tested the power of the approach to detect

QTL when only a subset of n = 1000 or 3000 indi-

viduals from the complete simulated data set is

genotyped. For this, we sampled at random one off-

spring from generations 52 to 54 and assigned this

individual and its parents to be genotyped (if they

were not already assigned to be genotyped in an ear-

lier sample). This was repeated until a total of 1000

or 3000 animals to be genotyped were selected,

respectively. In the analysis only these genotypes

were used, but Mendelian sampling terms were cal-

culated from the complete data set, reflecting that in

real applications typically only a sub-sample of indi-

viduals having phenotypes and breeding values will

be genotyped. Note that here incomplete triplets

were included, because animals may have only one

–45

–40

–35

–30

–25

–20

–15

–10

–5

0
6000500040003000200010000

Position
L

o
g

10
(p

)

Figure 1 Log to the base 10 of error probabilities from the analysis of the simulated data set at the 6000 loci. Horizontal line indicates critical

value for genome-wide p = 0.001 with Bonferroni correction; horizontal bars indicate genome segments with significant signals; filled

triangles indicate position of simulated quantitative trait loci (QTL) explaining >1% of the genetic variance; and empty triangles indicate position of

simulated QTL explaining <1% of the genetic variance.
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genotyped parent. For each sample size, 1000 repli-

cates were generated and analysed, using the same

concept as before, but testing on the 1% genome-

wide error level.

Figure 2 shows the proportion of the significant

results plotted over the whole genome. In general,

most peaks are associated with true QTL positions.

We define the empirical power of the proportion of

replicates in which the significant threshold was

exceeded in a range of �1 cM of the true position of

a QTL. With n = 1000 individuals genotyped, only

three QTL are significant in more than 20% of the

replicates. With n = 3000 individuals genotyped, the

empirical power is close to 100% for six QTL and

most other QTL are detected quite frequently.

The power to detect a QTL depends on its effect.

In Figure 3, the empirical power is plotted as a func-

tion of the QTL size (per cent of the genetic variance

explained) for both sample sizes. With n = 3000, the

power declines when a QTL explains only 5% or less

of the genetic variance. With n = 1000, only QTL

explaining more than 10% of the genetic variance

can be detected. However, the power is not only a

function of the QTL effect, but also of other system-

atic (like proximity to the next QTL) or unsystematic

(like allele frequencies and LD pattern) effects, gen-

erating substantial variability especially concerning

the power to map QTL of minor effects. Strikingly,

the QTL at position 4935 explaining the highest pro-

portion of the genetic variance was almost com-

pletely missed with sample size n = 1000, while for

the other QTL with smaller effects the empirical

power was up to 46.5% with the same sample size.

A closer inspection of the QTL at position 4935

revealed that this locus is in remarkably low LD with

the neighbouring SNP, the r2 (Hill & Robertson

1968) with the two adjacent SNP being only 0.01

and 0.16, respectively. As a TDT only will find asso-

ciations when both linkage and LD are present, a

lack of LD may cause that some QTL are missed,

which would have been mapped in a pure linkage

study.

Discussion

The results presented here demonstrate that the sug-

gested methodology is highly efficient in detecting

QTL for a complex trait in large pedigrees with dense

marker coverage. Through the combination of link-

age and LD mapping, the positional resolution is
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Figure 2 Empirical power to detect a quantitative trait locus (QTL) on the genome-wide 1% error level with sample size n = 1000 (black bars) and

n = 3000 (grey bars), respectively (diamonds indicate the position of the simulated QTL explaining >1% of the genetic variance).
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Figure 3 Empirical power to detect a quantitative trait locus (QTL) on

the genome-wide 1% error level with sample size n = 1000 and

n = 3000, respectively, as a function of the proportion of the additive

genetic variance explained by the simulated QTL.
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very good, leading to a mapping precision of less

than 1 cM as demonstrated before.

The suggested approach is computationally effi-

cient. The estimation of breeding values and Men-

delian sampling terms in the first step is a routine

procedure in most animal breeding populations, as

comprehensive sets of high-quality estimates of

breeding values are readily available for most produc-

tion and functional traits. This is not restricted to

normally distributed quantitative traits, but includes

many other more complex traits like binary or multi-

categorical traits such as fertility or disease resistance

(Gianola & Foulley 1983), longevity data using sur-

vival analysis (Ducrocq & Sölkner 1998) or analyses

assuming other unconventional distributions (see,

e.g. Gianola & Simianer 2006; Rodrigues-Motta et al.

2007). All these methods provide estimated breeding

values on an underlying additive scale and thus the

suggested method can be applied for QTL detection

based on the estimated Mendelian sampling terms of

the genotyped offspring.

In the second step, the data of the genotyped ani-

mals are processed linearly, i.e. one marker after

another and one family (triplet or pair) after another.

So the computing time is proportional to the number

of genotyped offspring times the number of markers

(times the number of traits). In the present study, the

analysis of the full data set (4500 offspring with 6000

markers) took 67.9 s on a Digital Ultimate Worksta-

tion with a 533 MHz double processor.

Using the Mendelian sampling term in this proce-

dure has many advantages. When considering

nuclear families, the Mendelian sampling reflects the

deviation of the offspring from the parent average

and pedigree information is fully accounted for.

Thus, complex calculations like setting up IBD or

gametic relationship matrices, as in the mapping

approach suggested by Meuwissen et al. (2002), are

not required.

Morsci et al. (2006) suggested using the Mendelian

sampling term in a study on the effects of polymor-

phisms in two genes on cattle chromosome BTA1

and various beef traits. The main intention of using

estimated Mendelian sampling terms rather than

estimated breeding values in that study was to avoid

the impact of the time trend owing to selection

(Bullock et al. 2000). However, the study was based

on association only, and implications like the hetero-

geneous variances of estimated Mendelian sampling

terms were not addressed.

Aulchenko et al. (2007) also suggested a two-step

approach, called ‘GRAMMAR’, in which in the first

step a mixed model with a polygenic effect is fitted

to the data. In the second step, estimated residuals

are analysed for association with the observed poly-

morphisms. They show with different simulated data

sets that the power of this approach is similar to a

one-step procedure testing association while fully

accounting for the pedigree, called ‘measured geno-

type’ (MG; George & Elston 1987), but the comput-

ing time of their approach was only a fraction of the

MG approach. A direct comparison of the empirical

power observed in the study of Aulchenko et al.

(2007) with the present study is difficult, because

other data structures and significance levels (5%

genome-wise in their study versus 1% genome-wise

in our study) were used.

The most comparable result likely is the large-scale

analysis in the complex Erasmus Rucphen family

(ERF) pedigree (Pardo et al. 2005) comprising 1010

phenotype- and genotype-related individuals trying

to map a QTL explaining 10% of the additive genetic

variation with a total heritability of 0.3 (table 5

in Aulchenko et al. 2007). With classical TDT

approaches (QTDT and FBAT), the genome-wise

power (a = 0.05, 100 000 tested SNP) was below 5%

while it was 33% with GRAMMAR and 62% with

MG, the latter requiring however 76 days of com-

puting time for a single chromosome. In our study,

the genome-wise power (a = 0.01, 6000 tested SNP)

to find a QTL explaining more than 10% of the

additive genetic variation with 1000 genotyped indi-

viduals ranges from 1.5% to 46.4% and was on

average 24% (see Figure 3). This is merely an indi-

cation that the suggested approach may have a com-

parable power as GRAMMAR and performs better

than a phenotype-based TDT, but extended simula-

tions need to be performed to verify this.

A direct comparison is possible with six different

approaches based on linkage, LD or a combination of

both applied to the same data set, as reviewed by

Crooks et al. (2009). Of the 14 QTL considered in

both studies as major ones (all but the QTL at posi-

tion 1935 in our study), the alternative methods

detected between 7 and 11 QTL, while our method

detected 12 QTL. Note that the definitions of a suc-

cessful detection and the applied significance thres-

holds differ between the studies. Interestingly, the

QTL at position 2600 was missed by all approaches

except a haplotype-based LD mapping approach.

Only four QTL (at positions 200, 400, 1486 and

3032) were detected by all approaches.

The approach suggested in our study is non-

parametric in the sense that the estimated contrast d
is not interpreted as an estimate of an underlying

QTL effect like, e.g. the allele substitution effect.
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Even under a simple genetic model like complete

additivity d reflects a complex mixture of effects.

While true Mendelian sampling terms of different

individuals are uncorrelated, this is not true for esti-

mated Mendelian sampling terms. Strictly speaking,

the straight summation of weighted Mendelian sam-

pling terms as suggested before violates the assump-

tions underlying the t-test, which therefore is only

approximately valid. More reliable genome-wide

critical values again can be derived by applying a

permutation-based test (Churchill & Doerge 1994).

If for each Mendelian sampling term, an accuracy

qi is available and individuals differ substantially in

this parameter, estimated accuracies can be used as

weights in the test statistic in the form

d0 ¼ 1=n

Pn
i¼ 1

qikim̂i

Pn
i¼ 1

qijkij
;

where n is the number of individuals contributing a

Mendelian sampling term to either of the transmis-

sion classes 1n2 or 2n1 , and the indicator variable ki

is +1 or +2 if the Mendelian sampling term of indi-

vidual i is in the transmission class 1n2 or )1 or )2

if the Mendelian sampling term of individual i is in

the transmission class 2n1 . The values for ki for the

possible parent–child combinations are given in the

last column of Table 1. For the test statistic d¢,
the assumption of a t-distribution is no longer valid,

and appropriate threshold values should be derived

empirically by applying a permutation test (Churchill

& Doerge 1994).

The assumed data structure, comprising complete

triplets for all families, is somewhat idealized. In

many applications to farm animal populations, other

family structures like extended paternal half-sib fami-

lies, will prevail, and maternal genotypes will often

be missing. The presented method can also be applied

if only one parent is genotyped, but in this case only

a fraction of the meioses are informative and power

will be reduced. In many cases, it will be possible to

derive missing genotypes from the observed ones,

but, as noted by Curtis (1997), it is erroneous to treat

these reconstructed families as if parental genotypes

have been typed. Knapp (1999) has suggested an

approach to correct for this bias and has shown that

including reconstructed genotypes properly may

increase the power to detect linkage.

Regarding the power, data structures with multi-

ple offspring like extended half- or full-sib families

may be advantageous compared to triplets with a

single offspring only. Primarily, this is because of the

amount of information relative to the number of

genotyped animals. In the triplet case, one bit of

information requires three genotyped individuals, so

the ratio or informative Mendelian sampling terms

versus genotypes is 1 ⁄ 3. In a half-sib structure where

a sire has one offspring each from mating with n

dams the ratio is n ⁄ (2n + 1) and approaches ½ for

large values of n. In a full-sib structure with pairs of

parents with n offspring each, this ratio is n ⁄ (n + 2)

and approaches 1 for large values of n. While for

large families the amount of information on linkage,

i.e. within family segregation, increases, it is impor-

tant that sufficient numbers of families remain to

ensure that the between-family information reflect-

ing the LD in the population is accounted for.

Owing to the computational simplicity and the

speed of the suggested procedure, it is well suited to

scan whole genomes with high-density SNP coverage

in samples of substantial size and for a multiplicity

of different traits. Applying permutation-based test-

ing procedures is computationally demanding and

will cause the loss of the claimed computational

advantage of the suggested method. Therefore, we

propose using tabulated values of the test statistic

known to be only approximately valid for the gen-

ome screening step. Taking into account that the

applied Bonferroni procedure is known to be system-

atically over-conservative (Benjamini & Yekutieli

2001), the risk of getting false-positives will be

acceptable in most cases, nevertheless the results

should be interpreted with caution and regions

showing an indication of significant results should

be further analysed with more rigorous statistical

approaches. Also, the observed signals will only

reflect a qualitative indication that the SNP at the

respective position is linked to a pertinent genetic

effect of unknown size and nature. The method will

not provide any unbiased effect estimates. Further

exploration of the underlying genetic mechanisms in

the small sub-sample of significant SNP positions or

regions then can be performed via model-based

parametric approaches, such as the one suggested by

Meuwissen et al. (2002) in combination with reliable

empirical testing procedures.
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